
ORIGINAL RESEARCH
published: 21 October 2021

doi: 10.3389/fpls.2021.758631

Frontiers in Plant Science | www.frontiersin.org 1 October 2021 | Volume 12 | Article 758631

Edited by:

Dev Mani Pandey,

Birla Institute of Technology,

Mesra, India

Reviewed by:

Ahmad M. Alqudah,

Aarhus University, Denmark

Samar Gamal Thabet,

Fayoum University, Egypt

*Correspondence:

Pushpendra K. Gupta

pkgupta36@gmail.com

Specialty section:

This article was submitted to

Plant Abiotic Stress,

a section of the journal

Frontiers in Plant Science

Received: 14 August 2021

Accepted: 20 September 2021

Published: 21 October 2021

Citation:

Gahlaut V, Jaiswal V, Balyan HS,

Joshi AK and Gupta PK (2021)

Multi-Locus GWAS for Grain

Weight-Related Traits Under Rain-Fed

Conditions in Common Wheat

(Triticum aestivum L.).

Front. Plant Sci. 12:758631.

doi: 10.3389/fpls.2021.758631

Multi-Locus GWAS for Grain
Weight-Related Traits Under
Rain-Fed Conditions in Common
Wheat (Triticum aestivum L.)
Vijay Gahlaut 1,2, Vandana Jaiswal 1,2, Harindra S. Balyan 1, Arun Kumar Joshi 3,4 and

Pushpendra K. Gupta 1*

1Department of Genetics and Plant Breeding, Chaudhary Charan Singh University, Meerut, India, 2Council of Scientific &

Industrial Research-Institute of Himalayan Bioresource Technology, Palampur, India, 3 International Maize and Wheat

Improvement Center (CIMMYT), New Delhi, India, 4 Borlaug Institute for South Asia (BISA), New Delhi, India

In wheat, a multi-locus genome-wide association study (ML-GWAS) was conducted for

the four grain weight-related traits (days to anthesis, grain filling duration, grain number

per ear, and grain weight per ear) using data recorded under irrigated (IR) and rain-fed (RF)

conditions. Seven stress-related indices were estimated for these four traits: (i) drought

resistance index (DI), (ii) geometric mean productivity (GMP), (iii) mean productivity index

(MPI), (iv) relative drought index (RDI), (v) stress tolerance index (STI), (vi) yield index,

and (vii) yield stability index (YSI). The association panel consisted of a core collection

of 320 spring wheat accessions representing 28 countries. The panel was genotyped

using 9,627 single nucleotide polymorphisms (SNPs). The genome-wide association

(GWA) analysis provided 30 significant marker-trait associations (MTAs), distributed

as follows: (i) IR (15 MTAs), (ii) RF (14 MTAs), and (iii) IR+RF (1 MTA). In addition,

153 MTAs were available for the seven stress-related indices. Five MTAs co-localized

with previously reported QTLs/MTAs. Candidate genes (CGs) associated with different

MTAs were also worked out. Gene ontology (GO) analysis and expression analysis

together allowed the selection of the two CGs, which may be involved in response to

drought stress. These two CGs included: TraesCS1A02G331000 encoding RNA helicase

and TraesCS4B02G051200 encoding microtubule-associated protein 65. The results

supplemented the current knowledge on genetics for drought tolerance in wheat. The

results may also be used for future wheat breeding programs to develop drought-tolerant

wheat cultivars.

Keywords: wheat, drought stress, multi-locus-GWAS, stress tolerance index, SNP joint effect

INTRODUCTION

Wheat (Triticum aestivum L.) is one of the major cereal crops and contributes about 30%
(760 million tons) of world grain production (Food Agriculture Organization of the United
Nations, 2021). However, the rate of increase in annual wheat production has recently
decreased from 3% during the 1970’s and 1980’s to 0.9% in recent years causing concern.
This rate must increase to ∼2% to meet the projected demand of 50–60% additional wheat
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by 2050 (Ray et al., 2013). This may be challenging owing to
a variety of abiotic stresses that impact wheat yield. Among
the abiotic stresses, drought is the most important causing
yield losses of up to 40% (Zampieri et al., 2017). Recently, an
assessment by the UN’s Intergovernmental Panel on Climate
Change (IPCC) predicted that the global surface temperature
would increase by 1.5◦C in the next 20 years (by 2040), causing
extreme drought in several wheat growing regions including
South Asia (IPCC, 2021) which inhabits one-fourth of the global
population and where wheat is a lifeline for millions. In most
parts of India, wheat is already being grown under restricted (one
or two) irrigation (Joshi et al., 2007a). Current trends indicate
that such regions may further expand due to climate change
(Joshi et al., 2007b; Kumar et al., 2012). Therefore, understanding
the genetic systems that provide tolerance to drought stress
is a priority for wheat breeding to sustain wheat production
and productivity.

