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Trees are generally long-lived and are therefore exposed to numerous episodes of
external stimuli and adverse environmental conditions. In certain trees e.g., oaks,
taproots evolved to increase the tree’s ability to acquire water from deeper soil layers.
Despite the significant role of taproots, little is known about the growth regulation
through internal factors (genes, phytohormones, and micro-RNAs), regulating taproot
formation and growth, or the effect of external factors, e.g., drought. The interaction
of internal and external stimuli, involving complex signaling pathways, regulates taproot
growth during tip formation and the regulation of cell division in the root apical meristem
(RAM). Assuming that the RAM is the primary regulatory center responsible for taproot
growth, factors affecting the RAM function provide fundamental information on the
mechanisms affecting taproot development.
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INTRODUCTION

Roots, functionally and structurally diverse, form an integrated system allowing for water and
nutrient acquisition (Freschet et al., 2021a). Many aspects of root foraging are determined by
differences in root types. The exploitation of soil water is primarily carried out by the smallest and
most ephemeral roots, i.e., absorptive roots (McCormack et al., 2015, 2017). The development of
taproots, allows for the production of absorptive roots in deep soil layers (Bleby et al., 2010; Mackay
et al., 2020). Given the essential role of a plant’s root system, understanding the relationship between
the root structure and function, should include an assessment of the relationship between taproot
development and absorptive root formation. Together they play an important role in regulating
water potential in plants and may also have significant consequences for the hormonal interactions
and signaling described in the review hereafter.

Despite the important functions of taproots in many woody plants, significant questions
remain on how internal and external factors control the growth and development of taproots.
Genes, hormones, and microRNAs regulate every stage of root development (Petricka et al.,
2012). However, it is unclear, if these regulating components interact with each other to control
individual cell division, growth, and differentiation, and taproot development as a whole. Taproot
development is determined at the embryonic stage, through the directed regulation of cell division
and expansion, which is also influenced by external changes, e.g., soil moisture. Knowledge about
signaling of internal and external factors is fundamental in understanding mechanisms responsible
for taproot growth (Lynch et al., 2012). While the identification of key regulators of root growth is
essential, it is also crucial to understand how these regulators interact. Major factors often achieve
their function through an integrated effect on other, categorized as “composite factors” (Mitsis
et al., 2020). On one hand, composite factors comprise different genes responsible for different
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individual, lower-level components (like the transcriptional,
post-transcriptional, translational, and post-translational
components), while on the other hand integrated growth
involves “underlying factors” that vary in a coordinated manner
as determined by pleiotropic or highly linked genes and/or tight
hormonal control (Mitsis et al., 2020).

Our present objective is to determine individual and
composite factors that affect and regulate taproot development
and growth, and the influence of environmental stimuli on these
factors. Such knowledge could contribute to the development of
seedlings cultivation strategies, which further enabling taproot
restoration in container-grown trees, e.g., oaks, in which taproots
are typically rendered non-functional by air pruning. For
example, long-term taproot pruning reduces the access of planted
oaks to water during drought periods (Zadworny et al., 2014,
2019, 2021). First, we review, general information on taproot
morphogenesis and function, especially with respect to tree
response to drought, second we revisit changes in hormone-
regulated root development, third we investigate genetic factors
influencing root formation in deciduous plants.

CHARACTERIZATION OF THE TAPROOT
SYSTEM

Commonly, the classification of roots is based on the position
of emergence, and the recognition that most of the functional
traits of root systems as a whole are directly related to this
location (Zobel and Waisel, 2010; Zobel, 2011; Freschet et al.,
2021b). Primary roots in tree seedlings, known also as a taproots,
develop from the central embryonic root – the radicle, forming
the central axis of a root system (Zobel and Waisel, 2010; Wang
et al., 2014; Freschet et al., 2021b). The initial formation of
taproots are important, allowing the root system to reach rapidly
water at deeper soil depths, a factor that can be extremely
important for trees exposed to periods of drought (Barbeta and
Peñuelas, 2017; Zadworny et al., 2019; Mackay et al., 2020).
However, taproots undergo dynamic process governing root
system development and architecture, including the formation
of lateral and absorptive roots (Clowes, 2000). The requirements
for water and nutrients in plants change over time and therefore
root systems must dynamically adapt to those changing needs
when the rest of the plant grows bigger (Di Iorio et al., 2005).
Thus, it is important to determine where, and how, changes of the
environment are sensed and transduced into root development.

