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Powdery mildew is one of the most important fungal pathogen diseases. The genome
of barley mildew fungus, Blumeria graminis f. sp. hordei (Bgh), encodes a large number
of candidate secreted effector proteins (CSEPs). So far, the function and mechanism
of most CSEPs remain largely unknown. Here, we identify a Bgh effector CSEP0027,
a member of family 41, triggering cell death in Nicotiana benthamiana. CSEP0027
contains a functional signal peptide (SP), verified by yeast secretion assay. We show that
CSEP0027 promotes Bgh virulence in barley infection using transient gene expression
and host-induced gene silencing (HIGS). Barley catalase HvCAT1 is identified as a
CSEP0027 interactor by yeast two-hybrid (Y2H) screening, and the interaction is verified
in yeast, in vitro and in vivo. The coexpression of CSEP0027 and HvCAT1 in barley cells
results in altered localization of HvCAT1 from the peroxisome to the nucleus. Barley
stripe mosaic virus (BSMV)-silencing and transiently-induced gene silencing (TIGS)
assays reveal that HvCAT1 is required for barley immunity against Bgh. We propose that
CSEP0027 interacts with barley HvCAT1 to regulate the host immunity and likely reactive
oxygen species (ROS) homeostasis to promote fungal virulence during barley infection.

Keywords: powdery mildew, Blumeria graminis, effector, CSEP, virulence, barley catalase

INTRODUCTION

Powdery mildews are widespread fungal diseases that affect more than 10,000 plant species, such
as important cereal crops, economic, and ornamental plants (Glawe, 2008; Dean et al., 2012;
Takamatsu, 2013). As obligate biotrophic pathogens, powdery mildew fungi totally depend on
the living plant cells for survival and reproduction. Mildew conidiospores attach to the epidermal
tissue of the host, germinate and produce fungal infection structures, such as the appressorium and
penetration peg to penetrate the plant cell wall, subsequently, the haustoria are developed within
the lumen of the host cells but separated from the host cell cytoplasm by extrahaustorial membrane
(EHM) and extrahaustoral matrix (EHMX) (Panstruga, 2003; Both et al., 2005). The haustorium
is believed to be a site for nutrient uptake and signaling exchange (Panstruga and Dodds, 2009;
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Stergiopoulos and de Wit, 2009), and effector proteins are
believed to deliver into the plant cells through haustorium to
promote fungal virulence.

Blumeria graminis, the powdery mildew fungus causing
disease on the cereal crop species and grasses (Poaceae), has
been classified into at least eight formae speciales (f.sp.), each
adapted to a host genus (Troch et al., 2014). B. graminis f.sp.
hordei (Bgh) and B. graminis f.sp. tritici (Bgt) colonize barley
and wheat, respectively. The Bgh and Bgt genomes code for
∼700 and 800 candidate secreted effector proteins (CSEPs),
respectively (Godfrey et al., 2010; Spanu et al., 2010; Pedersen
et al., 2012; Wicker et al., 2013; Frantzeskakis et al., 2018;
Müller et al., 2019). Many Bgh CSEPs are overlapped with the
so called Blumeria effector candidate (BEC) proteins identified
from the proteomic analyses (Bindschedler et al., 2009, 2016;
Godfrey et al., 2009). A majority of these Bgh CSEPs have a
predicted amino-terminal signal peptide (SP) and a putative
Y/F/WxC motif (Bindschedler et al., 2009; Godfrey et al., 2010;
Spanu et al., 2010; Pedersen et al., 2012). A large proportion of
Bgh CSEPs (c. 25%) are structurally predicted similar to RNase
and/or RNA-binding activity, and these CSEPs are termed as
RNase Like Proteins expressed in Haustoria (RALPHs) (Pedersen
et al., 2012; Spanu, 2017). Interestingly, most of the so far
identified Bgh AVRA effectors, each recognized by a cognate
barley MLA receptor, are also RALPHs with fungal RNase folds
but lacking the residues required for RNase activity (Lu et al.,
2016; Saur et al., 2019; Bauer et al., 2021). So far, several Bgh
CSEPs/BECs have been functionally characterized with respect
to fungal virulence through transient gene expression and host-
induced gene silencing (HIGS) approaches (Bindschedler et al.,
2009; Godfrey et al., 2009; Nowara et al., 2010; Spanu et al., 2010;
Pedersen et al., 2012; Pliego et al., 2013; Ahmed et al., 2015,
2016; Menardo et al., 2017; Frantzeskakis et al., 2018; Pennington
et al., 2019; Li et al., 2021). The host targets have been identified
for some CSEPs that are involved in plant immunity and stress
responses (Zhang et al., 2012; Schmidt et al., 2014; Ahmed et al.,
2015; Pennington et al., 2016, 2019; Saur et al., 2019). Recently,
few Bgh CSEPs have been showed or proposed to play a role in
regulating the host cell death (Pennington et al., 2019; Li et al.,
2021). A CSEP0064/BEC1054, one of the Bgh RALPHs, binds to
RNA and may act as a pseudoenzyme to inhibit the action of the
host ribosome-inactivating proteins (RIPs) that would otherwise
induce cell death (Pennington et al., 2019). The CSEP0139 and
CSEP0182 are capable of suppressing programmed cell death
(PCD) induced by various cell death inducers in plant cells (Li
et al., 2021). Despite these intensive studies, the function and
mode of action of many CSEPs remain largely unclear.

Reactive oxygen species (ROS), produced from aerobic
metabolism in plants, have been appreciated as major signaling
molecules in plant development and in response to the biotic and
abiotic stresses (Apel and Hirt, 2004; Nanda et al., 2010; Waszczak
et al., 2018). In plant–pathogen interactions, ROS can directly kill
the invading pathogens and trigger cell death to stop pathogen
invasion, or can serve as signaling molecules to regulate the plant
defense responses (Mittler et al., 2011; Mittler, 2017). Hydrogen
peroxide (H2O2) and superoxide anion (O2

−) are the two major
ROS molecules accumulating in the plants in response to the

pathogen infections. The plants rely on an intricate network to
control the levels of ROS at different subcellular compartments
(Hückelhoven and Kogel, 2003; Nanda et al., 2010; Petrov and
Van Breusegem, 2012). Catalases are part of “the ROS network,”
playing a central role in maintaining the cellular H2O2 balance
and in signaling crosstalk (Du et al., 2008; Chaouch et al., 2010;
Nanda et al., 2010; Sharma and Ahmad, 2014; Li et al., 2015;
Zhang et al., 2015; Murota et al., 2017; Yuan et al., 2017; Chen
and Jarosz, 2020; Chen et al., 2020).