Traits associated with tolerance to water stress are complex
having polygenic control, low heritability, and large genotype ×
environment interaction. This situation worsens, when drought
is associated with other biotic and abiotic stresses (Fleury et al.,
2010), making it difficult to dissect the genetic control of
drought tolerance. Multi-locus genome-wide association study
(ML-GWAS) is a powerful approach to deal with this problem.
The approach has already been successfully utilized to dissect
the genetic architecture associated with important agronomic
and quality traits in several crops, such as maize (Zhang et al.,
2018; Zhu et al., 2018; An et al., 2020), rice (Cui et al.,
2018; Liu et al., 2020), barley (Hu et al., 2018), cotton (Li
et al., 2018; Su et al., 2018), soybean (Ziegler et al., 2018),
and foxtail millet (Jaiswal et al., 2019). In wheat also, ML-
GWAS has been used to identify genomic regions associated
with different agronomic and yield associated traits (Jaiswal
et al., 2016; Ward et al., 2019; Hanif et al., 2021; Malik et al.,
2021a; Muhammad et al., 2021), grain architecture-related traits
(Schierenbeck et al., 2021), spike-layer uniformity-related traits
(Malik et al., 2021b), potassium use efficiency (Safdar et al.,
2020), nutrient accumulation (Bhatta et al., 2018; Kumar et al.,
2018; Alomari et al., 2021), disease resistance (Cheng et al., 2020;
Habib et al., 2020; Tomar et al., 2021), and salinity tolerance
(Chaurasia et al., 2020).

Only two ML-GWAS are available for wheat, where MTAs
were reported for agronomic traits across drought stress
environments (Gahlaut et al., 2019; Li et al., 2019). The
present study is a continuation of one of these studies
(Gahlaut et al., 2019), where 19 MTAs associated with yield
and related traits under drought were reported. The other
study involved the use of 277 wheat accessions leading to
the identification of an important QTL on chromosome 6A
for grain yield under drought (Li et al., 2019). We speculate
that these two studies did not exhaust the possibility of
identification of all possible MTAs, thus warranting further
studies to facilitate the identification of more robust MTAs
for marker-assisted selection (MAS). Therefore a ML-GWAS
was conducted using an association panel of 320 spring wheat
accessions to detect novel MTAs and important CGs for drought
stress tolerance.

MATERIALS AND METHODS

Plant Material and Field Experiment
A panel of 320 spring wheat genotypes [hereafter called
wheat association mapping (WAM) panel], representing a
world collection from 28 different countries, was used. This
diverse panel was procured from the International Maize and
Wheat Improvement Center (CIMMYT), Mexico [for details,
see Gahlaut et al. (2019)]. The WAM panel was raised under
irrigated (IR) and rainfed (RF) conditions each at two different
locations: (i) Meerut [North India; (28◦0.97′N 77◦0.74′E)]
and (ii) Powarkheda (Central India; 22◦0.07′N 73◦0.98′E) in
crop season 2011–12 and 2012–13, respectively; thus providing
following four environments: Meerut IR (E1), Meerut RF (E2),
Powarkheda IR (E3), and Powarkheda RF (E4). Meerut and
Powarkheda fall under mega environment (ME)-1 and (ME)-5
respectively, and the soil types of these two locations are deep clay
soil and deep loam soil, respectively. At each location, evaluation
of WAM panel under both IR and RF conditions minimized
the effect of differences in soil types and other environmental
conditions on the phenotypic variations at the two locations.

The panel was grown in a simple lattice design with two
replications. Each plot, representing an individual genotype,
consisted of three 150-cm-long rows with row to row distance
of 25 cm. Five irrigations were given under IR condition,
while only one irrigation (for sustaining the crop) was given
under RF condition (21 days after sowing) to ensure water
stress. The details of the experimental locations, sowing dates,
meteorological data, and rainfall data are summarized in
Supplementary Table 1.

Phenotypic Evaluation and Data Analysis
Phenotypic data were recorded for the following four traits: (i)
days to anthesis (DTA): recorded as the number of days from
planting until anthers in 70% of the spike in a plot had extruded,
(ii) grain filling duration (GFD); difference between the DTA and
days tomaturity (DTM)which was number of days from planting
until 70% of the spikes in each plot had turned yellow), (iii) grain
number per ear (GNPE); average number of grains per ear using
five representative ears per plot, and (iv) grain weight per ear
(GWPE); average weight (g) using five ears per plot.

Statistical analysis for all the four traits was conducted
using software SPSS 17.0 (http://www.spss.com) to obtain values
of range, mean, standard deviation, coefficient of variation
(CV), and analysis of variance (ANOVA). To determine the
normal distribution, skewness and kurtosis were also analyzed.
Correlations between all pairs of traits were obtained separately
for IR and RF conditions.

Stress Indices
Phenotypic data were used to calculate the following seven
indices to estimate the level of drought tolerance: (i) Drought
resistance index (DI) = (Ys × (Ys/Yp)/Ys (Lan, 1998); (ii)
Geometric mean productivity (GMP)=√

(Ys × Yp) (Fernandez,
1992); (iii) Mean productivity index (MPI) = (Ys + Yp)/2
(Rosielle and Hamblin, 1981); (iv) Relative drought index (RDI)
= (Ys/Yp)/(Ys/Yp) (Fischer and Maurer, 1978); (v) Stress
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tolerance index (STI) = (Ys × Yp)/(Y p)̂2 (Fernandez, 1992);
(vi) Yield index (YI) = Ys/(Ys) (Gavuzzi et al., 1997); (vii) Yield
stability index (YSI) = Ys/Yp (Bouslama and Schapaugh, 1984),
whereYs is the trait value under drought stress andYp is the value
for the same trait under normal condition.

