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Fusarium head blight (FHB) incited by Fusarium graminearum Schwabe is a devastating

disease of barley and other cereal crops worldwide. Fusarium head blight is associated

with trichothecene mycotoxins such as deoxynivalenol (DON), which contaminates

grains, making them unfit for malting or animal feed industries. While genetically resistant

cultivars offer the best economic and environmentally responsible means to mitigate

disease, parent lines with adequate resistance are limited in barley. Resistance breeding

based upon quantitative genetic gains has been slow to date, due to intensive labor

requirements of disease nurseries. The production of a high-throughput genome-wide

molecular marker assembly for barley permits use in development of genomic prediction

models for traits of economic importance to this crop. A diverse panel consisting

of 400 two-row spring barley lines was assembled to focus on Canadian barley

breeding programs. The panel was evaluated for FHB and DON content in three

environments and over 2 years. Moreover, it was genotyped using an Illumina Infinium

High-Throughput Screening (HTS) iSelect custom beadchip array of single nucleotide

polymorphic molecular markers (50 K SNP), where over 23 K molecular markers were

polymorphic. Genomic prediction has been demonstrated to successfully reduce FHB

and DON content in cereals using various statistical models. Herein, we have studied

an alternative method based on machine learning and compare it with a statistical

approach. The bi-allelic SNPs represented pairs of alleles and were encoded in two

ways: as categorical (–1, 0, 1) or using Hardy-Weinberg probability frequencies. This was

followed by selecting essential genomic markers for phenotype prediction. Subsequently,

a Transformer-based deep learning algorithmwas applied to predict FHB and DON. Apart

from the Transformer method, a Residual Fully Connected Neural Network (RFCNN)

was also applied. Pearson correlation coefficients were calculated to compare true

vs. predicted outputs. Models which included all markers generally showed marginal

improvement in prediction. Hardy-Weinberg encoding generally improved correlation for
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FHB (6.9%) and DON (9.6%) for the Transformer network. This study suggests the

potential of the Transformer based method as an alternative to the popular BLUP model

for genomic prediction of complex traits such as FHB or DON, having performed equally

or better than existing machine learning and statistical methods.

Keywords: genomic prediction, deep learning, transformer, feature selection, quantitative traits, barley, fusarium

head blight, deoxynivalenol

1. INTRODUCTION

Barley (Hordeum vulgare L.) is one of the most ancient grains,
and is currently the fourth-most produced cereal globally
measured both in area harvested and yield (FAO, 2019). Barley
is primarily grown as animal fodder, or used by the malting and
brewing industries. As a cash crop, malting barley necessitates
maximized yield performance, and requires strict management
of numerous grain-quality characteristics with specific parameter
ranges (Izydorczyk and Edney, 2017). Barley achieving these
superior standards can be sold into the lucrative malting barley
market, where it returns a significant premium to the barley
producer. Fusarium head blight (FHB), caused by Fusarium
graminearum Schwabe [teleomorph: Gibberella zeae (Schwein.)
Petch], is a devastating disease of barley. Primary concern of the
disease is due to associated trichothecene mycotoxins such as
deoxynivalenol (DON), which are potent inhibitors of protein
synthesis (Pestka, 2010). Due to potential adverse toxic effects,
DON along with its alternative forms are highly regulated with
maximum consumption limits set for humans and livestock
(EFSA CONTAM Panel, 2017).

Breeding FHB resistant varieties is a sustainable disease
management solution, which has been achieved mainly through
large disease nurseries. Studies have generally a demonstrated
positive association between visual symptoms of FHB infection
and DON content in matured grains. However, this correlation
is often moderate at best (Buerstmayr et al., 2004; Choo et al.,
2004; He et al., 2015; Huang et al., 2018; Tucker et al., 2019).
Mycotoxin quantification is highly technical, where sampling
protocols, quality controls and choice of analytical technologies
are all implicated as important factors (Tittlemier et al., 2021).
Analytical chemistries are expensive and labor requirements for
harvest and processing grains are substantial.

FHB andDON content resistances are both under quantitative
genetic control in barley (affected by many genes, each with a
small effect). Significant undertakings have been made in genetic
studies of biparental populations to identify quantitative trait
loci (QTL) for breeding resistant barley cultivars (Fernando
et al., 2021). While QTLs have been identified for FHB and
DON, they are limited by the minimal level of genetic variance
they explain, environmental specificity, and common association
with negative agronomics such as extreme heading date and tall
stature. Incorporating major QTLs from moderately resistant
source “Chevron” such as Qrgz-2H-8 into elite backgrounds,
did not result in sufficient resistance levels (Linkmeyer et al.,
2013). Some commercial success has been achieved in developing
moderately resistant cultivars such as six-row, malting barley

“Quest,” through pyramiding of multiple resistances (Smith
et al., 2013). Association mapping was able to identify QTLs
independent of negative agronomic traits, however these were
small, only explaining 1–3% of the observed variance (Massman
et al., 2011).