Taproot Morphogenesis
A comprehensive understanding of the root growth potential
arises from the apical configuration of a primary root – a
synonym of taproot root (Baluška et al., 2010; Freschet et al.,
2021b). The ability of taproots to penetrate compact soil layers
is due to the larger size of the root apex and the rapid elongation
behind the root cap (Clowes, 2000), as taproot meristematic cells
have a physiological and mechanical advantage over meristematic
cells, compared to other root types, e.g., lateral roots (Perilli et al.,
2012). Indeed, the pattern of postembryonic root development
can be projected through an analysis of the initial cells located

in the root apical meristem (RAM) cells (Figure 1; Perilli et al.,
2012; Sozzani and Iyer-Pascuzzi, 2014). Ablation of the RAM
in water-limited conditions results the formation of a highly
branched, shallow root system (Dubrovsky and Gómez-Lomelí,
2003; Shishkova et al., 2013; Drisch and Stahl, 2015), indicating
the essential role of a taproot in root system architecture (Dolan
et al., 1993; Chapman et al., 2002; Sabatini et al., 2003) for water
acquisition from deeper soil layers (Robbins and Dinneny, 2018;
Gupta et al., 2020).

There are three unanswered questions remaining in the regard
to the taproot root meristems: (1) how does organization and
cellular signaling enable a taproot to grow and penetrate deep
soil layers, (2) what internal factors enable taproots to grow
rapidly and penetrate deep soil layers, and (3) how does soil water
limitation induce the vertical growth of taproots. Aside from
the unanswered questions above, how much does the genetic
control the cell division explain the continued maintenance
of root growth and apical dominance of taproot meristems
(Perilli et al., 2012; Sozzani and Iyer-Pascuzzi, 2014). Current
findings indicate that differences in inter-tissue signaling and
the relationship between tissue-types are mostly responsible for
matching meristem growth and root topology patterning (Peters
and Tomos, 1996). Meristem enlargement, through increased
cell division, and the transition of the cells into the expansion
zone, occurs not only in response to internal stimuli during
plant ontogenic development, but also in direct response to
water supply (Benková and Hejatko, 2009; Mira et al., 2017).
It seems likely, however, that cell division predominates cell
differentiation in taproot meristems over the long-term to
prevent the cessation of root growth until roots reach deep soil
layers (Shishkova et al., 2008).

Taproot Function in Deciduous Trees
Insufficient water availability and associated reduced water
uptake by absorptive roots are the main factors contributing
to global forest decline (Allen et al., 2015; Choat et al., 2018;
Zadworny et al., 2021). Countering drought stress can be
achieved by enhancing water acquisition and/or reducing water
consumption, while increased root proliferation and taproot
elongation increases water uptake from deeper soil layers (Arend
et al., 2011; Tuberosa, 2012; Brunner et al., 2015). Mackay
et al. (2020) reported that water acquisition in shallow soil
layers declines as drought severity increases. Therefore, long
taproots can improve water uptake, and help to compensate for
increased water usage (Mucha et al., 2018; Skiadaresis et al.,
2019), e.g., in oaks that produce a dominant taproot (Osonubi
and Davies, 1981; Löf and Welander, 2004; Bréda et al., 2006;
Mucha et al., 2018). Deep-rooted plants access water from deep
soil layers and transport it to shallow, drier roots, increasing
a plants’ ability to survive due to hydraulic redistribution
process (Domec et al., 2004; Smart et al., 2005; David et al.,
2013). Nevertheless, such watering is rather uncommon as
shallow, fine roots are abandoned and die during the dry
season in some drought-adapted tree species and grow back
when water is available (Montagnoli et al., 2019). This raises
the question, whether water limitation contrarily accelerates
taproots growth into deeper soils in response to drought.
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FIGURE 1 | Organization of plant root meristem. There are three distinct developmental zones: (a) meristematic with visible the quiescent center and initial cells in a
stem cell niche, (b) elongation, and (c) differentiation. Created with BioRender.com.