Genotyping, Population Structure, and LD
SNP data was generated using the genotyping-by-sequencing
(GBS) approach developed by DArT Pty. Ltd., Yarralumla,
Australia. The details of the methodology are described by Sehgal
et al. (2015). Population structure and linkage disequilibrium
(LD) information were available from our earlier study (Gahlaut
et al., 2019). Briefly, 9627 SNPs with missing data (<30%) and
minor allele frequency (MAF) >5% were used for genotyping.
These SNPs were randomly distributed across all the 21
wheat chromosomes spanning 5943.1 cM with an average of
17 SNPs per 10 cM genetic distance. Model-based cluster
analysis was performed for population structure using Software
STRUCTURE version 2.2 (Pritchard et al., 2000) assuming
number of subpopulations (K) to range from 2 to 20, and burn-
in and Markov Chain Monte–Carlo (MCMC) iteration were
set to 50,000 and 100,000, respectively. The actual number of
subpopulations was determined using the tool “STRUCTURE
Harvestor” following delta K (1K) method (Evanno et al., 2005).
LD was estimated using software TASSEL v. 5.0 (Bradbury et al.,
2007); mean LD values were obtained for the whole genome as
well as for individual chromosomes.

Multi-Locus Genome Wide Association
Mapping
SNPs with no more than 30% missing data and >5% minor
allele frequency were utilized for GWAS. Principle component
analysis (PCA) was conducted using TASSEL v5.0, and first
three components were incorporated as a covariate in association
test model. Fixed and random model Circulating Probability
Unification (FarmCPU), developed by Liu et al. (2016) was
used for ML-GWAS. This method is believed to be the most
efficient and eliminates confounding issues arising due to
population structure, kinship, multiple testing, etc. The method
utilizes both Fixed Effect Model (FEM) and a Random Effect
Model (REM), iteratively. FEM allows identification of associated
markers (MTAs) that are described as pseudo-quantitative trait
nucleotides (pseudo-QTNs) and are used as covariates, in REM,
which allows identification of QTNs; in this study, QTNs are
described as MTAs. Bonferroni-correction was built in within
FarmCPU, so that a default P-value threshold (0.01) was used
to declare significant MTAs. Quantile–quantile (Q–Q) plots
generated through FarmCPU were used to examine model
fitting (account for population structure). Phenotypic differences
between the two alleles of SNPs identified as MTA were tested
using “t-test” analysis.

Joint Effect of MTAs and Identification of
Contrasting Genotypes
Wherever more than two SNPs were associated with the same
trait, joint effects were estimated. This was done through linear

regression performed using all desirable SNP alleles for the trait
(independent variable) and corresponding trait values of the
genotypes that contained more than one desirable SNP alleles
(dependent variable). Contrasting genotypes were identified
using phenotypic values for all the four traits under IR and RF
conditions. For this purpose, average sum of ranks (ASR) of
seven indices was calculated for each genotype. In the case of
DTA, genotypes with higher ASR were considered superior, while
for GFD, GNPE, and GWPE, genotypes with lower ASR were
considered desirable.

Identification of CGs and Expression
Analysis
CGs for the associated SNPs were identified by aligning
the associated GBS sequences to wheat genome assembly
IWGSC refSeq v1.1 available in the Ensemble database (http://
www.ensembl.org/info/docs/tools/vep/index.html). The GO
annotation (including molecular function and biological
process) of each CG was extracted from the IWGSC website
(http://www.wheatgenome.org/). Information about expression
of CGs was collected using the online tool Genevestigator
(Hruz et al., 2008).

RESULTS

Phenotypic Variation and Effect of Water
Stress on Grain Weight-Related Traits
TheWAMpanel exhibited wide range of phenotypic variation for
each of the four traits, under both IR and RF conditions at each of
the two locations (Figure 1A; Supplementary Table 2). Skewness
and kurtosis were found within the range of normal distribution
(i.e., ±2.0) for all the traits under all environmental conditions.
The only exception was GFD in E4, where kurtosis was observed
with a value of 2.2. It is also apparent that each of the four traits
was adversely affected under RF condition at both the locations
(Meerut and Powarkheda; Figure 1A; Supplementary Table 2).

ANOVA suggested that genotypes differed for the four traits.
The performance of genotypes differed under IR and RF and
at the two locations (Meerut and Powarkheda) for each of the
traits. Genotype× location interactions were significant for DTA
and GNPE, while genotype × environment interactions (IR vs.
RF) were significant for DTA and GFD (Table 1). Correlations
were largely significant under IR and RF conditions at both the
locations, except those between GNPE and GFD under RF at
Powarkheda (Figure 1B).

Population Structure and LD
The details about population structure and LD are available
in our earlier study (Gahlaut et al., 2019). In brief, three
sub-populations involving 157 genotypes were recognized;
the remaining 163 genotypes were admixed. The number of
genotypes was 57 in sub-population I, 85 in sub-population II and
15 in sub-population III. Genome-wide LD decay was observed
at 3 cM with a range of 2–20 cM in different genomic regions.
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FIGURE 1 | (A) Boxplots showing the distribution of values for four traits in four environments. For each trait, its coefficient of variation % (CV%) is displayed on top of

each plot. (B) Heatmap showing Pearson’s correlation coefficients (r-values) among four traits. Values above the diagonal on the left are r-values in irrigated

environments (E1 and E3); values below the diagonal on the right indicate r-values in rainfed environments (E2 and E4); **Significant at P_0.001; DTA, days to

anthesis; DTM, days to maturity; GFD, grain filling duration; GNPE, grain number per ear; GWPE, grain weight per ear. E1, Meerut Irrigated (IR); E2, Meerut rainfed

(RF); E3, Powarkheda irrigated (IR); E4, Powarkheda rainfed (RF).