Cereal crops (Poaceae family, Triticeae tribe) are characterized
by their large genomes, with frequent repetitive elements
(Mascher et al., 2017). With plummeting cost of genomic tools
and availability of highly improved reference genomes, modern
breeding approaches are now possible, which take advantage
of genome-wide marker capabilities for the use in predicting
complex traits (Jannink et al., 2010). In the face of this challenge,
genomic prediction of FHB has been possible using statistically
based methodologies in hexaploid (bread) wheat (Rutkoski et al.,
2012; Arruda et al., 2015; Jiang et al., 2015; Mirdita et al.,
2015; Hoffstetter et al., 2016; Dong et al., 2018); durum (pasta)
wheat (Steiner et al., 2019; Moreno-Amores et al., 2020) and six-
row barley (Sallam and Smith, 2016; Abed et al., 2018). While
cereal genomes are complex, initial results of genomic prediction
for FHB and DON content are very promising, and demand
further investigation.

Traditional statistical algorithms such as Best Linear Unbiased
Prediction (BLUP) and variants (Burgueño et al., 2012; Cuevas
et al., 2017, 2019; Ferrão et al., 2017; Howard et al., 2019)
have been applied in many genomic prediction problems. These
models are mostly linear in nature and perform well for additive
traits. Machine learning methods have been applied in genomic
prediction with moderate success (Ogutu et al., 2011; Heslot
et al., 2012; Poland et al., 2012; González-Camacho et al.,
2018). The machine learning methods claim to capture non-
additive effects better than the statistical methods (Heslot et al.,
2012). Deep learning is a subset of machine learning that is
gaining popularity for genomic prediction (Rachmatia et al.,
2017; Ma et al., 2018; Jubair and Domaratzki, 2019; Khaki and
Wang, 2019). Deep learning differs from traditional machine
learning by applying multiple networks along with non-linear
functions that often imitate how the human brain learns and
identifies patterns based on the learned representations. Under
the training phase of genomic prediction, these deep learning
algorithms take inputs of genotype data of different varieties,
and their corresponding phenotypes, to learn the parameters of
the model. During the testing phase, only the genotype data of
other varieties is used as input and the trained model predicts
the corresponding phenotypes of the test data. These deep
learning methods have performed equally or better than existing
statistical methods (Ma et al., 2018; Jubair and Domaratzki,
2019; Khaki and Wang, 2019). For an overview of deep learning
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algorithms and their application in genomic prediction, we
refer the readers to a recent review (Montesinos-López et al.,
2021).

Neural networks such as feed-forward neural networks
(Rachmatia et al., 2017; Khaki and Wang, 2019) and
Convolutional Neural Networks (CNNs) (Ma et al., 2018;
Jubair and Domaratzki, 2019) have been applied in genomic
prediction. The feed-forward network can be compared to n
linear regressions where these n linear regressions are the hidden
neurons of the feed-forward network. The output neurons of the
CNN also represents multiple linear regression models where
the linear combination is produced from a very small subset
of markers. CNN uses a sliding window allowing it to slide
through the whole input space. Both feed-forward network and
CNN do not reflect the polygenic interactive effects of markers
as the relationship between markers are not considered in
these algorithms.

Transformers are a family of deep learning algorithms that
have been initially applied to Natural Language Processing (NLP)
tasks such as classification, next sentence prediction and topic
identification (Devlin et al., 2018; Radford et al., 2019; Raffel
et al., 2019; Brown et al., 2020). Historically these methods
perform well when trained on a large amount of data (Devlin
et al., 2018; Radford et al., 2019; Raffel et al., 2019; Brown et al.,
2020) and can be used for transfer learning. Apart from NLP,
Transformer architecture has been successfully applied to other
fields such as image processing (Dosovitskiy et al., 2020; Bazi
et al., 2021). In this work, we proposed a Transformer-based
genomic prediction model for predicting FHB and DON for
barley. The Transformer consists of three main components: the
self-attention, feed-forward networks, and layer normalization.
The self-attention mechanism calculates the attention score for
all geneticmarkers concerning a specific geneticmarker (Vaswani
et al., 2017) which helps to find the relation among markers.
The layer normalization function converts each input marker to
zero mean and unit variance. The Transformer network mainly
identifies the inter-relation among markers.

Hardy-Weinberg equilibrium is a principle that states the
allele frequency of a population will remain constant from
generation to generation in the absence of disturbing factors
(Acquaah, 2009). Under random mating, a population can
obtain the equilibrium even after a single generation if there
are no selection pressures. The principle also applies for the
marker frequency and provides addition information about the
population alongside genotype data (Acquaah, 2009). In this
paper, we apply Hard-Weinberg equilibrium values as an input
encoding for markers.

Hundreds of genes may contribute to a phenotype, such that
identifying the top contributing genes and related markers is a
challenging task. Feature selection algorithms identify essential
features for a specific task (Saeys et al., 2007; Tang et al., 2014) and
have been successfully applied in many classification problems
of bioinformatics (Saeys et al., 2007). Mutual information is a
filter based feature selection algorithm that identifies top features
based on a set of classes and features. Top features identified
using mutual information may represent targets which bear
biological value.

