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To date, unmanned aerial vehicles (UAVs), commonly known as drones, have been widely

used in precision agriculture (PA) for crop monitoring and crop spraying, allowing farmers

to increase the efficiency of the farming process, meanwhile reducing environmental

impact. However, to spray pesticides effectively and safely to the trees in small fields

or rugged environments, such as mountain areas, is still an open question. To bridge this

gap, in this study, an onboard computer vision (CV) component for UAVs is developed.

The system is low-cost, flexible, and energy-effective. It consists of two parts, the

hardware part is an Intel Neural Compute Stick 2 (NCS2), and the software part is an

object detection algorithm named the Ag-YOLO. The NCS2 is 18 grams in weight, 1.5

watts in energy consumption, and costs about $66. The proposed model Ag-YOLO is

inspired by You Only Look Once (YOLO), trained and tested with aerial images of areca

plantations, and shows high accuracy (F1 score = 0.9205) and high speed [36.5 frames

per second (fps)] on the target hardware. Compared to YOLOv3-Tiny, Ag-YOLO is 2×

faster while using 12× fewer parameters. Based on this study, crop monitoring and crop

spraying can be synchronized into one process, so that smart and precise spraying can

be performed.

Keywords: object detection, precise spraying, embedded AI, YOLO, NCS2

1. INTRODUCTION

1.1. Motivation and Background
Areca catechu L. is also known as betel palm. It is cultivated mainly in tropical areas as South East
Asia, India, South Pacific, and some African and Caribbean regions (Heatubun et al., 2012). The
seed (areca nut) harvested is chewed in most cases because of the stimulating effect of its alkaloids.
In a word, it is an importantly high-value crop. In the Hainan Island of China, this crop provides
a livelihood to more than 2 million people in rural areas. Unfortunately, this cultivar has been
suffering from the yellow leaf disease (YLD) that may lead to the decay and wilt of the palms. Luo
et al. (2001) employed various methods to prove that the areca YLD in Hainan is an infectious
disease caused by phytoplasma, including electron microscope observation, tetracycline antibiotic
injection diagnosis, Polymerase Chain Reaction (PCR) technology. According to the studies, pests
play a vital role in the spreading of viruses and phytoplasma. Therefore, spraying pesticides on the
palms constantly is an effective way to prevent YLD from spreading.
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With the advent of the Internet of Things (IoT), especially
the rapid evolution of the UAV technology, combined with
image data analytics, PA technologies have been developed, to
increase productivity and at the same time reduce environmental
impact. The PA technology focuses on about 20 relevant
applications (Radoglou-Grammatikis et al., 2020), among which
aerial monitoring and crop spraying are the most common.
Spraying UAVs carry different types of equipment developed
(Xiongkui et al., 2017; Lan and Chen, 2018; Yang et al., 2018)
to spray pesticides to the crops in small fields or rugged
environments, such as mountain areas. However, since an aerial
crop monitoring process has not been synchronized with the
spraying platform, today’s UAVs spray the entire area uniformly
with pesticides. Safe and effective spraying must be performed in
areca protection due to the fact that: 1) In areca plantations, there
is a certain distance from one palm to another; 2) Pesticides can
have several side effects on the biotic and abiotic environment
and bear a risk to harm human health (Horrigan et al., 2002); 3)
Palms are irregular, especially in height, which increases the risk
of UAV crashes.

For this purpose, this study develops an onboard CV
component for spraying UAVs. The system takes RGB data
acquired by the low-cost onboard camera as input, inferences
and then sends instructions to the flightmanagement unit (FMU)
of the UAV in a real-time manner. As a result, pesticides can be
applied on a per-plant basis, with a variable dosage subject to the
severity of plant diseases. To be specific, the key feature of this
system is to perform object detection in real-time.

In object detection tasks, deep learning (DL) methods
significantly outperform other existing approaches due to
their robustness to the diversity of targets. Nevertheless,
the powerful performance of DL often comes with a high
computation complexity and intensive memory demand,
mainly required by the convolutional layers in convolutional
neural network (CNN). For a high-end Graphics Processing
Unit (GPU), this is not a problem. However, UAVs are
tight constraints in computational power, memory size, and
energy consumption. We solve the issue by extending the
computing capacity with embedded hardware, then developing
a new algorithm to fit. Embedded AI computing options
are investigated, including graphics processing units, vision
processing units, and field-programmable gate arrays. Today,
commercial products are on the market, such as NVIDIA
(https://www.nvidia.com/), Intel (https://www.intel.com), and
MYiR (http://www.myir-tech.com/). As listed in Table 1, Intel
NCS2 has both the least weight and power consumption.
Besides, for a battery-powered device, those features are of great
advantage.

1.2. Scope and Contribution
The overall goal of this study is to develop an object detection
algorithm, which can run on NCS2 in real-time. We study the
efficient object detection algorithms optimized for resources-
constraint hardware and propose a novel model, as it is derived
from the famous YOLO (Redmon et al., 2016), and used for
agricultural purposes. Hence, we call it Ag-YOLO. Specifically,

the summary of the contributions presented in this study is
the following:

- We provide a thorough, complete description of the design,
deployment, and assessment of an intelligent real-time
agricultural object detection system based on embedded AI.