In barley/wheat response to B. graminis infection, ROS are
involved in immune responses at early and late stages of the
pathogen infections (Hückelhoven and Kogel, 2003). In barley
under attack by Bgh or Bgt spores, H2O2 is detected to locally
accumulate in papillae (cell wall appositions) or in the whole
cell, which is generally associated with host cell inaccessibility
(Thordal-Christensen et al., 1997; Hückelhoven et al., 1999,
2001, 2003). The ROS are also detected in Bgt-attacked wheat
epidermal cells and are involved in both pattern-triggered
immunity (PTI) and effector-triggered immunity (ETI; Altpeter
et al., 2005; Schweizer, 2008; Chang et al., 2019). On the other
hand, superoxide radical anion (O2

−) is believed to act in
restricting cell death. In barley epidermal cells under attack
by Bgh spores, O2

− accumulation is strictly associated with a
successful penetration and O2

− also accumulates in the living
cells neighboring the HR cells (Hückelhoven and Kogel, 1998;
Hückelhoven et al., 2000). These studies suggest that ROS play a
complex role in the plant–biotrophic fungal interactions, not only
in early cell wall-associated defense and in late defense signaling
but also in the cell-death suppression.

In this study, we screen ∼100 Bgh CSEPs through
agroinfiltration inNicotiana benthamiana and identify CSEP0027
triggering cell death. We show that CSEP0027 promotes fungal
virulence in barley infection. We further identify CSEP0027
interactors by yeast two-hybrid (Y2H) screening and barley
HvCAT1 is shown to interact with CSEP0027 in yeast, in vitro
and in vivo. Coexpression of CSEP0027 and HvCAT1 in barley
cells induces the nuclear accumulation of HvCAT1 that is
normally localized to the peroxisome. The functional analyses
indicate that HvCAT1 is involved in barley immunity against
Bgh. We propose CSEP0027 target barley HvCAT1 to regulate
host immunity and promote fungal virulence in barley infection.

RESULTS

CSEP0027 Specifically Induces Cell
Death in N. benthamiana
The Bgh genome encodes several hundreds of potential effectors,
and ∼491 effector-like proteins were initially identified to be
CSEPs (Spanu et al., 2010; Pedersen et al., 2012). We selected
a hundred of these CSEP genes for further characterization
based on their expression levels and abundance in haustoria
(Godfrey et al., 2010; Pedersen et al., 2012). The cDNA sequences
of 101 CSEPs from 34 families were amplified with specific
primers using RNA samples derived from barley leaf materials
infected with the compatible isolate BghA6 (Supplementary
Table 1). All CSEP cDNA sequences excluding the predicted
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signal peptide (1SP) were subcloned into vector pGR107 for
Agrobacterium tumefaciens-mediated transient expression in
N. benthamiana (Wang et al., 2011). We identified several
CSEPs suppressing cell death in plants (Li et al., 2021), but
much fewer CSEPs inducing cell death. As shown in Figure 1A,
CSEP0027 is one of the CSEPs inducing clear water-soaked-like
cell death phenotype in N. benthamiana, as compared to GFP
alone, which serves as a negative control. The AVRa13 effector
and its cognate receptor MLA13 were also coexpressed and
triggered cell death in N. benthamiana (Lu et al., 2016), which
severed as a positive and technique control here (Supplementary
Figure 1). Trypan blue staining confirmed the localized cell death
and immunoblotting verified the expression of the HA-tagged
fusion proteins (Figure 1A), and DAB (3, 3′-diaminobenzidine)
staining also revealed H2O2 accumulation in the infiltrated area
(Supplementary Figure 2).

The CSEP0027, CSEP0028, and CSEP0340 are the three
members from the same Bgh CSEP family 41 (Pedersen
et al., 2012), in addition, BgtE-10117 and BgtE-20000 are the
two potential Bgt homologs being identified as highly related
sequences to CSEP0027 (Supplementary Figure 3A) (Praz
et al., 2017). All these five CSEPs harbor a predicted SP, a
Y/FxC motif, and a conserved C-terminal cysteine, with some
conserved residues in the middle (Figure 1C and Supplementary
Figure 3A). We tested if any of the other four CSEPs trigger
cell death, unexpectedly none of them induced cell death in
N. benthamiana (Figure 1B and Supplementary Figure 3B).
CSEP0027, thus represents a unique Bgh effector protein to
induce cell death in N. benthamiana.

CSEP0027 Is a Secreted Protein
To validate the secretory function of the CSEP0027 signal
peptide, we used a yeast secretion assay based on invertase
secretion and yeast growth on sucrose or raffinose media (Lee
et al., 2006; Oh et al., 2009). The predicted SPs were fused in
frame to the mature sequence of yeast invertase in the vector
pSUC2 and expressed in the invertase mutant yeast strain YTK12
that otherwise cannot grow on YPRAA medium (Gu et al., 2011).
CSEP0027-SP derived construct enabled transformed yeast cells
to grow on YPRAA plate (with raffinose instead of sucrose
as the carbon source), and so did the PsAvr1b-SP from the
oomycete Avr1b effector as a positive control (Figure 2, middle
panel). The first 25 amino acids of Mg87, a Magnaporthe grisea
cytoplasmic protein as a negative control, did not enable yeast
to grow (Figure 2). In addition, the secretion of the invertase
was confirmed by the conversion of 2, 3, 5-triphenyltetrazolium
chloride (TTC) to the insoluble red-colored triphenylformazan
(Figure 2, bottom panel). These results suggest that CSEP0027 is
a secreted protein carrying a functional SP.