In this work, we evaluate a Transformer-based deep learning
method, GPTransformer, that uses genotypic and phenotypic
data to predict FHB severity and DON levels in a two-row
barley population. Our specific objectives were to (i) compare
the accuracy of the GPTransformer model to existing genomic
prediction methods, (ii) study the outcomes of the model
if categorical encoding was used or marker frequency-based
encoding was used, and (iii) investigate the effect of feature
selection on genomic prediction using mutual information and
examine the biological relevance of the top markers identified
by the mutual information method. The Transformer network is
trained using a graphical processing unit (GPU). As the internal
mechanism of the Transformer creates a four dimensional matrix
of size (batch size, number of heads, number of markers, number
of markers) at certain point, which requires a large amount of
GPU memory, the feature selection process also helps us to solve
the GPU memory issue of the Transformer.

2. METHODOLOGY

2.1. Genotyping
The seed for a genetic panel was collected for a total of 400
spring habit two-row barley genotypes of mixed usage types of
malt (171) and feed (229). Pure seed was provided by the Crop
Development Center, University of Saskatchewan, Saskatoon,
Canada (CDC) for a diversity panel of barley (92) breeding lines
tested in the Western Canadian Cooperative Two-Row Barley
Registration Trials (WCTBRT) 1994–2006 (Beattie et al., 2010).
Additional elite lines (176) were selected from 2001 to 2013
WCTBRT based on past performance, with the majority from
three breeding programs: CDC; Field Crop Development Center,
Olds College; Agriculture and Agri-Food Canada (AAFC),
Brandon Research and Development Center. Moreover, breeding
lines (105) targeting FHB resistance and involving crosses to
exotic sources, were also selected from these programs.

Two seeds were germinated on moist cotton balls for a week.
At the two-leaf stage (Zadoks et al., 1974), leaves were cut from a
single plant and flash-frozen in liquid nitrogen, then freeze-dried
in a lyophilizer (Labconco Corporation, Kansas City, MO, USA).
Genomic DNAwas extracted from 100mg of tissue using Qiagen,
DNeasy 96 Plant Kit (Qiagen, Canada). The isolated DNA was
evaluated by a NanodropTM 1000 spectrophotometer (Thermo
Fisher Scientific Inc., Wilmington, DE, USA) for quality and
concentration, then normalization to 50 ul mL-1. Samples were
assayed on an Illumina iScan (Illumina, San Diego, CA, USA)
using a custom iSelect-50 K SNP microarray (Bayer et al., 2017)
at AAFC, Morden Research and Development Center, Morden,
MB. A custom cluster file provided by M. Ganal (TraitGenetics
GmbH, Germany) was used to call SNP alleles using Illumina
GemomeStudio V2.0.5 software (Please see data availability
statement). Data were filtered for ≥ 5% minor frequency alleles
and ≤ 20% missing data.

2.2. Field Studies
FHB nurseries were grown in 2014 and 2015 at 3 locations:
Brandon, Manitoba (49◦51’56.0”N 99◦58’57.7”W); Carman,
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Manitoba (49◦29’52.9”N 98◦02’19.2”W) and Carberry, Manitoba
(49◦54’16.6”N 99◦21’19.0”W). The experiments followed a
randomized complete block design at all locations (n = 2). Plots
were sown with approximately 30–40 seeds and consisted of 0.9
m rows, 30 cm row spacing (Brandon, Carberry) or 1 m rows, 34
cm row spacing (Carman). Two inoculation methods were used.
Brandon and Carberry experiments were inoculated by the grain
spawn method, where maize kernels infected with 2 isolates each
of 3ADON- and 15ADON-producing strains of F. graminearum
were spread on the soil surface at 5 gm−2 at flag leaf then weekly
for 3 total applications. Irrigation was applied after first inoculum
application until all plots were rated. Experiments at Carman
were sprayed with a macroconidia suspension of 3ADON and
15ADON isolates in equal proportions and standardized to 5 ×

104 spores ml−1. Plots were misted and sprayed at 75% spike
emergence and then again 2 days following.

Plots were rated at the soft dough (Zadoks - Z85) stage. A
visual scale (0–5) was used to evaluate a composite measure of
incidence and severity (A. Tekauz, personal communication),
where 0 = no infection. 1 = incidence low, up to 5% of spikes;
severity low, 1 or 2 kernels per spike affected (up to 7% of head).
2= incidence low to moderate, 5–15% of spikes infected; severity
low to moderate, 1–4 kernels (up to 15% of head). 3 = incidence
moderate, 15–30% of heads; severity moderate, 2–8 kernels (up
to 25% of head). 4 = incidence moderate to high, 30–50% of
spikes infected; severity moderate to high, 4–12 kernels (up to
40% of head). 5 = incidence high, 50% or more spikes affected;
severity high, 5 to 15+ kernels (up to 50%+ of head diseased).
Additional data were collected on days to heading (date 50% of
row headed minus seeding date) at Brandon and Carberry and
plant height (distance of soil surface to tip of spike excluding
awns) at all locations.