TABLE 1 | Analysis of variance (ANOVA) showing mean squares (MS) for four grain weight-related traits.

Source of variation df DTA GFD GNPE GWPE

Location 1 8,610** 307** 25,493** 5**

Treatment 1 3,897** 2,512** 15,471** 54**

Genotypes 313 354** 19** 203** 1**

Genotypes × Location 313 43** 3 43* 0.1

Genotypes × Treatment 313 304** 36** 23.518 0.3

Error 314 13 4 36 0.1

DTA, days to anthesis; DTM, days to maturity; GFD, grain filling duration; GNPE, grain number per ear; GWPE, grain weight per ear; df, degree of freedom.
*,** Indicate 0.05 and 0.01 levels of significance, respectively.

Marker-Trait Association
A total of 30 high confidence MTAs were detected for the
four traits under one or more environmental conditions. These
MTAs involved 27 SNPs distributed over 15 chromosomes
(excluding 1D, 4D, 5A, 5D, 7B, and 7D) (Table 2; Figure 2).
Manhattan and Q–Q plots showing appropriate model fitting for
ML-GWAS are shown in Supplementary Figure 1. Only three
SNPs (SNP_404, SNP_1555, and SNP_8047) had association
with more than one trait. For individual trait, a maximum of

nine MTAs were available for DTA while a minimum of six
MTAs were available for GWPE. For DTA, out of nine MTAs,
four SNPs (SNP_647, SNP_5369, SNP_7068, and SNP_8390)
were uniquely identified under IR condition, four other SNPs
(SNP_2283, SNP_2860, SNP_448, and SNP_5304) under RF
condition, and one MTA (SNP_404) was identified under both
IR and RF conditions. The effect size of these 9 MTAs ranged
from 2.2 to 5.2. The effect size of alternate alleles of SNPs
associated with DTA was significant in different environments
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TABLE 2 | List of MTAs for four grain weight-related traits.

Trait/SNP_ID (SNP alleles) Chr. Position: cM/bp -log (p) SNP effect Desirable allele (Freq.) Environment

Days to anthesis (DTA)

SNP_404 (G/T) 1A 247.9/ 519892942 6.3–7.5 2.56–4.06 G (0.78) E1, E2, E4

SNP_647 (G/T) 1B 64.8/525928165 7.6 5.17 G (0.90) E1

SNP_2283 (T/A) 2B 71.4/57887257 6.4 −1.5 A (0.53) E4

SNP_2860 (C/G) 2B 179.5/772063522 5.9 3.34 C (0.92) E2

SNP_4482 (C/A) 3B 253.7/808103956 8.3 2.25 C (0.28) E4

SNP_5304 (T/G) 4B 60.1/39758292 7.3 −3.87 G (0.91) E2

SNP_5369 (T/C) 4B 76.3/562867086 6.3 −2.63 C (0.94) E3

SNP_7068 (C/T) 6A 88.9/116943461 5.8–6.0 2.29–2.97 C (0.78) E1, E3

SNP_8390 (A/G) 7A 144.2/129879691 5.8 2.51 A (0.86) E3

Grain filling duration (GFD)

SNP_404 (G/T) 1A 247.9/ 519892942 7 −1.2 G (0.78) E1

SNP_4163 (G/A) 2B 117.6/506732534 7.7 0.72 A (0.51) E1

SNP_5442 (C/T) 4B 95.4/620061711 7.7 −1.48 C (0.96) E3

SNP_6185 (A/G) 5B 51.8/87491998 5.8 0.57 G (0.55) E2

SNP_8018 (C/T) 6D 186.1/456804609 6.6 0.79 T (0.73) E2

SNP_8312 (C/G) 7A 102.1/94170034 5.8 0.81 G (0.13) E4

SNP_8407 (A/G) 7A 145.4/159707863 7.7 −0.87 A (0.80) E2

Grain number per ear (GNPE)

SNP_359 (G/T) 1A 224.7/507956069 6.4 1.41 T (0.53) E2

SNP_1555 (G/A) 2A 34.0/5654868 7.7 3.39 A (0.13) E3

SNP_4743 (C/T) 3D 275.4/602203097 5.9 −1.96 C (0.84) E4

SNP_4793 (G/T) 4A 7.2/13655378 7.8 3.10 T (0.14) E1

SNP_6510 (A/C) 5B 153.6/565154441 6.9 −1.56 A (0.55) E2

SNP_6636 (C/G) 5B 220.8/656080718 6 −1.51 C (0.53) E3

SNP_8047 (A/T) 6D 196.2/467856107 10.4 −2.84 A (0.68) E2

SNP_8336 (T/C) 7A 114.9/85601215 6 1.87 C (0.58) E3

Grain weight per ear (GWPE)

SNP_1555 (G/A) 2A 34.0/5654868 6.6 0.17 A (0.13) E3

SNP_3180 (T/G) 2D 289.6/639092898 7.2 −0.14 T (0.11) E3

SNP_3501 (T/C) 3A 89.8/510721706 8.8 0.15 C (0.41) E3

SNP_4548 (T/C) 3B 287.8/819037501 5.8 −0.08 T (0.67) E2

SNP_7747 (C/A) 6B 69.0/649814798 6.2 −0.11 C (0.65) E2

SNP_8047 (A/T) 6D 196.2/467856107 8 −0.17 A (0.68) E1

Showing associated SNPs SNP allele, SNP effects, desirable alleles and their frequencies. E1, Meerut irrigated; E2, Meerut rainfed; E3, Powarkheda irrigated; E4, Powarkheda rainfed.