Hormonal induced accumulation of osmoprotectant metabolites
enabling root elongation during drought, confirms that this
may be the case (Fàbregas et al., 2018). Therefore, a rigorous
quantification of the components and molecular mechanisms
regulating taproot growth in trees is required, especially among
deciduous angiosperms, such as oak and chestnut, as deep
taproots may determine resilience to drought. The first step in
developing a mechanistic understanding of taproot growth would
be to determine the regulatory effect of different phytohormones
on cell division in the taproots RAM.

EFFECT OF PHYTOHORMONES ON
ROOT GROWTH

Root growth is also regulated via signal transduction pathways,
including complex, environmental-sensing networks. The
signaling pathways regulate plant root elongation, radial growth,
branching, and overall architecture (e.g., root growth and
development), and concomitantly water and nutrient uptake
(Jung and McCouch, 2013; Ristova et al., 2018). Importantly,
individual phytohormones do not regulate root growth and
development independently, but rather function in an interactive
manner (Figure 2; Xuan et al., 2016). Increased knowledge about
these interactions may help to clarify the underlying mechanism
regulating the pattern of taproot growth (Zhang et al., 2017).
Hormones incidence and composition can contribute to

improvements of taproot growth, and could contribute to its
regeneration, when damaged as a consequence of root pruning
during nursery cultivation. Thus, it is important to improve our
understanding of specific hormones and their influence on the
development and growth of taproots.

Auxin
Auxin contributes to the positioning and formation of
meristematic cells during organogenesis (Jiang and Feldman,
2010), as well as the retainment of mitotic activity in meristems
(Beemster and Baskin, 2000; Galinha et al., 2007; Stepanova et al.,
2008), as well as the fast elongation and differentiation of cells
(Rahman et al., 2007; Benková and Hejatko, 2009; Ishida et al.,
2010). Auxin accumulation in developing RAM cells has revealed
that proteins, belonging to the PINFORMED family (PINs;
PIN1, 2, 3, 4, 7), are necessary for the formation of an auxin
gradient, and regulating the auxin distribution and acropetal
transport to the root apex (Blilou et al., 2005). Auxin gradients
that induce the expansion of cells and inhibit cell division in
the extension zone (Blilou et al., 2005) by the expression of
PLETHORA transcription factors (TFs) (Aida et al., 2004),
may also regulate taproot elongation. The maintenance of root
tip size and growth rate in transgenic Arabidopsis mutants in
which PIN genes were silenced, provided evidence that the
formation of an internal auxin gradient is indeed correlated
with root development (Blilou et al., 2005; Vieten et al., 2005;
Dello Ioio et al., 2007), affecting the formation, maintenance,
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FIGURE 2 | Mechanism of auxin and cytokinin interaction in root meristem development. The distribution of auxin and cytokinin in different lots of the longitudinal
section of the tree root is shown (green arrow – higher level, red arrow – lower level). (A) Auxin mediating WOX5 (expressed in the quiescent center cells (QC) and
PLT (expressed in the stem cells surrounding the QC) expression plays a key role in the differentiation of columella cells. Also, in the apical root meristem, auxin by
degrading SHY2 proteins promotes the expression of PINs, which control the auxin gradient and subsequently affect cell division. (B) In contrast to the auxin,
cytokinin inhibits PIN expression by promoting SHY2 expression, leading to auxin redistribution and cell differentiation. PLT, PLETHORA; PINs, PINFORMED; WOX,
WUSCHEL RELATED HOMEOBOX 5; ARF, AUXIN RESPONSE FACTOR; IAA, INDOLE-3-ACETIC ACID; SHY2, SHORT HYPOCOTYL 2; IPT5,
ISOPENTENYL-TRANSFERASE 5; AHK3, ARABIDOPSIS HIS KINASE 3; ARR1, ARR TRANSCRIPTION FACTORS; MZ, meristematic zone; TZ, transition zone; EZ,
elongation zone; DF, differentiation zone, QC, quiescent centre [based on Su et al. (2011)]. Created with BioRender.com.