CSEP0027 Contributes to Bgh Virulence
To investigate the function of CSEP0027 in fungal virulence, we
first overexpressed CSEP0027 in barley epidermal cells through
single-cell transient gene expression followed by BghA6 infection
in a compatible interaction (Bai et al., 2012). The expression of
mature CSEP0027 (CSEP00271SP) in barley cells led to markedly
increased haustorial formation rate (i.e., haustorium index) to

∼68%, as compared to ∼52% in the empty vector control (EV)
(Figure 3A). By contrast, silencing CSEP0027 through HIGS
significantly decreased haustorium formation rate by ∼40%,
relative to the EV control (Figure 3B). Similarly, the silencing of
CSEP0105, an effector gene used as a positive control (Nowara
et al., 2010; Ahmed et al., 2015), led to a stronger effect on the
reduction of haustorium index by ∼60%, also relative to the EV
(Figure 3B). These data indicate that CSEP0027 contributes to
Bgh virulence.

The expression of many predicted or functionally confirmed
CSEP genes is induced during barley infection (Godfrey et al.,
2009; Spanu et al., 2010; Pedersen et al., 2012; Hacquard et al.,
2013; Schmidt et al., 2014). To further analyze the expression
pattern of CSEP0027, we conducted a time course experiment
(Figure 3C). The transcript level ofCSEP0027 remained low from
0 to12 hpi and was markedly induced at 24 and 48 hpi in both
the haustorial containing samples (H) and epiphytic structures
(E), with highly enriched transcripts in H sample but not in E
sample at 48 hpi (Figure 3C). This expression pattern supports
CSEP0027 functioning during barley infection and likely at the
post-penetration stages.

CSEP0027 Interacts With Barley
Catalase HvCAT1
To identify host targets of CSEP0027, we performed a Y2H
screening of a cDNA prey library derived from Bgh infected
barley leaves. Using a bait of CSEP0027 without the SP, we
identified two independent clones harboring the fragments of
a barley catalase gene, HvCAT1. The targeted Y2H analysis
showed that CSEP0027 interacted with full-length HvCAT1
but not with HvCAT2 (Figure 4A), another reported barley
catalase that shares more than 70% amino acid identity with
HvCAT1 (Supplementary Figure 4; Skadsen et al., 1995).
Further interaction analysis indicated thatHvCAT1 interacts with
CSEP0027 likely through the N-terminal catalase domain but not
the C-terminal domain (Supplementary Figure 5).

The interaction between CSEP0027 and HvCAT1 was
further verified by in vitro and in vivo assays (Figures 4B–
D). For glutathione S-transferase (GST) pull-down assay,
GST-CSEP0027 fusion or GST alone derived from E. coli
was incubated with HvCAT1-HA containing crude lysate of
N. benthamiana. An immunoblotting analysis indicated that
GST-CSEP0027 pulled down HvCAT1-HA whereas GST did
not (Figure 4B). In luciferase complementation imaging (LCI)
assays, CSEP0027-nLuc interacted with cLuc-HvCAT1, thus
generated luminescence signal, the reciprocal pair HvCAT1-
nLuc and cLuc-CSEP0027 also generated strong luminescence
signal in N. benthamiana (Figures 2, 4), while two pairs
of negative control did not produce any detectable signal
(Figures 1, 3, 4C). In addition, the HvCAT2-nLuc and cLuc-
CSEP0027 did not generate detectable signal (Figures 4C,
5). In co-immunoprecipitation (co-IP) analysis, the HvCAT1-
Flag fusion did immuno-precipitate with CSEP0027-HA in
N. benthamiana, whereas GFP-Flag did not (Figure 4D).

Together, these results indicate that CSEP0027 specifically
interacts with barley HvCAT1.
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FIGURE 1 | CSEP0027 triggers cell death in Nicotiana benthamiana. (A) Expression of CSEP0027 triggers cell death in N. benthamiana. Agrobacterium tumefaciens
was used to transiently express CSEP0027 or GFP in N. benthamiana leaves. The picture was taken at 5 dpi, and cell death was visualized by trypan blue staining.
The numbers in each circled area indicate numbers of cell death in total number of leaf areas infiltrated with the construct. Total protein extract was obtained from
N. benthamiana leaves at 60 hpi and protein expressions were confirmed by immunoblotting using anti-HA antibody. Ponceau staining was used to show equal
loading. (B) CSEP0028 and CSEP0340 do not trigger cell death in N. benthamiana. The experimental procedures are the same as in (A). The stars in the Western
blots in panels (A,B) indicate non-specific signals. (C) Sequence alignment of CSEP0027, CSEP0028, and CSEP0340, performed using the DNAMAN software. The
signal peptides are highlighted in red box, Y/FxC motif in blue box, and C-terminal conserved cysteine in green box.