- By proposing the Ag-YOLO object detection algorithm and
testing it on the NCS2, we demonstrate that a DL-based
CV algorithm can be implemented on resource-constraint
hardware, to deal with real-life PA challenges. On the most
cost-efficient embedded AI device, the NCS2, our Ag-YOLO
can achieve 36.5 fps with satisfying accuracy. The accuracy
of Ag-YOLO is always higher than YOLOv3-Tiny in different
input dimensions, and the highest accuracy of Ag-YOLO
is 0.7655.

- We demonstrate a whole process to build an efficient object
detector for palms. This method is easy to propagate to other
cash crops such as pitaya, citrus.

- We developed a tool that is used for data training and
transforming PC models to the NCS2 platform.

- We propose the "channel reorganization" block to adapt the
ShuffleNet-v2 (Ma et al., 2018) backbone to NCS2, which
shows the best speed performance.

1.3. Article Structure
The remainder of the study is organized as follows: Section 2
reviews related works on smart UAVs and Embedding AI. The
proposed Ag-YOLO in this study is presented in Section 3. The
experimental results, as well as a comparison to the baseline
categorization and discussion, are presented in Section 4. Finally,
Section 5 provides a summary of the study.

2. RELATED WORK

In this section, we review vision-based smart UAV applications.
Furthermore, efficient embedded object detection algorithms
are then discussed. Finally, works based on improved YOLO
are presented.

2.1. Vision-Based Smart UAV Applications
In recent studies of UAVs, Intel NCS2 (https://www.intel.
com/content/www/us/en/developer/tools/neural-compute-
stick/overview.html), NVIDIA Jetson Nano (https://developer.
nvidia.com/embedded/jetson-nano), NVIDIA Jetson TX2
(https://developer.nvidia.com/embedded/jetson-tx2) are used as
companion computers in vision-based smart UAV applications
to process aerial imagery. Then the output result is used to
control the UAV’s FMU. Dobrea and Dobrea (2020) places
two embedded companion computers, a Raspberry Pi (RPi)
and a Jetson Nano, on a HoverGames quadcopter to follow a
pre-programmed flight route and simultaneously detect humans
as well as of warning the system operator to reinforce the
quarantine zones for epidemic prevention purposes. In the field
of early fire detection and alarm, Nguyen et al. (2021) implements
a real-time fire detection solution for vast area surveillance using
the UAV with an integrated visual detection and alarm system.
The system includes a low-cost camera, a lightweight companion
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TABLE 1 | Main specifications of the candidate platforms in this study.

Intel NCS2 nVidia Jetson Nano MYiR ZU3EG

Features size 73 × 36 mm 70 × 45 mm 100 × 70 mm

HW accelerator Myriad X VPU 128-core nVidia Maxcell GPU Xilinx ultraScale

CPU N./A. Arm A57 MPSoC XCZU3EG (4-core Arm A53)

Peak performance 150 GFLOPs 472 GFLOPs 1.2 TFLOPs

Data precision FP16 FP16/FP32 FP32

Nominal power 1.5 W 10 W 10 W

Weight 18 g* 140 g 150 g

*Weight of NCS2 is not including the outer shell.

computer, a flight controller, and localization-and-telemetry
modules. A Jetson Nano is used to support real-time detection,
achieving a speed of 26 fps. In Afifi et al. (2019), the authors
built a robust, real-time pedestrian detection system on Jetson
TX2 for monitoring pedestrians by a UAV. Barisic et al. (2019)
built a vision-based system for real-time detection and following
of UAVs. The system achieves a real-time performance of 20
fps. Earlier, in Rabah et al. (2018), a small CPU RPi is used. In
Alsalam et al. (2017), the authors developed an autonomous UAV
using an Odroid U3+ and ROS to fulfill vision-based onboard
decision making for remote sensing (RS) and PA.

2.2. Efficient Object Detection Algorithms
To detect objects in real-time with an embedded device,
an efficient algorithm is required. DL-based object detection
technology, which has rapidly developed since the mid-2000s,
has overcome the limitations of the performance of other existing
technologies, and their capabilities are similar to those of humans
or sometimes exceed human abilities.

Among all the DL-based object detection frameworks, the
YOLO-series (Redmon et al., 2016; Redmon and Farhadi,
2017; Farhadi and Redmon, 2018; Bochkovskiy et al.,
2020) are widely used in various applications based on
object detection in recent years due to their outstanding
performance in terms of latency. In addition, the YOLO
series algorithms also provide a trade-off between speed
and accuracy, which allows researchers to apply them in
different scenarios.

Although YOLOv4 (Bochkovskiy et al., 2020) has been
released recently, YOLOv4 does not make any revolutionary
improvement in architecture aspect to its forefather. YOLOv3
is still one of the most widely used detectors in the industry
due to the limited computation resources and the insufficient
software support in various practical applications. Hence, we
choose YOLOv3 (Farhadi and Redmon, 2018) as our starting
point and adopt some “Bag of freebies” strategies from YOLOv4.
Specifically, the model we choose is the “lighter” version of
YOLOv3, called Tiny-YOLOv3, which was designed with speed
in mind and is generally reported as one of the better performing
models in the aspect of speed and accuracy trade-off.

A YOLO-family detector is composed of backbone, neck, and
head. The backbone is responsible for feature extraction, the neck
synthesizes the features from backbone, and the head classifies

the objects and labels the bounding boxes. As for the backbone
part, there have been rising interests in improving it to achieve
better speed in embedded devices, such as Howard et al. (2017),
Ma et al. (2018), Wang et al. (2018), and Zhang et al. (2018). We
investigate the effect by replacing them in YOLOv3-Tiny in the
next section.