(Supplementary Figure 2). Seven SNPs were associated with
GFD, eight with GNPE, and six with GWPE. Effect sizes
for associated SNPs were also estimated for individual traits
(Table 2).

Based on the effect size, desirable alleles of associated

SNPs were also selected (Table 2). Among the four traits,

positive selection appeared desirable for GFD, GNPE, and
GWPE, and negative selection for DTA. Higher absolute

value of SNP effect size showed higher contribution of
SNP on the phenotype. Frequency of desirable alleles ranged

from 0.10 to 0.94. Two SNPs exhibited pleiotropic effect.

SNP_404 was associated with DTA as well as GFD in
E1. Similarly, SNP_1555 was associated with GNPE and
GWPE in E3.

Joint Effect of Significant SNPs on
Associated Phenotypes
Joint effect of desirable alleles of multiple associated SNPs was
determined using linear regression. For DTA, nine SNPs were
each associated with the trait in one or more environments. An
increase in the number of desirable SNP alleles from four to nine
(but not less than four) led to a significant decrease in DTA
(Figure 3). Interestingly, significant joint effect of nine SNPs
on DTA was observed in all the four environments; however,
strength of regression varied across environments and ranged
from 0.33 (E4) to 0.50 (E1).

Significant joint effects of associated SNPs were also observed
for GFD, GNPE, and GWPE. Trait values for each of these three
traits increased with an increase in the number of desirable
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FIGURE 2 | Significant markers trait associations (MTAs) for four traits and seven indices identified on 18 chromosomes following ML-GWAS. DTA, days to anthesis;

DTM, days to maturity; GFD, grain filling duration; GNPE, grain number per ear; GWPE, grain weight per ear. IR, Irrigated; RF, rainfed.

alleles in all the four environments (Figure 3). The regression
coefficients ranged from 0.08–0.21 for GFD, 0.08–0.15 for GNPE,
and 0.07–0.36 for GWPE.

Analyses of Trait Indices
Seven different stress-related indices were obtained for each
of the four traits to better assess the genetics of drought
tolerance at both locations (total of 28 index traits);
this allowed the identification of 153 MTAs involving
85 SNPs (Supplementary Table 3). Manhattan and Q–Q
plots showing appropriate model fitting for ML-GWAS
tests are shown in Supplementary Figure 3. These SNPs
were distributed over 18 of the 21 wheat chromosomes
(except 4D, 5D, and 7D). A comparison of MTAs for
28 indices, including seven indices for each of the four
main traits allowed the identification of 19 common
SNPs associated with response to water stress (Table 2;
Supplementary Table 3). As many as 19 SNPs for DTAs, 13

SNPs for GFD, 34 SNPs for GNPE and 28 SNPs for GWPE
showed significant association with one or more indices
(Supplementary Table 3).

Contrasting Genotypes for Molecular
Breeding Programs
Using ASR values of indices, two contrasting genotypes
were selected, which included the superior genotype
TX181, and the inferior genotype TX67 (Table 3).
TX181 performed better under RF condition for all
the four traits (Table 3). These two genotypes can be
used for further studies involving crosses generating
segregating populations for fine-mapping of QTLs leading
to cloning.

The pattern of decline in trait values in RF condition was also
examined to assess the sensitivity of these two genotypes to water
stress. For this purpose, per cent decline in trait value under RF
was examined. Interestingly, in case of TX181, the reduction in
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FIGURE 3 | Regression plots showing joint effect of multiple SNPs associated with the same trait. **Shows significant (p < 0.01) difference and values written before

star are regression coefficient.

trait value under RF condition was relatively low [GFD, 5.11%;
GNPE, 20.39%; and GWPE, 17.28%], when compared with those
for TX67 [GFD, 10.62%; GNPE, 47.45%, GWPE, 56.45%]. In
case of DTA, where lower value is desirable, larger decline was
observed in TX181 (4.16%) relative to TX67 (1.24%) under RF
condition. However, the DTA in TX67 was about one month
longer than TX181. These observations revealed that TX181 is
less sensitive (more tolerant) and TX67 is more sensitive under
water stress conditions. We may therefore conclude that these
varieties differ widely not only for absolute trait values, but more
importantly, for tolerance to drought stress.

The above contrasting genotypes were also examined for the
presence of desirable alleles of significant SNPs, assuming that
desirable alleles for all SNPs are unlikely to be concentrated
in TX181; similarly, undesirable alleles for all SNPs cannot be
present in TX67. For some of the SNPs, the two genotypes may
not differ. Interestingly, out of 27 significantly associated SNPs

for four traits, desirable alleles of 24 SNPs were present in TX181.
For one SNP, an undesirable allele was found and for two SNPs
genotypic data were missing in TX181. In contrast, in TX67,
undesirable alleles were present for 14 SNPs, desirables for 9
SNPs, and for the remaining four SNPs, genotypic data were
missing (Table 3).