Grains were harvested at maturity, using a stationary research
combine with low wind speed setting, then dried in a high
capacity drier for a few days. Grains were cleaned using an SLN3
sample cleaner (Pfeuffer GmbH, Kitzingen, Germany). A 20 g
subsample was removed, cleaned free of debris and/or chaff then
ground using a Perten 3610 lab mill with fine particle disc set
(PertenElmer Inc. Waltham, MA, USA). Deoxynivalenol content
was analyzed by enzyme-linked immunosorbent assay (ELISA)
technique using Veratoxr 5/5 (Neogen Corporation, Lansing,
MI, USA) as per kit protocol (limit of detection = 0.1 mg kg-1).
Samples were each tested in sub-sample pairs, where samples
deviating by > 10% were repeated.

2.3. Allele Frequency Based Encoding
As the barley population is diploid, a locus A can have two alleles,
A and a and three genotypes AA, Aa, and aa. We replaced the
classical representation of genotype of a marker (1, 0, –1) with
genotypic frequency by applying Hardy-Weinberg equilibrium
(Acquaah, 2009). The frequency of alleles is calculated for each
genetic marker. Suppose, the genotype AA and Aa appear D
and H times respectively for a specific genetic marker. If the
population size is N, the total number of alleles will be 2N. Then,
the frequency of alleleA for a specific genetic marker is calculated
by applying Equation (1).

p =
2D+H

2N
(1)

The frequency of the allele a is q=1−p. After calculating the allele
frequency of a geneticmarker, the expected genotypic frequencies
of genotype AA, Aa and aa for a specific marker is obtained from
p2, 2pq, and q2. These expected genotypic frequencies are used as
marker values for the machine learning algorithms.

2.4. Transformer
In this paper, we examine the application of Transformer, a
variety of neural networks. Deep neural networks have been
applied to GS in the past. See the survey of Montesinos-López
et al. (2021) for details on previous applications. The Transformer
is a family of deep learning algorithms successfully applied to
various NLP tasks such as classification, sequence to sequence
modeling, and next sentence prediction. The Transformer
architecture has two major components: i) encoder and ii)
decoder (Vaswani et al., 2017). In this work, we use the encoder
part of the Transformer along with an additional feed-forward
network (Figure 1). The encoder of the Transformer architecture
contains an embedding layer, a multi-head self-attention layer,
and finally a feed-forward neural network.

The purpose of the embedding layer is to obtain an n = 8-
dimensional expanded representation of markers. In this work, a
feed-forward neural network is applied as the embedding layer.
The input of the embedding layer is m markers and the output
is an m × n-dimensional vector. The vector is then reshaped
to an (m, n)-matrix to obtain m expanded representation of the
markers. The output of the embedding layer is then passed to a
multi-head attention network.

The multi-head attention network is based on the self-
attention mechanism. The input of this layer is the expanded
representation of the markers obtained in the embedding layer.
The main building block of the multi-head-attention is the self-
attention mechanism that calculates the attention score for all
other expanded representation of markers with respect to a
specific expanded representation. To calculate the self-attention,
at first, each embedded marker creates three vectors: a query
vector q, a key vector k and a value vector v by applying a
linear transformation on the embedding. The query vector is
the candidate expanded representation with respect to which the
attention is measured while the keys are the set of expanded
representations where the importance scores are assigned. The
attention score is calculated as:

Attention(Q,K,V) = softmax(
QKT

√

dk
)V (2)

In Equation (2), Q is a matrix of all the queries, K is a matrix
of all the keys and V is a matrix of all the values and dk is the
dimension of keys. The last step is to generate a summation
of the previous step, which produces the self-attention layer’s
output. In a multi-head attention setting, the Transformer model
creates h independent linear representation from queries, keys
and values. These h representations are then concatenated and
passed through a linear projection layer to obtain the final output.
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In Figure 1, a residual connection from the output of the
input embedding layer is added to the output of multi-head
attention. A layer-normalization is applied to the output of the
residual connection. The Transformer block contains another
feed-forward network and a layer-normalization after the feed-
forward layer. The N in Figure 1 indicates that this Transformer
block can be stacked N times and the output of the Nth encoder
block will be the input of the feed-forward layer that predicts
the phenotypes.

2.5. Residual Fully Connected Neural
Network
We now describe our second deep learning model which is based
on feed-forward network with residual connection. In general
terms, a residual neural network is a neural network that has
one or more residual connections. Residual connections allow
skipping of layers in a neural network. In our implementation,
the first layer of the Residual Fully Connected Neural Network
(RFCNN) is a feed-forward neural network that takesM markers
as the input and performs a linear transformation to produce
an n-dimensional hidden representation of the markers. This
hidden representation is the input of the batch-normalization
layer. The batch-normalization layer normalizes the current
batch by its mean and standard deviation. As the feed-forward
network and batch normalization performs a linear operation

FIGURE 1 | Transformer architecture.

on the input data, we apply the activation function ReLU to
the batch-normalization layer’s output. ReLU will return 0 if
the input is ≤ 0; otherwise, it will return x where x is the
input and thus, introduces the non-linearity. The output of ReLU
is going to be the input of the next feed-forward network. In
Figure 2, the residual connection is shown as the arrow on
the left-side of the figure skipping over the intermediary layers.
A residual connection is added from the output of each odd
ReLU layer to each odd batch-normalization layer (except the
first batch-normalization). The residual block can be stacked N
times. The output layer is the feed-forward network that predicts
the phenotypes.