2.3. Improved Work Based on YOLO
Huang et al. (2018) proposed YOLO-Lite for bringing object
detection to non-GPU computers. YOLO-Lite achieved 21 fps on
a non-GPU computer and 10 fps after being implemented onto a
website with only 7 layers and 482 million FLOPS. This speed
is 3.8× faster than SSD Mobilenetv1, the fastest state-of-the-
art model at that time. However, performances on embedding
systems were not investigated.

Kim et al. (2020) investigated the performance degradation
of spiking neural networks (SNNs) and presented the first
spiked-based object detection model, called Spiking-YOLO.
Spiking-YOLO achieves remarkable results that are comparable
(up to 98%) to those of Tiny-YOLO on non-trivial datasets,
PASCAL VOC, and MS COCO. Furthermore, Spiking-YOLO
on a neuromorphic chip consumes approximately 280 times less
energy than Tiny-YOLO and converges 2.3–4 times faster than
previous SNN conversion methods.

Wong et al. (2019) introduced YOLO Nano, a highly compact
deep CNN for embedded object detection designed using a
human-machine collaborative design strategy, running on a
Jetson AGXXavier embeddedmodule at different power budgets.
At 15 and 30 W power budgets, YOLO Nano achieved inference
speeds of ∼ 26.9 and ∼ 48.2 fps, respectively. The model size
of YOLO Nano was 4.0 MB, which is 15.1× smaller than Tiny
YOLOv2 and 8.3× smaller than Tiny YOLOv3. Despite being
much smaller in model size, it achieved an mAP of 69.1% on
the VOC 2007 test dataset, which is ∼ 12 and ∼ 10.7% higher
than that of Tiny YOLOv2 and Tiny YOLOv3, respectively.
Jetson AGX Xavier is a high-end embedded device, which is not
considered in this study.

xYOLO is proposed in Barry et al. (2019) to detect balls and
goal posts at ∼ 10 fps, on a piece of low-end hardware, the RPi
3 B, in a RoboCup Humanoid Soccer competition, compared to
Tiny-YOLO which achieved 0.14 fps.

Hurtik et al. (2020) presented Poly-YOLO, which improves
YOLOv3 in three aspects. It is more precise, faster, and able
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to realize instance segmentation. Poly-YOLO has only 60% of
parameters of the YOLOv3 but improves the accuracy by a
relative 40%.

In Pham et al. (2020), Minh-Tan Pham et. al, designed
YOLO-fine which is based on the state-of-the-art YOLOv3
with the main purpose of increasing the detection accuracy
for small objects while being light and fast to enable real-time
prediction within further operational contexts, providing the best
compromise between detection accuracy (highest mAP), network
size (smallest weight size), and prediction time (able to perform
real-time prediction). No latency data are provided in this study.

3. MATERIALS AND METHODS

To the best of our knowledge, there is no public datasets for palms
available, so we build one for this study.

3.1. Dataset
Four experimental sites in Sanya (18◦15′10”N 109◦30′42” E)1

were selected to collect aerial images. In the experimental
sites, areca palms of different ages were grown (from 2 years
old to more than 20 years old). In addition, their spatial
distance from palm to palm varies too. Some plantations were
also heterogeneous in terms of the individual trunk volume.
Therefore, a high object variation was guaranteed. Sanya is a
city on the Hainan Island of China. The images were collected
by using a DJI Phantom 4,2 of which the camera resolution was
5,472 × 3,078, and the aperture was F 1/2.8. This UAV hovered
above the palms at a height ranging from 2 to 10 m to take photos
so that images could be in different scales. The angle of view
of the camera was between 45 and 90◦. An example image is
shown in Figure 1 (For better illustration, this image was taken
from a much higher altitude for readers who have no idea of
what an areca plantation is like). More than 1,000 aerial images
were taken at different times on August 2, August 3, October 5,
and November 4, 2018. The collecting time ranges from early
morning, midday to sunset to get different sunlight conditions.
Among them, 400 images were picked and then resized to a
smaller dimension (themaximum length was set to 1,500 to speed
up the processing time), which were labeled with an open-source
software named labelImg.3 After that, 300 images were randomly
selected and saved into the “Training” dataset and the rest 100
images were saved into the “Testing” dataset.

It is worth noting, there are two reasons we did not use all
1,000 images. First, it took a lot of manually repetitive labor
to label images; Second, with “Data Augmentation” and “Hard
Negative Mining” technologies, for a small model which only
detects objects of one class, 400 images are enough.

During training, we used the “Data Augmentation” method
to expand the training dataset. A labeled image was cropped
randomly and resized to the dimension of the network (e.g., 416
× 416). Then, it was transformed into the HSV (Hue, Saturation,
and Value) color space, so that any of the H, S, and V values could

1https://en.wikipedia.org/wiki/Sanya
2https://www.dji.com/cn/phantom-4-rtk?site=brandsite&from=nav
3https://github.com/tzutalin/labelImg or https://pypi.org/project/labelImg/

FIGURE 1 | Areca palm plantation at the experimental site labeled with red

quadrates. The blue semitransparent box covers a coconut palm (part of

the background).

be adjusted randomly for the simulation of illumination changes,
or color changes. For example, reducing the H value by 1 or 2 to
simulate a little less illumination intensity. After that, the image
was transformed back to RGB (Red, Greed, and Blue) color space.
This was implemented by using the tool RQNet, and the default
parameter values for “Data Augmentation” are used.