Candidate Genes (CGs) Co-Localized With
Associated SNPs
The 27 SNPs involved in 30 MTAs (as mentioned above) were
used to identify candidate genes (CGs). As many as 10 of the
27 SNPs were co-located within protein-coding genes and were
therefore treated as putative CGs. Details of CGs and their
corresponding annotation information are provided in Table 4.
Eight of these 10 CGs represent those MTAs that were detected
either in IR or RF environments; two MTAs were detected in
both the environments. GO annotations of the CGs showed
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TABLE 3 | The two selected genotypes (TX181 and TX67) showing variation in the mean values of four traits under irrigated (IR) and rainfed RF environments, the %

decline of trait value under RF condition, alleles of significant SNPs.

Contrasting genotype Trait IR RF % dif. Alleles of significantly associated SNPs

TX181 DTA 96.25 92.25 4.16 SNP_404-GG, SNP_647-GG, SNP_2283-AA,

SNP_2860-CC, SNP_4482-CC, SNP_5304-GG,

SNP_5369-CC, SNP_7068-CC, SNP_8390-NN

GFD 34.25 32.50 5.11 SNP_404-GG, SNP_4163-AA,

SNP_5442-CCSNP_6185-GG, SNP_8018-TT,

SNP_8312-CC, SNP_8407-AA

GNPE 52.23 41.58 20.39 SNP_359-TT, SNP_1555-GG, SNP_4743-CC,

SNP_4793-GG, SNP_6510-CC,

SNP_6636-CCSNP_8047-AASNP_8336-CC

GWPE 1.91 1.58 17.28 SNP_1555-GG, SNP_3180-NN, SNP_3501-CC,

SNP_4548-TT, SNP_7747-CC, SNP_8047-AA

TX67 DTA 120.50 119.00 1.24 SNP_404-GG, SNP_647-TT, SNP_2283-TT, SNP_2860-GG,

SNP_4482-CC, SNP_5304-TT, SNP_5369-NN,

SNP_7068-CC, SNP_8390-GG

GFD 28.25 25.25 10.62 SNP_404-GG, SNP_4163-AA, SNP_5442-TT,

SNP_6185-AA, SNP_8018-NN, SNP_8312-NN,

SNP_8407-GG

GNPE 28.23 14.85 47.40 SNP_359-TT, SNP_1555-GG, SNP_4743-TT,

SNP_4793-GG, SNP_6510-AA, SNP_6636-CC,

SNP_8047-NN, SNP_8336-TT

GWPE 0.62 0.27 56.45 SNP_1555-GG, SNP_3180-TT, SNP_3501-TT,

SNP_4548-CC, SNP_7747-AA, SNP_8047-NN

NN represents missing genotypic data. Desirable alleles of SNPs are in bold font. % dif., % difference.

their involvement in protein binding, innate immune response,
microtubule cytoskeleton organization, protein self-association,
protein phosphorylation and protein folding (Table 4).

Gene expression analysis for the 10 CGs is shown
in Supplementary Figures 4–6. This analysis provides
further support to their potential involvement in the
trait phenotype in different wheat developmental stages
and tissues under drought/water stress conditions. The
results showed a wide range of expression. For instance,
following four CGs had relatively higher expression
in all wheat tissues/organ: TraesCS1A02G331000,
TraesCS4B02G329500, TraesCS7A02G133300, and
TraesCS7A02G176600. Some CGs had tissue-specific
expression; for example, TraesCS6D02G394600 expresses
in leaf tissues, TraesCS4B02G051200 in root tissues,
Traes3B02G596100 in rachis while, TraesCS2D02G574400
in the shoots (Supplementary Figure 4). The CGs also showed
varied expression during the different wheat development
stages. Interestingly, most CGs had high expression during
anthesis to ripening stages except one (Traes3B02G596100),
demonstrating their possible role in regulating wheat yield
(Supplementary Figure 5).

Under drought/water stress condition, only five of the 10 CGs
showed differential expression (≥2-fold), either down-regulated
or up-regulated (Supplementary Figure 6). For instance,
TraesCS7A02G133300 (up to ∼2-fold), TraesCS4B02G051200
(up to ∼6-fold), and TraesCS1A02G331000 (up to ∼2-fold)
were down-regulated. Similarly, TraesCS4B02G329500 (up
to ∼2-fold) and TraesCS4A02G019800 (up to ∼4-fold) were

up-regulated during drought stress. Interestingly, out of
these five, one CG (TraesCS4B02G051200) that encodes a
microtubule-associated protein (MAP65), was associated with
MTAs that were identified only in RF environment. Another
CG (TraesCS1A02G331000) that encodes RNA helicase protein,
belonged to MTAs that were identified in both IR and RF
environments (Figure 4).

DISCUSSION

In the most major crops including wheat, drought tolerance is
a complex polygenic trait involving a large number of minor
quantitative trait loci (QTLs; Bernardo, 2008; Gupta et al., 2017)
and only a few major QTLs (Bernardo, 2008; Gupta et al., 2012,
2017). A large number of traits (>40) have been utilized to
estimate drought tolerance (our unpublished results). In a recent
study onmeta QTL analysis for drought tolerance, as many as 340
QTLs identified through at least 14 interval mapping studies have
been utilized (Kumar et al., 2020). As many as 750 MTAs, were
also identified using GWAS (Gupta et al., 2017, 2020; Kumar
et al., 2020; Singh et al., 2021). It also seems that the QTLs
and MTAs identified so far do not represent the entire genetic
variation for a multitude of traits that are involved in providing
drought tolerance. It is also known that despite this enormous
literature, very few QTLs have been utilized in molecular
breeding and pyramiding, and that none of them cloned so far
in wheat (Ray et al., 2013; Merchuk-Ovnat et al., 2016; Gautam
et al., 2021). Therefore, one would expect that every new study
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TABLE 4 | Description of candidate genes (CGs) associated with significant MTAs and, GO annotations and details of putative proteins identified from Ensembl wheat.