FIGURE 2 | CSEP0027 is a secreted protein. Yeast invertase secretion assay was used to confirm the function of the predicted SP of CSEP0027. A construct
expressing a fusion of SP sequence of CSEP0027 and a yeast invertase was transformed into the yeast strain YTK12 and tested in the assay, with the N-terminal
sequence of Magnaporthe oryzae Mg87 protein and SP sequence of Phytophthora sojae PsAvr1b used as negative and positive controls, respectively. CMD-W
plates were used to select yeast strain YTK12 carrying the pSUC2 vector. YPRAA media were used to indicate invertase secretion. An enzymatic activity test based
on the reduction of 2, 3, 5-triphenyltetrazolium chloride (TTC) to red-colored formazan was also used to confirm invertase secretion.
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FIGURE 3 | CSEP0027 contributes to Bgh virulence. (A) Overexpression of
CSEP0027 promotes Bgh haustorial formation rate. One-week-old barley
leaves (P01) were bombarded with EV or CSEP0027 construct plus GUS
reporter construct, and inoculated with compatible isolate BghA6. Bgh
haustorium was microscopically scored, and haustorium index (HI%) was
calculated as the number of cells containing haustorium in glucuronidase
(GUS) expression cells divided by the total number of GUS expression cells
with germinated Bgh spores and an attached appressorium. Data show the
average values and SD are from three representative experiments.
(B) Silencing of CSEP0027 by host induced gene silencing (HIGS) reduces
Bgh haustorial formation rate. One-week-old barley leaves (P01) were
bombarded with indicated construct plus GUS reporter construct. The
bombarded leaves were inoculated with the virulent isolate BghA6 at 48 h
after bombardment. Bgh haustorium index was microscopically scored at 48
hpi, and the relative Bgh haustorium index in silencing experiment was
standardized to EV (pIKP007) control, which was arbitrarily set to 100%. Data
show the average values and SD from three representative replicates.
RNAi-CSEP0105 is used as a positive control. *p < 0.05 and **p < 0.01;
show significant difference by Student’s t test. (C) Expression pattern of
CSEP0027 at early stages of Bgh infection. The barley P01 was inoculated
with the virulent isolate BghA6. Total RNA was isolated from Bgh-infected
barley leaves at 0, 3, 6, 12, 24, and 48 hpi for quantitative real-time PCR
(qRT-PCR) analysis. H denotes leaf samples containing haustorium, and E
denotes epiphytic Bgh tissues removed from the leaf surface. Relative
expression was determined by comparing with time point 0 hpi, arbitrarily set
to 1. Bgh glyceraldehyde 3-phosphate dehydrogenase was used as the
reference gene. Error bars indicate SD of three replicates. The experiments
were repeated two times with similar results.

CSEP0027 Induces the Nuclear
Localization of HvCAT1
Since CSEP0027 interacts with HvCAT1, we examined the
subcellular localization of CSEP0027 and catalases in barley cells.
The plasmids expressing CSEP00271SP-CFP (Cyan Fluorescent
Protein), YFP (Yellow Fluorescent Protein)-HvCAT1, and YFP-
HvCAT2 fusions were constructed and delivered into barley

cells by particle bombardment. Confocal imaging indicated that
CSEP00271SP-CFP was localized in both cytosol and nucleus,
similar to YFP alone (Figure 5, the top panels), while YFP-
HvCAT1 was localized in many small dots in the cytoplasm,
totally different from that of CFP alone (Figure 5, 2nd panels).
Since many plant catalases are localized to peroxisomes, we tested
the localization of YFP-HvCAT1 in peroxisomes by coexpression
of YFP-HvCAT1 with a peroxisomal marker, PST1-RFP (Red
Fluorescent Protein). As expected, YFP-HvCAT1 was almost fully
co-localized with PST1-RFP in many cytoplasmic foci in the
same cells (Figure 5, 3rd panels). Interestingly, YFP-HvCAT2
was also co-localized with PST1-RFP in most of the cytoplasmic
dots (Figure 5, 4th panels). Next, we tested the localization
of CSEP00271SP-CFP and YFP-HvCAT1 in barley cells by
coexpression analysis. Remarkably, confocal imaging indicated
that YFP-HvCAT1 was detected not only in the peroxisomal dots
but also in the nucleus, and CSEP00271SP-CFP appeared to co-
localize with YFP-HvCAT1 in some of the cytoplasmic dots but
fully overlapped with YFP-HvCAT1 in the nucleus (Figure 5, 5th
panels). Interestingly, when YFP-HvCAT2 was coexpressed with
CSEP00271SP-CFP in barley cells, YFP-HvCAT2 remained to
localize in the peroxisomal dots and some dots appeared to
overlap with CSEP00271SP-CFP in the cytoplasm (Figure 5,
the bottom panels). These localization analyses suggest that
HvCAT1 and CSEP0027 have overlapped subcellular localization
in the cytosol and CSEP0027 specifically induces the nuclear
localization of HvCAT1.

HvCAT1 Is Involved in Barley Immunity
The plant catalases play an important role in biotic stress
responses by regulating ROS signaling and homeostasis (Du
et al., 2008; Chaouch et al., 2010; Sharma and Ahmad, 2014).
To evaluate the function of HvCAT1 in barley immunity,
we knocked down the HvCAT1 expression through barley
stripe mosaic virus vector (BSMV)-mediated virus-induced gene
silencing (VIGS) approach followed by the inoculation of a
compatible Bgh isolate. An antisense fragment of HvCAT1 used
efficiently silenced HvCAT1 but not HvCAT2 (Figure 6A and
Supplementary Figure 3). Scoring of Bghmicrocolony formation
rate (i.e., microcolony index, MI%) in barley leaf cells at 60–72
hpi indicated that the relative MI% increased by ∼30% in
the HvCAT1-silenced leaves as compared to the EV control
(Figure 6B). Staining of the Bgh infected barley leaves showed
more microcolonies and better hyphae growth on the leaf surface
of HvCAT1-silenced barley, as compared with the EV control
(Figure 6C). Furthermore, transiently-induced gene silencing
(TIGS) technique was used to silence HvCAT1 in barley leaf
epidermal cells (Himmelbach et al., 2007; Bai et al., 2012).
The RNAi-HvCAT1 construct was delivered into the barley cells
by particle bombardment followed by Bgh spores inoculation.
Relative haustorium formation rate (i.e., relative haustorium
index, HI%) scored at 48 hpi also significantly increased by∼50%
as compared with the EV control (Figure 6D). By contrast, TIGS-
silencing of the barley Mlo, a gene required for full susceptibility
to Bgh (Kusch and Panstruga, 2017), drastically reduced Bgh HI%
in barley cells by∼80% (Figure 6D). Together, these data indicate
that HvCAT1 is involved in barley immunity against Bgh.
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FIGURE 4 | CSEP0027 specifically interacts with barley catalase HvCAT1. (A) Yeast two-hybrid (Y2H) assay shows CSEP0027-HvCAT1 interaction. Yeast was
transformed with indicated bait and prey constructs. Serial dilutions from cell suspension of yeast expressing bait and prey constructs are shown. Growth on
SD-Trp-Leu plates indicates yeast clones carrying the bait and prey constructs. The interactions were detected as yeast growth on SD-Trp-Leu-Ade-His plates.
(B) Glutathione S-transferase (GST) pull-down assay confirms CSEP0027-HvCAT1 interaction. HvCAT1-HA was extracted from N. benthamiana leaves at 2 dpi,
while GST-CSEP0027 and GST alone were purified from E. coli. GST pull-down fractions were detected by immunoblotting using anti-HA antibody and by Ponceau
staining. (C) LCI assay confirms CSEP0027-HvCAT1 interaction. The N- or C- terminal fragment of LUC (nLuc or cLuc) was fused with indicated proteins. Indicated
fusion pairs were coexpressed in N. benthamiana by agroinfiltration. The luminescent signal was collected at 48 hpi with a charge-coupled device (CCD) imaging
apparatus. (D) Co-immunoprecipiation (Co-IP) analysis validates CSEP0027 and HvCAT1 interaction. HvCAT1-Flag or GFP-Flag was transiently coexpressed with
CSEP0027-HA in N. benthamiana. The crude proteins were extracted at 48 hpi and subjected to Co-IP analysis.