3.2. Data Training
All frameworks were trained on an end-to-end basis in a single
T1060 GPU optimized by Adam (Kingma and Ba, 2014) at the
initial learning rate of 0.001. Each mini-batch has 10 images.
Therefore, one epoch includes 15 mini-batches. This study
resized the input dimension to (352, 352), (384, 384), (416, 416),
(448, 448), (480, 480), (512, 512), (544, 544), and (576, 576) for
every epoch randomly.

For every model, the parameters were initialized by the Xavier
method. After using strong data augmentation, we found that
ImageNet pre-training is no more beneficial, we, thus, train all
the following models from scratch. By adopting Leaky ReLU as
an activation function and using Gaussian distribution initialized
parameter, all the models were easily converged in hundreds
of thousands of iterations, taking 2 ∼ 4 days on an ASUS
TUF Gaming FX86FM laptop. The value of Gaussian parameters
µ = 0, σ = (16n)−0.5 where n refers to the number of
weight elements.

3.2.1. L2-Norm Regularization and NCS2 Deployment
Regularization has been introduced into DL for a long time,
which brings in additional information for the prevention
of over-fitting. The L2-norm regularization can be expressed
as follows:

L =
∑

(x,y)

l(f (x,W), y)+ λ
∑

w

w2 (1)

where λ refers to the super parameter, and in YOLO articles, it is
referred to as “decay” or “weight decay,” and set to 0.0005. The
x and y denote the coordinate value of the feature map, and w
denotes the parameters of the model.

Frontiers in Plant Science | www.frontiersin.org 4 December 2021 | Volume 12 | Article 753603

https://en.wikipedia.org/wiki/Sanya
https://www.dji.com/cn/phantom-4-rtk?site=brandsite&from=nav
https://github.com/tzutalin/labelImg
https://pypi.org/project/labelImg/
https://www.frontiersin.org/journals/plant-science
https://www.frontiersin.org
https://www.frontiersin.org/journals/plant-science#articles


Qin et al. Ag-YOLO

FIGURE 2 | Network training and deployment on Neural Compute Stick 2 (NCS2).

In this study, the model was trained on a PC, and tested and
used on NCS2, as described in Figure 2. The well-trained model
on a PC is composed of a large number of parameters in FP32
format. They need to be parsed and converted to FP16 format
and organized in a form that the NCS2 driver can understand.

Two pieces of C++ tools have been developed for data
training and model testing on NCS2, the RQNet, and the
OpenVINOMyriad (refer to https://github.com/rossqin/). The
RQNet was used for data training and model evaluation under
the Windows operating system, which was also used to convert
models used by the OpenVINOMyriad to run on NCS2. During
the training phase, the CUDA 11.1 and cuDNN 8.0 libraries
were used, and all the parameters were in standard 32-bit float
point values (FP32). However, NCS2 only supports 16-bit “half
precision” float point values (FP16), which can express values
within the range±65,504 with the minimum value above 1 being
1 + 1/1024. To minimize the accuracy loss while the parameters
are being quantified from FP32 to FP16, the parameters should
be small enough. However, in the case that λ starts with a small
value, a model with a bunch of huge value parameters beyond
FP16 might be obtained, especially in the first layer. To avoid this
case, λ was set to 0.01 during the first 100 k iterations and then
set to 0.001.

3.2.2. Loss
A YOLOv3 (Farhadi and Redmon, 2018) object detector predicts
bounding boxes using dimension clusters as prior boxes. For each
bounding box, there are 4 corresponding predicted values, i.e.,
tx, ty, tw, and th. When the center of the object is in the cell
offset from the top left corner of the image by (cx, cy), and the
prior box has the dimension o (pw, ph), then the prediction values
correspond to

bx = σ (tx)+ cx (2a)

by = σ (ty)+ cy (2b)

bw = pw · etw (2c)

bh = ph · e
th (2d)

As in Figure 3:
For YOLOv3, a prediction loss comprises 3 parts, i.e., the

object loss Lobj, the classification loss: Lcls, and the coordinate

FIGURE 3 | Bounding boxes with dimension priors and location prediction

for YOLOv3.

loss Lbox.

Loss = Lobj + Lcls + Lbox (3)

Where

Lobj = λnoobj

S2
∑

i

B
∑

j

1
noobj
i,j (ci − ĉi)

2 + λobj

S2
∑

i

B
∑

j

1
obj
i,j (ci − ĉi)

2

(4a)

Lcls = λcls

S2
∑

i

B
∑

j

1
obj
i,j

∑

c∈classes

pi(c)log
(

p̂i(c)
)

(4b)

Lbox = λbox

S2
∑

i

B
∑

j

1
obj
i,j

(

2− wi × hi
)

(4c)

×
[

(xi − x̂i)
2 + (yi − ŷi)

2 + (wi − ŵi)
2 + (hi − ĥi)

2
]

(4d)

where S denotes the size of the feature map to be predicted, B

represents the prior boxes count, 1
obj
i,j refers to the fact that the i-

th cell and the j-th prior box are responsible for one ground truth,

and 1
noobj
i,j refers to the opposite.