Associated SNP Trait

_Environment

Overlapping

gene#

SNP position

(location in gene)

GO Annotation Gene description

Biological process

(ID)

Molecular

function (ID)

Cellular component

(ID)

SNP_404 DTA_E1,

DTA_E2,

DTA_E4,

GFD_E1

TraesCS1A02

G331000

519892942

(Intron1)

N/A N/A N/A RNA helicase

SNP_3180 GWPE_E3 TraesCS2D02

G574400

639092898

(3’UTR)

Innate immune

response-activating

signal transduction

(GO:0002758)

ADP binding

(GO:0043531)

Cytoplasm

(GO:0005737)

Disease resistance

protein RGA5-like

SNP_3501 GWPE_E3 TraesCS3A02

G282200

510721706

(3’UTR)

N/A Protein binding

(GO:0005515)

N/A F-box family protein

SNP_4548 GWPE_E2 TraesCS3B02

G596100

819037501

(Exon1)

N/A N/A N/A F-box family protein

SNP_4793 GNPE_E1 TraesCS4A02

G019800

13655378

(Intron3)

N/A N/A N/A DUF1997 family protein

SNP_5304 DTA_E2 TraesCS4B02

G051200

39758292

(Intron3)

Microtubule

cytoskeleton

organization

(GO:0000226)

Microtubule

binding

(GO:0008017)

Microtubule

(GO:0005874)

Microtubule-associated

protein (MAP65/ASE1

family)

SNP_5442 GFD_E3 TraesCS4B02

G329500

620061711

(3’UTR)

Defense response

(GO:0006952)

Protein

self-association

(GO:0043621)

Plasma membrane

(GO:0005886)

Peptidoglycan-binding

lysin motif-containing

protein

SNP_8047 GNPE_E2,

GWPE_E1

TraesCS6D02

G394600

467856107

(Exon1)

Protein phosphorylation

(GO:0006468)

Protein

serine/threonine

kinase activity

(GO:0004672)

Plasma membrane

(GO:0005886)

Wall-associated

receptor kinase (WAKs)

protein

SNP_8336 GNPE_E3 TraesCS7A02

G133300

85601215

(Intron3)

N/A N/A N/A HNH endonuclease

SNP_8390 DTA_E3 TraesCS7A02

G176600

129879691

(Intron18)

Protein folding

(GO:0006457)

ATP binding

(GO:0005524)

Chloroplast thylakoid

membrane

(GO:0009535)

Chaperone protein

dnaJ 1/HSP40
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FIGURE 4 | Details of two candidate genes (A) TraesCS1A02G331000 (RNA helicase) (B) TraesCS4B02G051200 (Microtubule-associated protein; MAP65)

associated with SNPs identified in the present study. Structure of the CGs and expression profile of CGs during drought stress is also shown. The candidate gene

position in Manhattan plot is shown by gray arrows. Physical location of the SNP on gene shown as red triangle.

leads to identification of some novel QTLs and MTAs. Perhaps,
metaQTLs and ortho-metaQTLs identified recently and to be
identified in future (our unpublished results), may lead to a more
fruitful utilization of molecular markers for MAS leading to the
development of drought tolerant wheat cultivars.

In the present study, 30 MTAs were detected and compared
with earlier studies. Five MTAs (all identified under RF
conditions) were co-localized with QTL/MTAs identified earlier
using either linkage mapping or LD-based GWAS (Table 5).
We assume that the remaining 25 MTAs are novel. The five
co-localized MTAs listed in Table 5, include the following:
(i) SNP for DTA on 4B co-localized with a QTL for DTH
and GY (QDH.ndsu.4B; Rabbi et al., 2021). (ii) SNP for DTA
on 2B co-localized with a SNP for DTH (Gahlaut et al.,
2019). (iii) SNP for GFD on 5B, co-localized with a QTL
(QGfd.ccsu-5B; 40.6-53.4 cM) for GFD (Gahlaut et al., 2017).
(iv) SNP for GFD on 7A (145.43 cM) co-localized with a marker
(wsnp_CAP7_c1321_664478∼IACX7848) associated with DTA
and GY (Qaseem et al., 2018). (v) SNP for GWPE on 6B, co-
localized with MTAs/QTL for thousand grain weight (TGW)
and grain yield, identified in three earlier studies (Mathews
et al., 2008; Ahmed et al., 2020; Rabbi et al., 2021). The
markers identified in these three earlier studies include a
SSR marker gwm132 on 6B (67.10 cM) associated with GY
under DS (Mathews et al., 2008). The other two co-localized
genomic region at 64.82 cM (QTKW.ndsu.6B) and at 67.24 cM
(BS00063801_51) were associated with TGW under DS (Ahmed
et al., 2020; Rabbi et al., 2021). These QTLs/MTAs can be utilized
for MAS with higher level of confidence. The above genomic

regions associated with DTA, GFD, GNPE, and GWPE under
drought stress identified in the present study could also be
exploited for fine mapping.