and activity of RAM cells in deciduous trees (Palovaara and
Hakman, 2009; Palovaara et al., 2010; Liu et al., 2014; Qi et al.,
2020). PINs can significantly impact the rate of root growth and
the size of the root tip (Vieten et al., 2005), possibly determining
the pattern of taproot elongation in trees. Studies investigating
the role of PINs in poplar (Populus), spruce (Picea abies), and
pear (Pyrus), have reported a broader and more unique role for
these proteins in auxin-controlled root development in trees
(Palovaara et al., 2010; Liu et al., 2014; Qi et al., 2020). Some
auxin-regulated developmental processes that are unique to
woody plants (Liu et al., 2014), may directly affect the root apex
expansion (also in taproots) toward wetter areas of the soil (van
den Berg et al., 2016). Exploring the auxin regulatory network
underlying root development will provide valuable information
on the hormonal regulation of the formation and functioning
of RAMs and the factors governing meristem size in plants with
prominent taproots.

Cytokinins
Cytokinins, as well as auxin, are required for the establishment
and maintenance of RAM, through the enhanced of mitotic
activity of quiescent center cells (QC; Zhang et al., 2013). In
contrast to auxin, however, cytokinins control cell differentiation
and inhibit root elongation. Studies on cytokinin biosynthesis
mutants have shown that cytokinins can regulate the size of
RAM. Application of exogenous cytokinins caused a decrease

in meristem size, by affecting the rate of meristematic cell
differentiation (Dello Ioio et al., 2007). In fact, a reduction
in endogenous cytokinin levels in mutants (with a cytokinin
level deficiency) results in faster growth of the primary root
(Werner et al., 2001). Therefore, repression of cytokinin activity
may enhance drought resistance in trees, enabling deeper soil
exploitation by taproot elongation (Werner et al., 2001; Calvo-
Polanco et al., 2019). Nevertheless, it is essential to determine if
cytokinins function alone or interactively with other hormones
do contribute to drought tolerance in plants.

Ethylene
Ethylene, generating uneven transverse cell divisions in the QC
of a RAM, plays a major role in inhibiting cell proliferation
and root growth (Woeste et al., 1999; Schaller and Kieber, 2002;
Růžička et al., 2007; Qin et al., 2019). An ethylene dependent
pathway involved in inhibiting root elongation was identified
in ETHYLENE OVERPRODUCER (eto1) mutants that exhibit
enhanced ethylene biosynthesis, relative to wild-type plants,
which produce long primary roots (Woeste et al., 1999). Higher
root elongation in ethylene resistant ETHYLENE RESISTANT
1 (etr1), ETHYLENE INSENSITIVE2 (ein2), and ETHYLENE
INSENSITIVE3 (ein3) mutants also provided evidence that
ethylene inhibits root growth (Růžička et al., 2007). The central
function of ethylene in relation to root growth allows roots to
restrict elongation when needed and extend their growth into
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deeper soil layers when conditions initiate growth restoration
(Negi et al., 2010; Pandey et al., 2021). A lack of alterations in
the size of root meristems in these ethylene mutants is consistent
with the potential ability of certain taproots to first hold back
and then restart growth under specific environmental conditions
(Street et al., 2016). The ability to regulate cell elongation
through ethylene, cytokinin, and auxin cross-talk may represent
an efficient mechanism for directing the position of roots and
may also be involved in plant response to drought conditions.