In this study, only palms need to be detected, therefore, it is
always assumed that Lcls = 0. Moreover, Focal Loss (Lin et al.,
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2017) is used in Lobj to increase the recall rate R and suppress the
erroneous recall rate FP :

Lobj = −λobj

S2
∑

i

B
∑

j

1
obj
i,j α (1− ci)

γ log(ci) (5)

where the parameters of α and γ were set to 0.5 and 0.2,
respectively. Focal Loss accelerates convergence during the
training process because it gives much higher penalty weights
to poor predictions. If a prediction value is close to the ground
truth value, then it’s much less important to keep minimizing the
gap. As a result, the training process can pay more attention to
poor predictions.

In terms of Lbox, CIOU Loss proposed in Zheng et al. (2020) is
used just as Bochkovskiy et al. (2020) do, express as follows,

Lbox = λbox

S2
∑

i

B
∑

j

1
obj
i,j

(

1− IoUi +
(xi − x̂i)

2 + (yi − ŷi)
2

c2i
+

v2i
(1− IoUi)+ vi

)

(6)

Where c2i is the area of the minimum box containing the
prediction box and ground truth box.

vi =
4

π

(

arctan
ŵi

ĥi
− arctan

wi

hi

)

(7)

The values of λobj and λbox are set to 1 and 0.2, respectively,
but when the model is hard to converge, λbox can be adjusted
according to the condition.

3.2.3. Network Slimming
Studies demonstrated that accuracy can be improved by
increasing the layers (deeper layers) (Simonyan and Zisserman,
2014) or the channels in layers (wider layers) (Howard et al.,
2017). In this study, an initial network architecture wider and
deeper enough was used, and the network was made to learn
its structural sparsity. Besides, network slimming was used as
well, which was introduced in the previous section. The slimming
was performed on a well-trained network when the importance
of the γ parameters in the BN layers was further learned. In
addition, no regularization was imposed on the parameters in the
convolutional layers, and the model was re-trained after pruning.

The training scheme in network slimming was similar to
that of normal training, specifically, λ (the weight_decay value)
started from 0.01 and then 0.001 after 100 k iterations.

3.2.4. Background Training
As shown in Figure 1, in most areca plantations, the contrast
between foreground and background was not very obvious.
Almost all the images were green with the variation from light
to dark green, except for some yellowish-brown spots which were
the YLD diseased palm individuals.

All the palms in the dataset were labeled, and to increase
the accuracy, the predictor was trained so that the background
will not be predicted as objects. Those prior boxes not
overlapped with any of the ground truths were defined
as “background boxes.” During the training phase, in the
case that a background box was predicted as an object, in
another word, the confidence value was larger than the
threshold value (e.g., 0.5), the predictor was punished.
This extra work strengthened the predictor’s ability to
distinguish objects from the background, and decreased
false-positive predictions.

3.3. Prior Boxes
Some studies involved the in-depth investigation of prior box
selection in the YOLO model. It is empirically believed that
some losses of accuracy were originated from the unequal
distribution of the ground truth by anchors, in another word,
one specific prior box in a cell response predicted more than
the ground truth, so that during the training process, there
is no way to learn all the ground truth. One solution to this
problem is to avoid this conflict. For example, to use better
designed prior boxes array or a bigger prior box collection. It
is unnecessary to use more predictors for a light model (e.g.,
in Mazzia et al., 2020) if the backbone network has enough
representational power, which is because that more predictors
bring more computation complexity. In the study, the k-means
was used to pick prior boxes for our model over the dataset,
for example, in YOLOv3-Tiny, at first, k = 6 was set to get
a box array of (23,23), (35,36), (48,49), (64,66), (90,91), and
(147,157), which was referred to as "def-anchors" in the later
section, with all the images normalized to (416,416). Since the
smallest box is bigger than a high-resolution cell grid (16,16)
in both width and height, another box array of (10,14), (27,23),
(37,58), (75,64), (93,104), and (187,163) was used, which was
referred to as “cust-anchors” to see what happens if there is
one smaller prior box than the smaller cell grid. This study
also used k = 8 to get another box array of (19,19), (27,29),
(37,36), (43,48), (58,57), (71,75), (99,101), (158,169), referred to
as “8-anchors.”

3.4. The Structure of YOLOv3-Tiny and
Some Related Components
The basic YOLOv3-Tiny architecture is shown in Figure 4. As
the one-stage object detector, it comprises a backbone network,
one or more prediction heads, and corresponding necks. The
backbone network of YOLOv3-Tiny is named Darknet18, which
is framed by a red box. The YOLOv3-Tiny has 2 prediction heads
in different scales and corresponding necks, which synthesizes
and organizes high-level features of the input images.

The YOLOv3-Tiny uses an intuitive neck structure, which
takes quite a lot of computation overhead. The ResBlock
component proposed in PeleeNet (Wang et al., 2018), as in
Figure 5, was used to compare with the original neck.

Some efficient backbone networks were evaluated, and
it was found that the backbone networks proposed by
MobileNet v2 and those proposed by ShuffleNet v2 showed time
performance. In this study, they were also adapted for better
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FIGURE 4 | The YOLOv3-Tiny framework, s: stride, c: channel.

FIGURE 5 | The ResBlock in PeeleNet.

performance. Figure 6 shows a compact version of MobileNet
v2’s backbone, and the bottleneck module is as defined in the
original study.