DISCUSSION

The genomes of many filamentous plant pathogens interacting
biotrophically with plants encode hundreds of predicted
effectors, and yet loss of function of some individual effectors
can have measurable effect on fungal virulence. B. graminis fungi
also encode several hundreds of CSEPs, and it is expected that
many of the CSEPs contribute to the obligate biotrophy life style
of the B. graminis fungi, for example, co-survival with the host
cells or tissues. It is thus of particular interests to understand the
functions and mechanisms of CSEPs in regulating host immune
responses and cell-death related processes. Here, we identify
Bgh CSEP0027 that triggers cell death when heterologously
expressed in N. benthamiana. Importantly, CSEP0027 promotes
fungal virulence in barley and interacts with HvCAT1 that is
involved in host immunity, most likely, in the maintenance of
ROS homeostasis in host cells. In this study, the primary aim
in ectopically expressing the Bgh CSEPs in N. benthamiana is
to identify those who may have cell-death related functions,
either suppressing or inducing cell death, hoping to better
understand the biotrophic lifestyle of the Bgh fungus. Indeed,
we have predominately identified CSEPs suppressing cell death
in N. benthamiana (Li et al., 2021), but unexpectedly, CSEP0027
triggering cell death as shown in the present study. We speculate

that this cell death activity of CSEP0027 and related pathway
may not be fully conserved in dicots and monocots. For example,
the co-receptors BAK1 and SOBIR1 are important immune
signaling components required for PTI and cell death in dicots
(Liu et al., 2016; van der Burgh et al., 2019), while whether the
co-receptors are also required for CSEP0027-induced cell death
in N. benthamiana is not yet resolved here, and importantly,
whether the signaling pathway for CSEP0027 induced cell
death is shared between N. benthamiana and barley awaits for
further investigation. Nevertheless, this study findings suggest
that B. graminis fungi may utilize the CSEPs to target host
catalase, a likely component of host ROS networks, presumably
to manipulate the ROS homeostasis and signaling for the benefit
of the pathogens.

CSEP0027 Functioning in Fungal
Virulence
The well-established HIGS technique has been used for
identifying Bgh CSEPs with functions in promoting fungal
virulence (Nowara et al., 2010). So far, a few dozens of Bgh CSEPs
have been shown to contribute to Bgh pathogenicity (Nowara
et al., 2010; Zhang et al., 2012, 2019; Pliego et al., 2013; Aguilar
et al., 2015; Ahmed et al., 2015, 2016; Pennington et al., 2019;
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FIGURE 5 | CSEP0027 affects the subcellular localization of HvCAT1. One-week-old barley leaves (P01) were bombarded with combination of indicated constructs
coexpressing YFP-HvCAT1/PTS1-RFP, YFP-HvCAT2/PTS1-RFP, YFP-HvCAT1/CSEP0027-CFP, or YFP-HvCAT2/CSEP0027-CFP, respectively. Photographs were
taken at 2 days after bombardment using a Nikon confocal laser scanning microscope. Bar = 50 µm.

Li et al., 2021). In the present study, HIGS of CSEP0027 led to the
reduction of HI% by ∼37% in the infected barley cells. Together
with the transient overexpression results, our data support the
role of CSEP0027 in promoting fungal virulence during barley
infection. Our data also suggest that CSEP0027 is most likely a
cytoplasmic effector and HvCAT1 is one of its virulence targets.
By affecting the subcellular localization of HvCAT1, CSEP0027
may facilitate Bgh infection of host barley.

Bgh CSEP genes are usually induced and/or differentially
expressed during the infection of barley. Some CSEP genes are
induced at early stages of barley infection, for example, from ∼6
to 12 hpi, whereas others are induced at later stages from 24
to 48 hpi (Godfrey et al., 2009; Zhang et al., 2012; Hackenberg
et al., 2013; Schmidt et al., 2014; Aguilar et al., 2015; Ahmed
et al., 2015, 2016). CSEP0027 is induced from 24 to 48 hpi and
is enriched in fungal haustoria (Figure 3B). We thus believe
CSEP0027 functions at later stages of infection, most likely during
and after haustorial formation.