2.6. Other Statistical and Machine Learning
Models for Baseline Comparison
2.6.1. Decision Tree

Decision Trees (DTs) are common statistical and machine
learning methods used for predictive modeling. The baseline
DT regressor models used in this analysis were built with

FIGURE 2 | Residual fully connected network architecture.
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the Scikit-learn (Pedregosa et al., 2011). Python module under
default settings. To train the models, an input dataset of an
n × p matrix of encoded genotypes and a n-dimensional vector
of known corresponding phenotype responses were supplied. At
each node, splits based on the SNP markers are considered and
the highest quality split is chosen; in this case, the quality measure
of the split is the mean squared error. This process continues
recursively, splitting the data into subsets of instances at each
internal node, until the branches terminate with leaf node and
produce a response value. The values at the leaf nodes are the
arithmetic mean of the known associated response variables to
the instances that are present in the adjoining edge. With a
fitted model, genotypes with unknown phenotype response can
be predicted by iteratively testing the SNP marker values against
the trees decision procedure until a leaf node is reached.

2.6.2. Linear Regression

Like the DT models, the linear regression (LR) models used
in this analysis were built with the Scikit learn Python module
using default settings. LR fits a linear model by calculating
coefficients on the independent terms that minimize the sum
squared error between the known observations responses and the
approximated predictions. The following is the form of the linear
models:

y = Xβββ + εεε (3)

where y is the n-dimensional vector containing response
variables (phenotype) for each of n input genotypes.X is the n×p
matrix (n genotypes and p markers in each genotype), βββ is a p-
dimensional column vector of unknown coefficient parameters,
and εεε is the n-dimensional unknown random error column
vector. The linear regression model tries to learn βββ to make
phenotype prediction.

2.6.3. Ridge Regression Best Linear Unbiased

Prediction

The ridge regression (RR) models were built using JMP
Genomics 9 (JMP Genomics, 1989-2021). This process computes
Best Linear Unbiased Predictions (BLUPs) that linearly correlate
the genotypes, based on the input marker encodings, to a trait
variable of interest. RR-BLUPs are linear mixed-models of the
following from:

y = Fδδδ + Zγγγ + εεε (4)

where y is the n-dimensional column vector containing response
variables (phenotype) for each of n genotypes, F is the n×qmatrix
of known fixed-effects, δδδ is a q-dimensional column vector of
unknown fixed-effects parameters, Z is the n×pmatrix of known
random-effects (n encoded genotypes), γγγ is the p-dimensional
column vector of unknown random-effects parameters, finally, εεε
is the n-dimensional unknown random error column vector. It is
assumed that the residuals εεε and random-effects γγγ are normally
distributed, εεε∼N(0, Iσ 2

εεε ) and γi∼N(0, σ 2
γi
) where I is the identity

matrix and σ 2
γi

are assumed equal for all SNP markers. The
unknown model parameters are estimated from the solution of
the mixed-model equations (Henderson, 1984). A scoring file is

produced that contains an equation of a linear combination of
SNP markers for predicting phenotype response from the testing
set data.

2.7. Train-Test-Validation Split
To divide the data into train, test and validation sets, we follow
the recommendation of Runcie and Cheng (2019). We randomly
split the data in 85–15%, where 85% is the training data and
the remaining 15% is the test data. From the training data, we
again perform three random splits of 85–15%. The first 85% is
the training set and the rest 15% is the validation set. Thus, from
the data, we created three training sets, three validation sets and
one test set.

To further investigate the reliability of the proposed
GPTransformer model, we again perform k random splits of the
dataset into 70–15–15% train-test-validation sets (k = 3). This
time, in each split, the test set also changes along with the training
and validation set.

2.8. Feature Selection
Feature selection methods identify features that contribute to
a specific expression. In our work, the purpose of the feature
selection is to identify those genetic markers that contribute
toward low FHB or low DON levels. We applied mutual
information feature selection, a filter based method, where the
input is the genetic markers and the phenotypes and the output
is a mutual information score (ranging 0-1). Discretization was
performed where we divide the genotypes into three bins based
on phenotypes (lowest 25%, middle 50%, highest 25%). The
categories are the labels and the genetic markers are the features
of mutual information algorithm which produces a mutual
information score for each marker. The final mutual information
score for each marker is the average mutual information score
over the three training sets. Markers with average mutual
information of ≥ 0.02 were selected.

2.9. Training Transformer
The input embedding of the Transformer network converts each
marker to a eight-dimensional vector (hidden dimension, n = 8).
Thus, if each genotype contains m genetic markers (m = 25, 000
before performing feature selection), the input embedding layer’s
output will be an (m, n) matrix. This (m, n) matrix is the input of
the multi-head attention. As the multi-head attention computes
pairwise attention between each marker, the operation will result
in an (h,m,m, n) matrix where h is the number of heads. This
operation has significant memory requirements for the GPU. For
instance, on this dataset, it requires over 48 GB of memory.