Other Hormones
Gibberellins (GA), abscisic acid (ABA), and brassinosteroids
(BR) are classes of hormones that can affect root development.
Gibberellins act mainly on endodermal cells in root tissues,
inducing an expansion of endodermal cells in the root elongation
zone, which consequently limits the elongation rate of other
root tissues (Ubeda-Tomás et al., 2008). The effect of ABA
on root development has been shown to be concentration-
dependent: low concentrations of ABA stimulate root elongation
while higher concentration deters root formation (Harris, 2015;
Rowe et al., 2016; Sun et al., 2020). Low concentrations of ABA
enhance the activity of meristematic cells (stem cells) and alter
auxin transport and signaling, while the suppressive effect of high
concentrations of ABA on root growth are related to its inhibition
of cell division in RAMs, as well as cells in the elongation zone
(Sun et al., 2020).

Although auxin and ABA affect different aspects of root
growth, high levels of ABA reduce auxin levels, which results
in root growth inhibition due to the induction of PLT TFs
(Yang et al., 2014; Promchuea et al., 2017). Indeed, when
the level of drought is too severe, elevated levels of ABA
inhibit root growth, which is why ABA is referred to as the
stress hormone (Nakashima and Yamaguchi-Shinozaki, 2013).
Interestingly, transgenic poplar lines with ectopic expression
of abi1 (abscisic acid insensitive1) exhibit an ABA insensitive
phenotype, allowing plants exposed to a short-term water
shortage an induction of primary root elongation (Sharp et al.,
2004). The signaling pathway involving ABA interactions with
ethylene, inhibits further primary root growth by increasing
ethylene biosynthesis (Sharp et al., 2000; Qin et al., 2019). This
suggests that the sensing of low ABA concentrations during
episodes of water limitation could promote taproot growth. BR
also promote root growth especially during drought periods. The
BR biosynthesis maxima in the elongation zone is accomplished
by the accumulation of osmoprotectant metabolites, resulting
in the elongation of lateral roots and enhancing water uptake
(Bao et al., 2004; Fàbregas et al., 2018; Vukašinović et al.,
2021). Although examining of a specific hormone has made
it possible to understand the mechanism of single hormone
biosynthesis, perception, and signaling, the regulation of root
development is largely dependent on the interaction of different
hormone pathways.

Hormonal Cross-Talk
Dynamic root growth is a result of the interaction between
hormones affecting biosynthesis, transport, inactivation,
perception, signaling pathways and regulating development,

maintenance, and RAM function. An increase in auxin levels
contributes to lower cytokinins levels. In addition, an increase in
the level of cytokinin inhibits the synthesis of auxin (Eklof et al.,
1997; Nordstrom et al., 2004; Di Mambro et al., 2017). Cytokinins
may also affect, polar auxin transport and the formation of a
local auxin gradient during lateral root formation as well as the
expression of genes involved in auxin transport (Laplaze et al.,
2007; Kuderova et al., 2008). Similarly, root growth is inhibited by
the balance between auxin and ethylene. In response to ethylene,
auxin accumulates in RAM cells and inhibits cell elongation
and cell differentiation, consequently regulating how different
components of the root system develop (Casson and Lindsey,
2003). The regulatory role of this balance was demonstrated
through the use of mutants in which the biosynthesis, transport,
and perception of auxin was affected (Růžička et al., 2007;
Stepanova et al., 2007). The inhibition of PLETHORA (PLT)
expression by AUXIN RESPONSE FACTOR (ARF), which
negatively regulates WUSCHEL RELATED HOMEOBOX 5
(WOX5) transcripts – the driver of stem cell formation – leads
to distal stem cell differentiation in RAM (Figure 2; Su et al.,
2011). Thus, the molecular interaction between auxin, cytokinins
and other hormones controlling meristem development may be
applied to the explanation of taproot growth. The question is
which combinations regulate root elongation in a similar manner,
or if the result varies in taproot vs. lateral root growth. Therefore,
to understand the control of taproot growth, there is a need to
explore the molecular and genetic mechanisms that regulates
root development, through expression and functional analyses.