FIGURE 6 | The compact MobileNet v2 backbone.

ShuffleNet v2 building blocks were used to build our backbone
except for some small modifications. There were two reasons, the
first is that theChannel Shuffle operation (as shown in Figure 7A)
was not supported by the NCS2 hardware, therefore, Channel
Reorganization was used to achieve the same or similar effect,
(as shown in Figure 7B); Second, in this study, we found that
in MobileNet v2 (as shown in Figures 8A,C), an activation layer
followed a 3× 3 depth-wise convolutional layer instead of a 1× 1
one, and it showed higher accuracy (as shown in Figures 8B,D).
This study compared the three cases as follows, 1) A 3× 3 depth-
wise convolutional layer followed by an activation layer without
activation layer for the 1× 1 convolutional layer; 2) No activation
layer for 3 × 3 depth-wise convolutional layers, and a 1 × 1
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FIGURE 7 | (A) The standard channel shuffle operation in ShuffleNet;

(B) channel reorganization operation in our study.

convolutional layer is followed by an activation layer; 3) Both
convolutional layers are followed by activation layers, with the
details described in Section 4.

Figure 9 shows our backbone architecture.

3.5. Evaluation Metrics
The inference time on NCS2, Parameters Size (of the model),
Billion FLoatingOperations (BFLOPs), F1 score, and Intersection
of Union (IoU) were applied to evaluate the detection
performance. Inference time denotes the duration of detecting
objects from one image which is a speed metric, BFLOPs which
is a computational complexity metric, F1 score combines the
performance evaluation of the recall and the precision of the
detection, therefore, it is widely applied as the evaluation index
in many previous studies of object detection when there is only
one object category. The expression of the precision, recall, and
F1 is expressed as follow:

P =
TP

TP + FP
(8a)

R =
TP

TP + FN
(8b)

F1 =
2× P × R

P + R
(8c)

where P denotes the precision, R refers to the recall, TP
represents the true positives, FP is the false positives, and FN
denotes the false negatives. The definition of IoU is shown
in Figure 10, which measures the intersection area of the
predicted object boundary box and the ground truth, thereby
evaluating the location accuracy of the predicted boundary box
of the prediction.

4. RESULTS

In this section, a performance comparison was made among
the vanilla YOLOv3-Tiny, the YOLOv3-Tiny with training

FIGURE 8 | Building Blocks of ShuffleNet v2 and this study. (A) the basic

ShuffleNet v2 unit; (B) the ShuffleNet v2 unit for spatial down sampling (2×);

(C) our basic unit; (D) our unit for spatial down sampling (2×).

improvement skills, the algorithm comprised of the Darknet18
backbone and the ResBlock neck, the algorithm comprised of
efficient backbone and the ResBlock neck.
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Based on the resulted data, we obtained Ag-YOLO.

4.1. Improving YOLOv3-Tiny Without
Change to Structure
The Darknet18 backbone is very simple, which can be deemed
as the simplest structure according to the principle proposed
by VGG16. It is also a very good structure to inspect the
performance data for NCS2. In this section, the impact of
different prior boxes and background training was investigated.

Table 2 shows the accuracy incremental improvement
obtained by background training and prior boxes selection.

FIGURE 9 | The ShuffleNet v2 backbone. Each line describes a sequence of

one or more identical (modulo stride) layers, repeating for n times. All layers in

the same sequence have the same number c of output channels. The first

layer of each sequence has a stride s and all others use stride 1. All spatial

convolutions use 3 × 3 kernels.

FIGURE 10 | Definition of Intersection of Union (IoU).

By training background and using more prior boxes, the
accuracy was improved with a very small computational
overhead, which was not reflected in the inference time on NCS2.
The reason is that the hand-selected prior boxes failed to bring
notable accuracy changes due to the fact that there were not
enough small objects in the trained or tested images. What has to
be pointed out is that the "Inference Time on NCS2" refers to the
net computation time spent on the device, excluding the image
decoding and data transfer.

4.2. Using the ResBlock Neck
The ResBlock component is proposed in PeleeNet (Wang et al.,
2018). As shown in Figure 5.

Table 3 shows the performance improvement brought by the
ResBlock neck. In this comparison, 8 prior boxes are used in
predictors (4 by each).

The F1 score in both IoU0.5 and IoU0.75 markedly improved
at a cost of a slight drop in average IoU, which was acceptable.
Moreover, the parameters were reduced from 8.668 million to
6.848 million, and BFLOPs were reduced from 5.449 to 4.109
billion, leading to an inference time shrink of more than 10 ms,
i.e., about 27% of the original value.

4.3. Network Slimming
In the darknet source code,4 L2-norm regularization was
imposed on the weights with λ = 0.0005. This value was too
small, which leads to big parameters beyond FP16. Starting from
λ = 0.01, this study found that in some channels, all the
parameters tended to be zero, therefore, those channels were
removed to reduce computation. However, by imposing L1-norm
regularization on the γ parameters in batch normalization layers,
a better result was achieved. This study pruned all the channels
with |γ | < 0.5, and the pruned results were shown in Table 4.

Network slimming failed to bring notable performance
improvement in terms of inference time, on the contrary, it
induced a little degradation to IoU and F1 scores in this
experiment. However, in some architectures, it generated a
smaller model.