To circumvent memory limitations, only selected features of
mutual information are taken as the Transformer network input.
We also pass only one genotype at each batch for training. Thus,
the input of the embedding layer is all the markers of a genotype
selected by the mutual information algorithm. The output is an
(f , n) dimensional matrix where f is the number of markers. This
(f , n) matrix will be the input of the Transformer encoder. Our
Transformer neural network contains two Transformer encoder
blocks (N = 2). We use two heads (h = 2) for each multi-
head attention layer and each feed-forward block inside the
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Transformer encoder contains 256 hidden neurons. The final
Transformer encoder’s output is also an (f , n) matrix which
is flattened to create a vector that contains f × n elements.
This vector is the input of the last feed-forward network which
contains one output neuron. We use the mean square error
(MSE) loss function along with the Adamoptimizer. The learning
rate of the optimizer is 1e−5. If there is no improvement in MSE
loss in the validation set for ten consecutive epochs, we stopped
the training.

2.10. Training Residual Fully Connected
Neural Network
The first feed-forward layer takes m markers (all the markers)
or f markers (feature selected) as an input and produces a
512-dimensional hidden representation. Each subsequent feed-
forward layer takes the previous layer’s input and produces a 512-
dimensional hidden representation. The last feed-forward layer
contains only one output neuron. We stack five residual blocks
(N = 5) one after another. We also use MSE as the loss function
and Adam as the optimizer with a learning rate of 1e− 5.

3. RESULTS

The Pearson Correlation Coefficient (PCC) was calculated to
measure the performance. The PCC calculates the linear relation
between the true output and predicted output. The PCC value
ranges from −1 to 1 where 1 indicates a perfect linear relation
between the predicted phenotypes and the true phenotypes
whereas −1 indicates the opposite relationship between the true
and predicted phenotypes.

In the remainder of the paper, especially in the figure, we will
denote genotype based encoding as HW, categorical encoding as
CAT, Decision Tree algorithm as DT, Linear Regression as LR and
Residual Fully Connected Neural Network as RFCNN.

3.1. Phenotype Assessment
The distribution of FHB and DON is shown in Figure 3. It
is observed that the FHB values are distributed over 0.3–
4.8 range (1.75 ± 0.04), while the DON values range from
4.9 to 36.9 mg kg-1 (13.96 ± 0.21) (Supplementary Table 1).

For both phenotypes, the distribution curve is similar to
normal distribution, however, a degree of positive skewness was
observed in FHB (0.881) and DON (0.976). Shapiro-Wilk W
tests conducted on FHB (W = 0.947, Prob <0.0001) and DON
(W = 0.963, Prob <0.0001) indicated a degree departure from
normality. Departures from normality were most obvious in tail
regions of the distributions.

Though from Figure 3 it seems there may be a linear relation
between FHB and DON, it is found that the Pearson Correlation
Coefficient (PCC) between the two phenotypes is 0.381 (p <

0.0001). Figure 4 shows a scatterplot of FHB vs. DON for
each genotype. From Figure 4, it is observed that there is
a very little correlation between the two phenotypes, which
is reflected by the PCC score. This leads us to expect that
similar genomic selection models may not immediately perform
similarly when predicting the two phenotypes. FHB and DON
were also examined for relationships with days to heading (r =

−0.18, P < 0.004; 0.18, P < 0.0003) and height (r = −0.60, P <

0.0001;−0.21, P < 0.0001).

3.2. Effect of Encoding Technique
Two encoding techniques were implemented: i) categorical
encoding (-1, 0, 1) and ii) genotype frequency-based encoding
that follows Hardy-Weinberg equilibrium. Figure 5 shows the
comparison of PCC between two encoding schemes for various
models. In most of the models, the categorical encoding
outperforms the genotype frequency-based encoding. In the
BLUP, correlation is very close to each other for both traits as the
correlation score varies from 0.001 to 0.003 based on different
traits. For Transformer, Hardy-Weinberg encoding improves the
correlation by 6.9% for FHB and 9.6% for DON. This can be
explained by noting that, with the categorical encoding, the
values of genotypes are 1, 0, and –1 and the heterozygous alleles
will be considered neurons that do not have any effects. In
particular, Figure 6 shows the effect of categorical encoding in
the embedding layer. As the embedding layer’s output is the input
of the multi-head attention, multi-head attention also ignores
any effect of heterozygous alleles. When applying genotype
frequency-based encoding, different alleles of a specific gene have

FIGURE 3 | Distribution of phenotypes for Fusarium head blight (FHB, 0–5) and deoxynivalenol content (DON, mg kg−1).
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different values and these values even differ from gene to gene.
For example, allele AA for gene X and allele AA for gene Y may
appear in different frequencies and will have different Hardy-
Weinberg values. Thus, the embedding layer does not suffer from
multiplying-by-zero problems and improves the performance of
the Transformer.