Regulation of ROS Signaling and
Homeostasis
Reactive oxygen species, as major regulatory and signaling
molecules, can be generated in different subcellular
compartments of plant cells and are regulated by an array
of antioxidant systems (Waszczak et al., 2018). During plant–
fungus interaction, one of the early events in plant response to
fungal penetration is an oxidative burst in the apoplastic space,
generated mainly by the phagocyte respiratory burst oxidase
homologous nicotinamide adenine dinucleotide phosphate
(NADPH) oxidases, cell wall peroxidases, and oxalate oxidases
(Hückelhoven, 2007; Lehmann et al., 2015). In barley/wheat and

B. graminis interactions, H2O2 and some other ROS molecules
are generated in plant cells during the early stages of fungal
penetration, participating in the cell wall lignification and
apposition (Zhang et al., 1995; Thordal-Christensen et al.,
1997; Hückelhoven et al., 1999; Hückelhoven et al., 2001,
2003; Hückelhoven, 2007; Schweizer, 2008; Li et al., 2015).
Interestingly, Bgh fungus also secrets an extracellular catalase
that may function in H2O2 scavenging in the apoplastic space
of host cells (Zhang et al., 2004). The catalases have been
known as a class of ROS scavenging enzymes catalyzing the
conversion of H2O2 into H2O and O2, thereby regulating the
homeostasis of the intracellular ROS level (Mhamdi et al., 2010;
Sharma and Ahmad, 2014). ROS homeostasis is maintained in
a very complex manner, involving different ROS-scavenging
enzymes, such as catalases, ascorbate peroxidases, glutathione,
superoxide dismutases (Mittler et al., 2004; Torres et al., 2006).
The peroxisomal ROS levels are closely regulated by CAT
activity, and in Arabidopsis, the primary peroxisomal H2O2
scavenger is CAT2 (Mhamdi et al., 2012). Here, we show that
barley HvCAT1 and HvCAT2 are also peroxisomal catalases. It
is unclear whether and when these two HvCAT1 and HvCAT2
are involved in the H2O2 decomposition and signaling in
peroxisomes during barley interaction with Bgh fungus. Since
CSEP0027 expression is induced and most likely functions post
haustorium formation, we speculate that HvCAT1 may play a
role in regulating ROS homeostasis at later stages, e.g., during
and post haustorium formation. Our preliminary data suggest
that CSEP0027 triggered-cell death involves H2O2 accumulation
in N. benthamiana, however, it is not clear if the expression
CSEP0027 induced disturbance of ROS homeostasis thus cell
death, or vice versa. On the other hand, it is also not yet clear
if CSEP0027 has activity in cell death during barley interaction

Frontiers in Plant Science | www.frontiersin.org 7 September 2021 | Volume 12 | Article 733237

https://www.frontiersin.org/journals/plant-science
https://www.frontiersin.org/
https://www.frontiersin.org/journals/plant-science#articles


fpls-12-733237 September 3, 2021 Time: 12:10 # 8

Yuan et al. Bgh CSEP0027 Targets Barley CAT1

FIGURE 6 | HvCAT1 is involved in barley immunity. (A) Barley stripe mosaic
virus (BSMV)-HvCAT1 specifically silenced the expression of HvCAT1 but not
HvCAT2. HvCAT1 (left) and HvCAT2 (right) gene expression levels were
determined by qRT-PCR. (B) BSMV-VIGS of HvCAT1 affected barley immunity
to Bgh. Bgh microcolony index was scored upon silencing of HvCAT1 in
barley leaves by using BSMV-HvCAT1 after inoculation with a compatible
isolate BghA6, and standardized to the BSMV-EV control that was reset to
100%. At least 1,000 interacting sites were microscopically evaluated in one
experiment. (C) Representative pictures of Bgh microcolony and hyphae
growth on barley leaf surface in BMSV-VIGS assays. Bar = 200 µm.
(D) Transiently-induced gene silencing (TIGS) silencing of HvCAT1 affected
barley immunity to Bgh. Indicated RNAi construct was bombarded into barley
epidermal cells, and Bgh haustorium index was scored and standardized to
that of EV control. RNAi-Mlo construct was used as a control for silencing of
Mlo that caused dramatic reduction of HI%. The data were presented as
average ± SD from three representative replicates. *p < 0.05; **p < 0.01,
show significant difference by Student’s t test.

with Bgh fungus. Undoubtedly, more data are needed for fully
understanding the role of CSEP0027 in interacting with barley
catalases and in regulating ROS homeostasis during barley
interaction with Bgh fungus, particularly, the cell death signaling
pathway that might be a primary target of the biotrophic
fungal pathogen.

The current data are in line with the notion that ROS,
in particular cellular H2O2, may play an important role in
the barley interactions with the B. graminis fungi. It is not
unexpected that peroxisomal ROS signaling/homeostasis and
ROS signaling cross-talk among the organelles are integral and
important parts of barley defense responses to the biotrophic Bgh
fungal pathogen.

The Regulation of Plant Catalases
Apart from being regulated at transcriptional level, plant catalases
are also regulated at post-translational level (Mhamdi et al.,
2010). A variety of plant proteins have been reported to affect
the activity and stability of plant catalases (Yang and Poovaiah,
2002; Fukamatsu et al., 2003; Verslues et al., 2007; Li et al., 2013,
2015; Zou et al., 2015; Kneeshaw et al., 2017). In addition, some
pathogen secreted proteins are also identified to interact with the
plant catalases and affect their activity, stability, and subcellular
localization (Inaba et al., 2011; Mathioudakis et al., 2013; Zhang
et al., 2015; Murota et al., 2017; Sun et al., 2017). In line with
these examples, the current study data provide new evidence that
biotrophic fungal pathogen also secretes an effector to target and
affect host catalase subcellular localization in plants.

The plant catalases are mostly peroxisomal proteins and
imported into the peroxisome matrix via the peroxisomal
targeting signal 1 (PTS1) pathway, i.e., relying on the C-terminal
tripeptide PTS1 signal to interact with a peroxisomal receptor
and translocate into the peroxisome (Gatto et al., 2000; Lanyon-
Hogg et al., 2010). Barley HvCAT1 and HvCAT2, each contains a
typical PTS1 signal, PNM or PSM, respectively (Supplementary
Figure 4; Mhamdi et al., 2012), and both are localized to the
peroxisomes of barley cells in a transient expression analysis
(Figure 5). Although different mechanisms may account for
the specific re-localization of HvCAT1 upon co-expression with
CSEP0027, one scenario can be that CSEP0027 interacts with
HvCAT1 but not HvCAT2 in the cytoplasm thus interferes with
the interaction of PTS1 signal of HvCAT1 with the peroxisomal
receptor. However, how HvCAT1 is specifically regulated by
CSEP0027 is not yet clear. Further investigation of the subcellular
localization, trafficking, and post-translational modification of
HvCAT1 will help to better understand the functions of the
catalase and the virulence strategies of the biotrophic fungus.