4.4. Using Efficient Backbones
4.4.1. SqueezeNet
Table 5 shows the performance variation while Darknet18
was replaced by SqueezeNet. SqueezeNet achieved better

4https://pjreddie.com/darknet/

TABLE 2 | Accuracy incremental improvement.

Model
Average F1 Score Parameters

BFLOPs
Inference

IoU IoU0.5 IoU0.75 Size Time on NCS2

Default-anchors-no-bg 0.8186 0.9236 0.7358 8.634 M 5.436 37.75 ms

Default-anchors-bg 0.8202 0.9250 0.7503 8.634 M 5.436 37.75 ms

Custom-anchors-bg 0.8170 0.9278 0.7422 8.634 M 5.436 37.75 ms

8-anchors-bg 0.8266 0.9300 0.7685 8.668 M 5.449 37.75 ms

Bold values indicate the best performance.
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TABLE 3 | Accuracy improvement by ResBlock.

Model
Average F1 Score Parameters

BFLOPs
Inference

IoU IoU0.5 IoU0.75 Size Time on NCS2

YOLOv3-Tiny built-in 0.8266 0.9300 0.7685 8.668 M 5.449 37.75 ms

ResBlock 0.8247 0.9432 0.7777 6.848 M 4.109 27.42 ms

Bold values indicate the best performance.

TABLE 4 | Performance data by pruning.

Model
Average F1 Score Parameters

BFLOPs
Inference

IoU IoU0.5 IoU0.75 Size Time on NCS2

ResBlock 0.8247 0.9432 0.7777 6.848 M 4.109 27.42 ms

Pruned 0.8237 0.9433 0.7625 6.548 M 3.949 27.33 ms

TABLE 5 | Performance data of SqueezeNet.

Model
Average F1 Score Parameters

BFLOPs
Inference

IoU IoU0.5 IoU0.75 Size Time on NCS2

Default-anchors-no-bg 0.8186 0.9236 0.7358 8.634 M 5.436 37.75 ms

SqueezeNet 0.8346 0.9304 0.7860 1.186 M 5.176 56.67 ms

TABLE 6 | Performance data of MobileNet v2.

Model
Average F1 Score Parameters

BFLOPs
Inference

IoU IoU0.5 IoU0.75 Size Time on NCS2

Default-anchors-no-bg 0.8186 0.9236 0.7358 8.634 M 5.436 37.75 ms

MobileNet v2 0.8443 0.9592 0.8240 1.082 M 2.095 65.32 ms

TABLE 7 | Performance data of ShuffleNet v2.

Model
Average F1 Score Parameters

BFLOPs
Inference

IoU IoU0.5 IoU0.75 Size Time on NCS2

Default-anchors-no-bg 0.8186 0.9236 0.7358 8.634 M 5.436 37.75 ms

ShuffleNet v2(1) 0.8349 0.9448 0.7893 813 K 1.033 26.23 ms

ShuffleNet v2(2) 0.8278 0.9513 0.7668 711 K 0.985 25.96 ms

ShuffleNet v2(3) 0.8178 0.9404 0.7394 878 K 1.071 27.60 ms

Bold values indicate the best performance.

performance, e.g., better IoU and fewer parameters. However,
it doubled computation complexity and increased the
inference time.

Table 6 shows its performance. With the bottleneck
microstructure, improvements were made in terms of IoU,
F1 score, and BFLOP. However, the inference time was much
shorter (about 2.5 times that by Darknet18).

Table 7 shows the results. The second one has the best
performance, and for the third one, more non-linearity
leads to worse performance. Combined with a modified
version of ShuffleNet-v2 backbone, a ResBlock neck, and a
YOLOv3 head, a new YOLO framework were proposed. We

temporarily named it Ag-YOLO because it could be used for
agricultural purposes.

4.5. Models Tested on NCS2
All models were converted to OpenVINO-version and tested on
an NCS2 device. The host was a Windows 10 laptop and the
data was transferred via USB3 protocol also supported by the
RPi 4 computer. Due to the data precision loss, performance
degradation occurred for all models. As seen from Table 8,
the Ag-YOLO improved the original YOLOv3-Tiny version
significantly in terms of both speed (about 6 frames more in a
second) and accuracy (about 0.2 increase in F1 score). The model
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TABLE 8 | Models tested on NCS2.

Model
Features

Backbone fps F1 Score IoU
CIoU Loss BG ResBlock Pruned

1 (YOLOv3-Tiny) Darknet18 20.7 0.9160 0.6959

2 X Darknet18 20.7 0.9276 0.7148

3 X X Darknet18 20.7 0.9302 0.7253

4 X X X Darknet18 26.2 0.9223 0.7209

5 X X X X Darknet18 26.3 0.9209 0.7108

6 X X X X PeleeNet 14.6 0.9211 0.7352

7 X X X X Compact MobileNet v2 13.0 0.9364 0.7410

8 (Ag-YOLO) X X X X ShuffleNet v2 derived 26.9 0.9361 0.7395

IoU = 0.5, input dimensions: 416 × 416, confidence threshold = 0.4, and non-maximum-supress threshold = 0.5. Bold value indicates the best performance.

FIGURE 11 | Ag-YOLO vs. YOLOv3-Tiny under different input dimensions.

using a compact MobileNet v2 backbone surpassed our model a
little in terms of F1 score and IoU, however, it takes double times
to run.