3.3. Effect of Feature Selection
No single molecular marker dominantly explained significant
portions of the variation for FHB or DON. However, specific
markers could be identified as “top features” which may be

FIGURE 4 | Fusarium head blight (FHB, 0–5) vs. deoxynivalenol content (DON,

mg kg−1) for each of the barley genotype tested. Correlation between FHB

and DON is 0.381.

associated with genes of interest which may operate closer to
oligogenic vs. polygenic fashion (Supplementary Tables 2A,B).
Biological endorsement of genomic features for FHB and DON
were investigated through analysis of SNP effect annotations
of markers on the 50 K SNP chip (Bayer et al., 2017). The
top molecular markers with the highest mutual information

are displayed in Supplementary Materials. Gene annotations

generally concurred with resistance patterns.
In most of the experiments, when the machine learning

or statistical methods are trained using all the markers, they
performed better. Figure 7 shows the comparison of correlation

FIGURE 6 | Categorical encoding when applied to a fully connected layer.

FIGURE 5 | Comparison of pearson correlation coefficient based on encoding techniques. HW and CAT represents Hardy-Weinberg and categorical encoding. The

correlation is measured between the target and predicted phenotypes. decision tree, linear regression, BLUP, residual fully connected neural network and transformer

are applied for each encoding technique.
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FIGURE 7 | Comparison of pearson correlation coefficient when taking all markers as features vs. selected markers for DON. The PCC is measured between target

and predicted DON. decision tree, linear regression, BLUP, Residual fully connected neural network and transformer are applied for each encoding technique.

score between models trained on all markers and models trained
on selectedmarkers for DON.Usingmarker frequency as features
for the DON, only the BLUP method with reduced markers
shows minor improvement (0.4%) over the BLUP method
that uses all the markers. When the models were applied on
categorical features for DON, only Decision Tree shows 2.1%
improvement when reduced marker sets were used as features.
Recall that due to memory issues, the Transformer model with
the full set of markers was not executed, and thus is absent from
Figure 7.

In Figure 8, we show the comparison of correlation score
between models trained on all markers and models trained
on selected markers for FHB. From the figure, we observe a
similar pattern for FHB that we observed for DON. In contrast
to categorical encoding, when using marker frequency as a
feature value, selected markers improve the performance of
the FHB RFCNN model by 27.6%. For categorical encoding of
features, Linear Regression with selected features shows 4.2%
improvement overall features.

Though there is a significant increase in correlation score
when all the markers are used for machine learning models,
none of the BLUP models show any significant difference in
performance when all markers or selected markers are used. Due
to GPU memory limits, it was not possible to use all the features
for Transformer architectures.

3.4. Best Performing Models
Overall, BLUP and Transformer models that use genotype
frequency as features obtained better correlation scores than
other models. Figure 9 shows the comparison among the
best models for FHB and DON. BLUP and Transformer’s
performance are competitive as we observe only 1%

improvement over BLUP for DON and the same correlation
score for FHB.

Figure 10 show the true vs. predicted phenotype score using
Transformer. From the figures, we observed a linear relationship
between the target and predicted score, which also shows that the
Transformer architecture performs well to predict phenotypes.

3.5. Reliability of the GPTransformer Model
To understand how much reliable our GPTransformer model,
we train and test the model in three separate traning-validation-
test splits. With the GPTransformer model, the average PCC
between the target and predicted phenotype for DON is 0.748
and for FHB is 0.703. The BLUP model obtained PCC of 0.789
and 0.681 for DON and FHB, respectively. The PCC we obtained
with different splits using GPTransformer and BLUP models are
not statisticallly significant as the p-value for DON is 0.576 and
for FHB is 0.639.

4. DISCUSSION

Transgressive segregation is common for FHB and DON in
barley, where it is typical for offspring to deviate from mid-
parent value. A greater degree of more susceptible genotypes
was observed, which suggests that unique configuration of alleles
over multiple loci may be responsible for resistance (Zhu et al.,
1999). Such complexities in multiple resistance genes which form
near-continuous distributions may not be accounted for under
assumptions of statistical models examined herein. While the
machine learning approach did not substantially surpass the
statistical models in prediction, the ML approaches we have used
here are capable of capturing non-additive genetic components.
Thus, the predictions given may be incorporating some of these
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FIGURE 8 | Comparison of pearson correlation coefficient when taking all markers vs. selected markers as features for FHB. The PCC is measured between target

and predicted FHB.

FIGURE 9 | Comparison among the best models for each machine learning or statistical methods for DON and FHB. The PCC is measured between the target and

predicted values of the phenotype.

interactions in their prediction. However, we aren’t able to tell
what effects are being modeled in the ML models because of
their opacity.

The current study confirms previous association mapping
analysis of FHB andDON in barley (Massman et al., 2011), where
quantitative trait loci (QTL) effects were small. While minor
in nature, genes may additively contribute to resistance thereby
lowering FHB and DON content. The advantage of such genes is
that they do not typically carry issues seen when incorporating
larger QTLs from exotics which tend to have tall stature or
extreme heading date (Rudd et al., 2001). Under current study

number of days to heading was not strongly associated with either
character. Height was also weakly associated with DON content,
however it did demonstrate moderate, negative relationship
with FHB. Top feature molecular markers and genes identified
for FHB and DON did not overlap, as one might predict
based on their moderate-to-low trait correlation. Within barley,
the relationship of FHB disease and DON content is not as
robust as seen in other cereals such as wheat. Application of
GEBVs based on DON content may offer a better target for
developing resistance, since it is the primary factor monitored
by industry.
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FIGURE 10 | True vs. predicted phenotypes for DON (mg kg−1) and FHB (0− 5) on the test set of 60 genotypes.