MATERIALS AND METHODS

Plant and Fungal Materials
Barley (Hordeum vulgare L.) cultivars (cv) in this study
include Golden Promise and “P01” (isogenic line from cv
Pallas containing Mla1). Barley seedlings were grown in a
growth chamber at 20◦C with 16 h light and 8 h dark cycles.
N. benthamiana plants were grown in greenhouse at 24 ± 1◦C
with a long-day cycle (16 h light/8 h dark).

The barley powdery mildew (B. graminis f.sp. hordei [Bgh])
isolates A6 (AvrMla6, AvrMla10, and virMla1) and K1 (AvrMla1,
virMla6, and virMla10) used in this study were maintained
on Golden Promise.

Cloning and Plasmid Construction for
CSEP Genes
Total RNA was extracted from P01 barley leaves inoculated with
Bgh isolate A6 using Trizol solution (Invitrogen; 15596-026) and
the cDNA was synthesized using reverse transcriptase M-MLV
(Invitrogen; C28025). Candidate CSEP sequences excluding the
signal peptide (1SP) were amplified using the specific primer
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pairs (Supplementary Table 2) and subcloned into pGR107
vector through restriction enzyme digestion and ligation for
agroinfiltration in N. benthamiana (Wang et al., 2011), all
candidates confirmed by sequencing.

Quantitative Real-Time Polymerase
Chain Reaction (qRT-PCR)
The analysis of CSEP0027 expression profile was performed as
previously described (Ahmed et al., 2015). In brief, total RNA
was isolated from P01 leaves at 0, 3, 6, 12, 24, and 48 hpi
inoculated with virulent isolate A6. The epiphytic Bgh tissues
and the remaining leaf tissues containing Bgh haustoria were
separately collected at 24 and 48 hpi. The epiphytic tissues were
collected from leaf surfaces by dipping the Bgh-infected leaves
into 10% cellulose acetate according to previously described
(Ahmed et al., 2015). A quantitative real-time PCR (qRT-PCR)
was performed on Applied Biosystems step-one real time PCR
system with indicated primers (Supplementary Table 2). Bgh
glyceraldehyde 3-phosphate dehydrogenase was used as the
reference gene. The statistical significance was evaluated by
Student’s t test. The assays were repeated two times with three
replicates each time.

Yeast Invertase Secretion Assay
The yeast invertase secretion was previously described (Gu et al.,
2011). Briefly, the predicted SP sequence of CSEP0027 and
Avr1b, or the first 25 amino acids of Magnaporthe oryzae Mg87
were fused in frame with the yeast invertase lacking its own
SP in the vector pSUC2. The pSUC2-derived constructs were
transformed into the invertase secretion-deficient yeast strain
YTK12, and yeasts were then placed on CMD-W medium (0.67%
yeast N base without amino acids, 0.075% tryptophan dropout
supplement, 2% sucrose, 0.1% glucose, and 2% agar). The positive
yeast clones were transferred onto YPRAA medium (1% yeast
extract, 2% peptone, 2% raffinose, 2 µg L−1 antimycin, and
2% agar) for growth testing. Invertase activity was also detected
by monitoring conversion of TTC to the insoluble red-colored
triphenylformazan.

Single-Cell Transient Gene Expression
and Silencing Assay
Single-cell transient gene expression assay was carried out as
previously described (Bai et al., 2012). Briefly, a construct
expressing a gene-of-interest was bombarded in barley leaf
epidermal cells together with a vector expressing ß-glucuronidase
(GUS) reporter. The leaves were inoculated with a compatible
Bgh isolate at 4 h after the bombardment and then stained
with GUS staining solution at 48 hpi. The fungal haustorium
index was scored as previously described in the barley leaves
after inoculated with Bgh spores. The statistical significance
was evaluated by Student’s t test with data from three replicate
experiments that have been repeated for three times.

For transient gene silencing assay, the specific gene fragments
were cloned into pIPK007 to form a hairpin structure and
expression driven by 35S promoter as previously described
(Himmelbach et al., 2007). The remaining steps were the same

as the transient gene expression assay, except that leaves were
inoculated with Bgh isolates at 48 h after bombardment.

Y2H Analysis
Yeast two-hybrid screening was performed according to the
protocols of the manufacturer (Clontech; PT4048-1). In total,
5 × 107 transformants were screened. In brief, yeast strain
Y2HGold expressing pGBKT7-CSEP0027 (1SP) was used for
mating with yeast strain Y187 harboring a cDNA prey library
derived from Bgh-infected barley leaves and placed onto SD-Leu-
Trp-His-Ade plates at 30◦C. After 35 days, the resistant clones
were selected for further verification.

For Y2H assay, the corresponding bait and prey vectors were
co-transformed into yeast strain Y2HGold and plated onto SD-
Leu-Trp plates. The positive interactions were detected by placing
the strains onto SD-Leu-Trp-His-Ade plates at 30◦C.

Luciferase Complementation Imaging
Assays
Luciferase complementation imaging assays were performed
according to previously described by Chen et al. (2008).
Briefly, the coding region of CSEP0027 (1SP) and HvCAT1
were subcloned into vectors pCAMBIA-Cluc or pCAMBIA-
Nluc, respectively, to generate constructs for expressing
Cluc-CSEP0027 and Cluc-HvCAT1, or CSEP0027-Nluc
and HvCAT1-Nluc. The NLuc-/CLuc-derivative constructs
were transformed into the A. tumefaciens strain GV3101.
The overnight agrobacteria cultures were resuspended
with infiltration buffer (2% sucrose, 0.5% MS, 100 µM
acetosyringone, and 10 mM MES) into OD600 = 1.0. Equal
volume of agrobacteria resuspension carrying the nLUC and
cLUC derivative constructs were mixed and co-infiltrated into
the N. benthamiana leaves. The infiltrated area was examined for
the luciferase activity 40–50 h post agroinfiltration with a cooled
charge-coupled device (CCD) imaging apparatus. For each
pair of constructs, at least 10 leaves were co-infiltrated in one
experiment, and three independent replicates were conducted.