GENETIC FACTORS INVOLVED IN ROOT
DEVELOPMENT

Root development, as well as the hormonal regulation, are
controlled by specific genes or groups of genes categorized
as composite factors (Sarkar et al., 2007; Mitsis et al., 2020).
Composite factor are induced when roots begin to grow,
penetrating the soil, and determine both the growth of individual
roots, as well as the overall architecture of the entire root system
(Wachsman et al., 2015). Therefore, targeting the activation or
suppression of gene expression is a key aspect of the genetic
regulation of roots (Atkinson and Halfon, 2014). The genes
encoding key TFs, hormone precursors and regulatory proteins
collectively affect the functioning of the taproot. Moreover,
they may act differently depending on the species. Elucidating
the molecular mechanisms by which specific genes control the
development of taproot’s RAM throughout a perennial lifetime,
will provide valuable knowledge on every stage of root growth
and aspect of root function (Slovak et al., 2016).

Transcription Factors Involved in Root
Development
The establishment of RAM is determined by many factors,
including hormone levels, intercellular signaling, and receptors
that interact with specific TFs activated in response to internal
and external signals (Drisch and Stahl, 2015). Indeed, TFs in
plants regulate the transcription of specific genes (Table 1), as
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TABLE 1 | The key genetic factors involved in root development.

Name Abbr. Family Encodes Functions References

MONOPTEROS MP ARF Transcription factor root meristem
establishment, pattern
formation

Berleth and Jurgens, 1993

BODENLOS BDL AUX/IAA Aux/IAA protein
(IAA12)

root meristem
establishment

Hamann et al., 2002

TARGET OF MONOPTEROS TMO bHLH AP2 type
transcription factor

root meristem
establishment

Schlereth et al., 2010

WUSCHEL-RELATED
HOMEOBOX5

WOX5 ATHB Transcription factor the columella stem cell
identity

Sarkar et al., 2007

WUSCHEL-RELATED
HOMEOBOX11

WOX11 ATHB Transcription factor meristem initiation,
meristem maintenance and
lateral root initiation

Hu and Xu, 2016

SCARECROW SCR GRAS Transcription factor maintaining the QC identity Scheres et al., 1995

SHORTROOT SHR GRAS Transcription factor maintaining the QC identity DiLaurenzio et al., 1996

PLETHORA PLT AP2/ERF Transcription factor maintaining the QC identity Aida et al., 2004

ALTERED PHLOEM
DEVELOPMENT

APL MYB MYB
coiled-coil-type
transcription factor

phloem identity Bonke et al., 2003

III HOMEODOMAIN-LEUCINE
ZIPPER

HD-ZIP III HOMEODOMAIN-LEUCINE
ZIPPER

Transcription factor xylem tissues development Carlsbecker et al., 2010

FIGURE 3 | The key miRNAs involved in root development. For each type of structure, the implicated miRNA, their targets, and the process they control are
indicated in the colored boxes. TIR, TRANSPORT INHIBITOR RESPONSE; ARF, AUXIN RESPONSE FACTOR; NAC, NO APICAL MERISTEM, ARABIDOPSIS
TRANSCRIPTION ACTIVATION FACTOR (NAM, ATAF, CUC); bHLH, helix-loop-helix; GRF, GROWTH REGULATING FACTOR; HD-ZIP, HOMEODOMAIN LEUCINE
ZIPPER; NF-YA, NUCLEAR FACTOR-YA [based on Couzigou and Combier (2016)]. Created with BioRender.com.

well as the responses to external and internal stimuli (Mitsis
et al., 2020). For example, MP-dependent TFs regulate auxin
transport into cells and play a role in the generation of RAMs,

and may control other auxin response genes (Weijers et al.,
2006). TFs also play an important role in establishing the QC
in embryonic roots and maintaining the QC in mature roots

Frontiers in Plant Science | www.frontiersin.org 6 December 2021 | Volume 12 | Article 772567

https://biorender.com/
https://www.frontiersin.org/journals/plant-science
https://www.frontiersin.org/
https://www.frontiersin.org/journals/plant-science#articles


fpls-12-772567 December 1, 2021 Time: 9:19 # 7

Kościelniak et al. Root Growth and Development

(Forzani et al., 2014). Establishing the QC is accomplished by
determining the cell organization required for columella cell
identity, and maintaining the undifferentiated status of the QC,
which allows the QC to activate root growth to explore new
soil spaces, increase root biomass, and enhance water absorption
(Motte et al., 2019). Maintaining an area of undifferentiated stem
cells in the RAM provides a source of cells needed to produce new
roots throughout the lifetime of plants (Sarkar et al., 2007; Drisch
and Stahl, 2015).