The effect size of individual associated SNPs on an individual
trait and the association of same SNP with more than one trait
also deserve attention. For 25 of 30 MTAs, the proportion of
genotypes with desirable allele was higher relative to that of
undesirable effect. This could be due to unconscious selection
for these desirable alleles during wheat breeding, and those
may be utilized in future breeding as well. More important are
the SNPs, which have desirable alleles in just a few genotypes,
which therefore deserve priority in future breeding. For instance,
SNP_1555 located on chromosome 2A that was associated with
GNPE having highest SNP effect size (3.39) had a frequency of
desirable allele 0.13; additionally, this SNP was also associated
with GWPE and showed a similar pattern. This SNP, therefore,
appears promising for future wheat breeding efforts.

Interestingly, some SNPs also showed pleiotropic effect, each
showing association with two correlated traits. However, no SNP
was available to be associated with more than two traits. The
two pleiotropic SNPs included, SNP_404 (DTA and GFD) and
SNP_1555 (GNPE and GWPE) and deserve further attention in
future studies.

The relative merit of MTAs for the seven indices relative
to those for individual traits also deserves attention, since
indices have been designed to estimate tolerance to drought.
SNPs associated with more than one index traits appear to be
relatively important since they provide more comprehensive
information about the response of genomic regions toward
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TABLE 5 | Comparison of MTAs identified in present study with QTL/MTAs reported in earlier studies.

MTAs (present study) QTL/MTA previously reported References

Trait/SNP Chr.; Pos. (cM) Env. QTL/Marker

Associated

Chr.; Pos. (cM) Trait

Days to anthesis (DTA)

SNP_2860 2B; 179.52 E2 SNP_2860 2B; 179.52 DTH under DS Gahlaut et al., 2019

SNP_5304 4B; 60.12 E2 QDH.ndsu.4B 4B; 64.03 DTH, GY under DS Rabbi et al., 2021

Grain filling duration (GFD)

SNP_6185 5B; 51.85 E2 QGfd.ccsu-5B 5B; 40.6-53.4 GFD under DS Gahlaut et al., 2017

SNP_8407 7A; 145.43 E2 wsnp_CAP7_c13

21_664478∼IACX7848

7A; 148.4-160 DTA, GY under DS Qaseem et al., 2018

Grain weight per ear (GWPE)

SNP_7747 6B; 69.05 E2 gwm132 6B; 67.10 GY under DS Mathews et al., 2008

BS00063801_51 6B; 67.24 TGW under DS Ahmed et al., 2020

QTKW.ndsu.6B 6B; 64.82 TGW under DS Rabbi et al., 2021

Chr., chromosome; Pos., position; Env., environment; DTA, days to anthesis; DTH, days to heading; GY, grain yield; TGW, thousand grain weight; DS, drought stress.

drought stress. Based on seven different drought stress-related
indices, we also identified contrasting genotypes for response
to drought (Table 3). These contrasting genotypes may be used
for fine mapping and to develop improved wheat lines via
molecular breeding.

Significant joint effect of multiple associated SNPs was
observed where genotypes with desirable alleles for many more
associated SNPs showed superior phenotype than those having
desirable alleles for fewer SNPs (Figure 3); the trait value
can be substantially improved through pyramiding of multiple
significant SNPs. Sometimes pyramiding of a large number of
SNPs becomes problematic due to the requirement of a larger
population. In such cases, marker-assisted recurrent selection
(MARS) may be followed.

Among the 10 CGs identified using MTAs, two CGs seem
to be involved in response to drought stress and, therefore,
deserve special attention. The first of these two genes, namely
TraesCS4B02G051200 encodes a microtubule-associated protein
(MAP65) and the second gene, namely TraesCS1A02G331000
encodes RNA helicase protein. Both these proteins respond
to drought stress and therefore their expression level may
be used for measuring the level of drought stress. However,
TraesCS4B02G051200 that was associated with DTA and was
detected using MTA only in the RF environment, while
TraesCS1A02G331000 was associated with MTAs detected under
both IR and RF conditions. The proteins of MAP65 family
are known to be involved in the polymerization of the
microtubules (Hamada, 2014) and are indirectly involved in

regulating growth and response to abiotic stresses including
drought in plants (Zhang et al., 2012; Bhaskara et al.,
2017). In our study, the expression of TraesCS4B02G051200

(wheat MAP65) decreased up to ∼6-fold after drought stress

(Figure 4B). This means that this gene can be utilized as an

indicator of drought stress, both in wheat breeding and in
strategic research.

RNA helicase proteins are multifunctional and are involved
in responses to both biotic and abiotic stresses in plants

(Pandey et al., 2020). For instance, RNA helicase belonging
to Arabidopsis RH8 DEAD-box regulates the ABA-signaling
pathway by interacting with 2C protein phosphatase (PP2CA),
which also plays a vital role in drought tolerance (Baek et al.,
2018). Significant variation in the expression of wheat RNA
helicase during drought stress was also observed in the present
study (Figure 4A), suggesting that this gene may also be
used for the estimation of drought stress and for improving
drought tolerance. Therefore, we hypothesized that these two
CGs together may provide drought resilience in wheat. Further
investigation involving functional analyses of these two genes
may also help in understanding the molecular mechanism of
abiotic stress tolerance in crops.
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