Glutathione S-Transferase(GST)
Pull-Down and Co-immunoprecipitation
(Co-IP) Assays
Pull-down assays were performed according to previously
described with some modifications (Chang et al., 2013). Briefly,
500 ng of GST-CSEP0027 and GST proteins purified from
Escherichia coli were incubated with 150 µl of Glutathione
Sepharose 4B beads for 1 h at 4◦C, then, beads were sealed
with 100 µg BSA for 1 h and incubated with 1.0 g crude
protein extracted from N. benthamiana leaves expressing
HvCAT1-HA. After incubation for 2 h, the beads were washed
five times with RB buffer, then resuspended with 30 µl
of 2 × Laemmli buffer, and loaded for sodium dodecyl-
sulfate polyacrylamide gel electrophoresis (SDS-PAGE) and
immunoblotting with anti-HA antibody. GST-CSEP0027 and
GST proteins were detected by Ponceau staining.
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For Co-IP assay, the total proteins extracted from
N. benthamiana coexpressing GFP-Flag/CSEP0027-HA or
HvCAT1-Flag/CSEP0027-HA were incubated with anti-FLAG
antibody-coupled beads for 2 h, then washed five times with
extraction buffer, proteins were further eluted from the beads
using 0.5 mg ml−1 3× Flag peptide and used for immunoblotting
with anti-HA antibody, or anti-Flag antibody.

Confocal Laser Scanning Microscopy
and Localization Analysis
For subcellular localization analysis, the coding sequences of
CSEP00271SP, HvCAT1 and HvCAT2 were subcloned into
vectors pUBI-mYFP-GW and pUBI-GW-CFP to generate pUBI-
CSEP0027 1SP-CFP, pUBI-mYFP-HvCAT1, and pUBI-mYFP-
HvCAT2 constructs. A pair of constructs was delivered into
barley leaf epidermal cells by the particle bombardment for
coexpression of the indicated fusion proteins, and confocal
imaging was conducted at 48 h post-particle delivery. Laser
illumination was set at 405 nm for CFP, 488 nm for YFP, and
561 nm for RFP using a Nikon confocal microscope. This assay
was repeated three independent times and at least 20 cells were
examined for each coexpression.

Barley Stripe Mosaic Virus
(BSMV)-Mediated Gene Silencing in
Barley
Barley stripe mosaic virus-mediated gene silencing in barley
was performed as previously described (Yuan et al., 2011).
Briefly, an antisense fragment of HvCAT1 was cloned into the
pCaBS-γbLIC vector to create pCaBS-γb-HvCAT1 construct with
indicated primers (Supplementary Table 2). pCaBS-α, pCaBS-
β, and pCaBS-γb-HvCAT1 constructs were transformed into
A. tumefaciens strain EHA105, respectively. The agrobacteria
were resuspended in infiltration buffer to OD600 = 1.0 and
mixed at 1:1:1 ratio to infiltrate N. benthamiana. After 12 days,
N. benthamiana leaf sap was extracted to inoculate 10-day-old
barley leaves. After 2–3 weeks of inoculation, the newly emerged
leaves with virus caused symptoms were used for Bgh infection,
and microcolony scoring was done at ∼60–72 hpi. For each
treatment, at least four barley leaves were chosen for analysis,
and three independent replicates were conducted. The statistical
significance was evaluated by Student’s t test.

Agroinfiltration Mediated Transient Gene
Expression in N. benthamiana
Agrobacterium tumefaciens-mediated transient gene expression
in N. benthamiana assays were performed as described
previously (Wang et al., 2011). A. tumefaciens strain GV3101
was transformed with indicated constructs. Agrobacteria were
cultured overnight at 28◦C, at 200 rpm, then resuspended in
10 mM MgCl2 to a final OD600 = 0.5 and infiltrated into
4-week-old N. benthamiana leaves. The cell death symptoms
were photographed at 5 days post-infiltration. For trypan blue
staining, the leaves were boiled in a 1:1 mixture of ethanol and
staining solution for 5 min as described before (Bai et al., 2012).

The leaves were de-stained with chloral hydrate solution (2.5 g
ml−1) for 2 days.
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Supplementary Figure 1 | The MLA13/AVRa13 triggers cell death in
N. benthamiana. Expression of MLA13/AVRa13 and GFP in N. benthamiana. The
experimental procedure used here was the same as that in Figure 1A.

Supplementary Figure 2 | CSEP0027 induces H2O2 production in
N. benthamiana. DAB staining was performed at 2 days after infiltration to detect
H2O2 accumulation in the areas infiltrated with agrobacteria transformed with a
corresponding construct.

Supplementary Figure 3 | Bgt homologs of CSEP0027 do not trigger cell death
in N. benthamiana. (A) Protein sequence alignment of CSEP0027 and its Bgt
homologs. Alignment was performed using the DNAMAN software. The red box
indicates signal peptides, blue box indicates the Y/FxC motif, and green box
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indicates a C-terminal conserved cysteine. (B) Expression of CSEP0027 and its
Bgt homologs in N. benthamiana. The experimental procedure used here was the
same as that in Figure 1A.

Supplementary Figure 4 | Sequence alignment of amino acids of HvCAT1 and
HvCAT2.

Supplementary Figure 5 | CSEP0027 N-terminus interacts with HvCAT1 in
yeast. (A) Schematic diagram of HvCAT1 constructs, and HvCAT1-NT (1–401)

and HvCAT1-CT (402–492) used in the Y2H assay. Catalase core domain and
catalase-related immune responsive domain (catalase-rel) are indicated. (B) Y2H
analysis of the interaction between NT- or CT-fragments of HvCAT1 and
CSEP0027. Yeast was transformed with the indicated bait and prey constructs.
Serial dilutions from cell suspension of yeast expressing bait and prey constructs
are shown. Growth on SD-Leu-Trp plates indicates yeast clone carrying bait
and prey constructs. Interactions were detected on SD-Leu-Trp-His-
Ade plates.
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