The ability of taproots to grow deeper may be associated
with the maintenance of the columella stem cells in the distal
meristem of root tip and regulation of auxin distribution as in
lateral roots (Savina et al., 2020). Engaged in the above processes,
WOX TFs (WOX 5/7 and WOX11) play a key role in inducing
and sustaining primary roots growth, as well as generations of
lateral roots, from a primary root (Hu and Xu, 2016; Baesso et al.,
2018). For example, in poplar trees, the WOX TFs, WOX 4/5/11
and 12, regulate the development of new lateral roots originating
from taproot (Baesso et al., 2020). Tree root systems can extend to
considerable widths and depths, thus WOX increasing the ability
of a tree to adapt to adverse abiotic and biotic conditions, such
as drought or mechanical damage, to which they are exposed
continuously. Indeed specific TFs associations have profound
effects on plant resistance to drought e.g., the formation of
root non-hair cells (Schiefelbein et al., 2014), the differentiation
of root epidermal trichoblasts into root hair cells (Clowes,
2000; Ishida et al., 2008), as well as determining the root hair
morphology (Bruex et al., 2012). The importance of TFs and
the genes they regulate in taproot response under water deficit
conditions, however, has not been investigated, and the specific
role of TFs in enhancing drought resistance by promoting taproot
growth, driven by ABA-regulated auxin transport, remains to be
determined (Carlsbecker et al., 2010; Müller et al., 2016).

Role of Micro RNA in the Regulation of
Root Growth and Development
MicroRNAs (miRNA), along with other growth regulators, form
networks controlling gene expressions at a developmental and
tissue level, being key for the regulation of root development
(Jones-Rhoades et al., 2006; Couzigou and Combier, 2016), also
in deciduous and coniferous trees such as Pinus tabuliformis,
Larix olgensis, and Poncirus trifoliate (Song et al., 2009;
Zhang et al., 2013, 2019; Niu et al., 2015). Particularly,
miRNAs play an important role in root morphogenesis,
contributing to the regulation of meristem establishment and
maintenance, vasculature differentiation, lateral and adventitious
root formation, and the regulation of symbiotic interactions
(Couzigou and Combier, 2016). The multitude of functional
roles played by miRNAs, both in model, annual, and perennial
plant species, confirms their integral role in root development
(Figure 3). Little is known, however, about the role of miRNAs
in the development of taproots in trees. Thus, understanding the
role of these RNAs and their interactions with other molecular
components, such as genes, TFs, and plant hormones, will
assist in the elucidation of the complex pathways that control
taproot development and function during foraging for water

and nutrients, as overexpression of specific miRNAs increase
tolerance to many abiotic stresses by changing root architecture
and its adaptive responses to stressful conditions (Zhang,
2015). MicroRNAs and their interactions with other molecular
components effectively regulate RAM size and the differentiation
of vascular tissue in root, thus, represent a mechanism that
could be applied to taproots growth (Khan et al., 2011).
A comparison of PHV (PHAVOLUTA) and PHB (PHABULOSA)
gene expression in long and short growing roots in miR165/166-
resistant mutants indicated that these mutants have a reduced
RAM size and a lower level of vascular differentiation than wild-
type plants. Hence, miR165/166 regulates root development by
controlling RAM size, organ polarity, differentiation of vascular
elements, and shape of the root system architecture (Carlsbecker
et al., 2010; Couzigou and Combier, 2016).