When the input dimension was set to 352 × 352, Ag-YOLO
achieved the speed of 36.5 fps with an F1 score of 0.9205 and
IoU of 0.708 on NCS2, while YOLOv3-Tiny achieved similar
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FIGURE 12 | Ag-YOLO run on NCS2 (Input dimension: 416 × 416). Images were taken by a UAV, different colors of the predicted square imply different confidence

values, blue is low, and red is high. (A) R:92%, P:100%, F1:0.9583, IoU:0.7199. (B) R:92.86%, P:96.30%, F1:0.9455, IoU:0.7345.

accuracy at the speed of 18.1 fps with an input dimension of
448×448. Based on these data, Ag-YOLO is two times faster than
YOLOv3-Tiny.

Different input dimensions: Performance of a model is also
affected by the input dimension. As in the training phase, the
input dimensions had been changed to 352 × 352, 384 × 384,
416 × 416, 448 × 448, 480 × 480, 512 × 512, 544 × 544,
576 × 576. Figure 11 shows performance trends of Ag-YOLO
and YOLOv3-Tiny. Figure 12 is an example of the NCS2 output.

5. DISCUSSION

Abdulridha et al. (2019) applied a hyperspectral camera for the
detection of citrus canker disease in citrus plantations. Modica
et al. (2020) used UAV multi-spectral imagery to monitor the
vigor in heterogeneous citrus and olive orchards. Ye et al.
(2020) identified Fusarium wilt in bananas using supervised
classification algorithms with UAV-based multi-spectral imagery.
Those camera systems are characterized by expensiveness,
difficulty in operation, relatively large size, and susceptibility to
crash situations compared with RGB cameras.

The developed software, presented in this study, is
specially adapted for use in embedded RGB-camera systems.
With the increasing availability of UAVs that can spray
pesticides, the algorithm can contribute to performing
selective spraying. Therefore, the pesticides could be
saved, thereby reducing the environmental impact and
the economical costs of the farmer. In particular, cheap
technology is necessary for the wide use of target-orientated
selective spraying. Additionally, a cheap RGB-camera-
controlled UAV spraying should also be affordable for
small farmers.

The source code of this study is available at https://github.
com/rossqin/RQNet, which can be used as a reference for the
beginning researchers to develop their real-life AI applications
instead of pursuing higher performance with new algorithms
and the ever-increasing demand for higher computational power
and memory requirements. In a specific agricultural CV task, for
instance, object detection, the object category is usually one or
few, therefore, it is possible to use a small and efficient DNN-
based model to achieve a good result. This is proved in this study
by exploring the YOLOv3-Tiny architecture and replacing the
neck and backbone with different state-of-art efficient DNNs,
such as SqueezeNet, MobileNet v2, and ShuffleNet v2. This
study also uses network slimming to compress the models to
obtain smaller models. In the meantime, this study trained all
the models on a laptop and tested them on a low-cost hardware
accelerator, i.e, the Intel NCS2. Our architecture, the Ag-YOLO,
is comprised of a ShuffleNet v2-derived backbone, a ResBlock
neck, and a YOLOv3 head, with only 813k parameters and 1.033
billion FLOPs, which is only 9.4 and 19% of the Darknet18
version, respectively. However, it brings better accuracy and
inference time performance on the resource-constraint hardware
NCS2, achieving a speed of 36.5 fps. Because a camera usually
takes video at the frame rate of 24 fps, this is a REAL-TIME
object detector. On the other hand, a compact version of the
MobileNet v2 backbone leads to a better accuracy performance,
although it takes more than twice BFLOPs and inference time.
In a UAV or UGV auto-pilot use case, the host usually moves
quite slow, and there is no need to process each frame from
the onboard camera. For the tasks that emphasize accuracy, the
compact version of the MobileNet v2 backbone presents a better
option for Ag-YOLO. To obtain better accuracy, redundant
information between successive frames can be utilized, as shown
in Bozek et al. (2018).
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6. CONCLUSION

This study decomposes the “YOLOv3-Tiny” into a backbone
network, one or more necks, and corresponding heads. The
backbone network extracts the features from an image, the necks
synthesize the features that backbone network outputs, and the
heads decode the information as required. This work improves
YOLOv3-Tiny by replacing a more efficient backbone and better
neck, in addition, we adopt some “Freebies” and “Back-of-
Specials” such as CIOU Loss and more prior boxes in heads.
Our work demonstrates that, a DNN-based CV algorithm can
be implemented on resource-constraint device to deal with real-
life PA challenge, even with the most costefficient embedded AI
device, e.g., the NCS2. In addition, our Ag-YOLO can achieve
36.5 fps with satisfying accuracy. The accuracy of Ag-YOLO
is always higher than that of YOLOv3-Tiny in different input
dimensions, and the highest accuracy of Ag-YOLO reaches
0.7655. This experiment also demonstrated that a MobileNetv2-
derived backbone showed better representational power, and a
ShuffleNetv2-like backbone runs faster at the cost of a little
accuracy degradation. Besides, both of them are superior in
terms of computation intensity and memory usage. With this
work, including the open-source toolset, it should be very easy
to make their legacy agricultural machinery intelligent by using
an onboard camera and an edge computing device.

7. FUTURE WORK

The proposed model Ag-YOLO has been proved to be competent
in extending a UAV with little overhead, from cost to energy.

The CV will be integrated into a practical spraying UAV

via the Mavlink protocol to deal with the challenges in
areca protection.
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