Markers identified in the top features associated with FHB
resistance were found on chromosomes 1H, 3H and 7H and all
chromosomes for DON content, excluding 1H. Annotations of
associated genes generally displayed direct biological function of
resistance mechanisms. For instance FHB was associated with
auxin transporter (HORVU1Hr1G073490) and response factor
(HORVU7Hr1G033820), where this plant hormone has been
associated with FHB severity and yield loss in barley (Petti
et al., 2012). Also identified were genes involved in β-glucan
synthesis cell (HORVU7Hr1G003460, HORVU7Hr1G003460),
which may contribute to resistance via wall reinforcements or
anti-oxidant properties (Martin et al., 2018). The molecular
marker BOPA2-12-31203 in the top features group in this
study previously identified by Huang et al. (2018) is a flanking
marker for a QTL for FHB severity in the centromeric region
of 7H. As a result of this toxic function, DON may induce
programmed cell death (PCD, i.e., apoptosis). Development and
Cell Death (DCD) domain protein (HORVU3Hr1G017930) and
autophagy-related protein 18 (HORVU3Hr1G017150) underling
removal of damaged cells may be involved in this process.
Such top genomic features only explain a small percentage of
total phenotypic variation for FHB and DON and could not
be individually implemented under a marker-assisted selection
program. However, biological functions associated with genes
and markers highlighted above amongst others, may help
explain why feature selections of a reduced marker subset may
facilitate predictions with similar proficiency as when using
all markers.

The proposed GPTransformer model takes the relationship
among genetic markers into account within the model. The self-
attention mechanism of the Transformer assigns a high weight to
those markers that are associated with another specific marker.
After applying the self-attention module, each obtained neuron
is a combined representation of the genetic markers that are
related to a specific marker. As many markers contribute toward
a specific phenotype, GPTransformer has a unique attribute
compared to other machine learning and statistical methods that
takes marker relationships into account.

The frequency-based marker representation technique we
applied for representing each allele carries more information as
it indicates the zygosity and the frequency of the allele. The
traditional categorical encoding (1, 0, and –1) only indicates the
zygosity and remains the same for all the genetic markers. As each
allele of a genetic marker is represented by its fixed frequency
value, the frequency-based encoding provides us the information
of the frequency as well as the zygosity. Though the frequency
value remains the same within the same genetic marker for a
specific allele, it may differ between different genetic markers.
Thus, when the GPTransformer is combined with the frequency-
based encoding, it performs better than the traditional categorical
encoding-based model. The frequency-based representation is in
the range of 0-1 and minimizes issues of vanishing gradient that
may occur when training the GPTransformer or other neural
network models.

The stability of the proposed model is tested with three
different training and test data and the result shows the standard
deviation of PCC on the test data for FHB is 0.04 and for DON
is 0.09. The standard deviation of the BLUP model for FHB and
DON for the same three different training and test is 0.008 and
0.04, respectively. The deviation from the average PCC for three
different runs is higher for other machine learning methods we
experimented with. This shows that the GPTransformer model is
stable compared to other machine learning methods and as good
as the popular BLUP model.

While the time commitment is higher and taking up to an
hour to train the GPTransformer, it only took 24 epochs to
complete training. The time complexity of the RFCNN is much
lower than the Transformer though it took approximately 200
epochs to train. The most expensive task in the Transformer
is the self-attention that requires substantial time and memory
to complete. We ran both machine learning models on Intel
Xeon E5-2690 v4 processor and NVIDIA Tesla P40 GPU, which
contains 24 GB memory. With our Transformer architecture,
we are able to fit all the markers that have mutual information
≥ 0.02. To fit all the genetic markers, a larger memory or
multi-GPU instance is needed.
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Though the performance of most of the machine learning
methods improves when all the markers are used for prediction,
the Transformer architecture outperforms other methods with
selected markers. To the best of our knowledge, this is the
first method that uses Transformer architecture for genomic
prediction. This work showed that this method could outperform
existing machine learning methods with fewer data and obtain
state-of-the-art performance. Based on the performance in the
language model domain, it is expected that with an increased
amount of data, the performance of the Transformer model will
also increase.

Our work shows the potential of the Transformer-based
method for genomic prediction. Though Transformer generally
performed well with a large amount of data in other fields, in
this work, we showed that when trained on a small dataset, the
Transformer encoder performs equally or better compared to
the existing machine learning and statistical methods. As the
genotype data generally contains many markers, calculating self-
attention in a GPU will require a large amount of GPU memory
that may not be available. Our feature selection step in the model
addresses the memory issue of the Transformer method. This
step reduces the number ofmarkers and identifies the biologically
relevant markers for a specific phenotype. We also applied
genotype frequency-based encoding for each genotype. This
encoding performs better when combined with the Transformer.
If a large amount of data is available, the number of Transformer
encoder blocks can be increased which may increase the overall
performance.
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