Hormone signal transduction pathways are also affected by
miRNAs. For example, miR390 mediates the miR390–TAS3–
AUXIN RESPONSE FACTOR 2/ARF3/ARF4 regulatory pathway,
which is involved in auxin signaling, and miR393 represses
auxin signaling mediated by its downstream F-box auxin
receptor targets, namely, TRANSPORT INHIBITOR RESPONSE
1 (TIR1), as well as AUXIN SIGNALING F-BOX PROTEINS
2 (AFB2) and AFB3 (Yoon et al., 2010; Meng et al., 2011).
A negative regulation of ARF TFs by miR160 contributes to
the maintenance of adequate auxin homeostasis and further
lateral root formation (Wang et al., 2005; Meng et al., 2011),
for example. Mutants resistant to miR160, however, exhibited
reduced root branching (Couzigou and Combier, 2016). Another
miRNA, miR390, expressed in cells located in the region of lateral
root initiation downregulates ARF2, ARF3, and ARF4, resulting
in the inhibition of lateral root growth (Marin et al., 2010).
Furthermore, miR164 acts on the NAC1 TF acts downstream of
TIR1 transmitting auxin signals, promotes lateral root emergence
and controls lateral root elongation (miR167 acts on ARF7 and
ARF19) (Xie et al., 2004; Guo et al., 2005). The modulation of
both the primary root and the lateral roots by miRNAs reveals
the broad spectrum of action of these growth regulators in root
development and function (Gutierrez et al., 2009).

The regulatory function of miRNAs may also affect drought
resistance in roots enabling through the expression of drought-
responsive genes. In this regard, some miRNAs, such as
ABA responsive genes, auxin signaling genes, genes encoding
osmolytes, and antioxidant defense-related genes, can promote
an accumulation of target mRNAs associated with enhanced
stress tolerance (Ding et al., 2013). Notably, many of the miRNAs
that respond to drought stress have only been identified in
trees such as poplar and larch, and have not been detected in
annual plants, such as Arabidopsis or rice. This may indicate a
specific role for miRNA in woody plant species with long-term
root systems, whether they are broadleaf or coniferous tress.
Accordingly, the ability of miRNAs to regulate gene expression
in response to drought, may facilitate tree growth and survival
under adverse conditions on a long-term basis (Osakabe et al.,
2014). The regulation of both, lateral and primary roots growth
(Gutierrez et al., 2009), increases the ability to explore of
deeper soil layers. Nevertheless, our understanding of the
mechanisms and genes controlling taproot growth, development,
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differentiation, function, and architecture, especially in response
to adverse conditions, such as drought, is far from complete.

CONCLUSION

The interaction of external and internal factors influences the
growth and physiology of the taproot. The tips of a taproot
consist of meristematic cells in the RAM. Assuming that the
RAM is the main regulatory center responsible for taproot
growth and cessation, a better understanding of the factors
regulating the function of the RAM in taproots will provide
fundamental information on the mechanisms that influence
the development of the taproot. It is therefore necessary to
understand the interactions between internal factors in the
regulation of taproot growth and development, and to determine
how these factors are related to external factors, e.g., drought.
This raises the question of whether water restriction regulates
and/or induces root growth in plants not only to maintain
but also to accelerate root growth into deeper soil layers in
response to water stress, and what internal factors are responsible
for taproot development under drought stress. However, it
is difficult to determine which one of these factors has a
dominant effect on root growth, because the paths of dependence
between external and internal factors are closely related and
dependent on each other.

In the long term, understanding the regulatory role of genes,
hormones, and microRNAs will help to improve the quality
of nursery seedling production, including the development of

effective management strategies that will allow the restoration
of taproots in container cuttings. Unfortunately, the selection
of specific strategies to improve the elongation of taproots
in tree seedlings is challenging due to the variability of the
reactions of roots to multiple internal and external influences.
Under changing climate, manifested by high temperatures
and reduced precipitation, the formation of a deep root
system is crucial for the survival of seedlings, saplings
and maturing tree.
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