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The accurate identification of apple leaf diseases is of great significance for controlling

the spread of diseases and ensuring the healthy and stable development of the

apple industry. In order to improve detection accuracy and efficiency, a deep learning

model, which is called the Coordination Attention EfficientNet (CA-ENet), is proposed to

identify different apple diseases. First, a coordinate attention block is integrated into the

EfficientNet-B4 network, which embedded the spatial location information of the feature

by channel attention to ensure that the model can learn both the channel and spatial

location information of important features. Then, a depth-wise separable convolution is

applied to the convolution module to reduce the number of parameters, and the h-swish

activation function is introduced to achieve the fast and easy to quantify the process.

Afterward, 5,170 images are collected in the field environment at the apple planting base

of the Northwest A&F University, while 3,000 images are acquired from the PlantVillage

public data set. Also, image augmentation techniques are used to generate an Apple Leaf

Disease Identification Data set (ALDID), which contains 81,700 images. The experimental

results show that the accuracy of the CA-ENet is 98.92% on the ALDID, and the average

F1-score reaches .988, which is better than those of common models such as the

ResNet-152, DenseNet-264, and ResNeXt-101. The generated test dataset is used to

test the anti-interference ability of the model. The results show that the proposed method

can achieve competitive performance on the apple disease identification task.

Keywords: apple disease, CA-ENet, attention mechanism, CA block, diseases identification

INTRODUCTION

The apple industry is one of the most important fruit industries in China. However, the frequent
occurrence of apple leaf diseases may seriously restrict the healthy and stable development of
the apple industry. At present, the diseases of a large number of industrialized apple orchards
mainly rely on human vision for recognition, which requires a high degree of reliance on disease
experts. The identification task is huge, especially since the visual inspection of fruit farmers or
experts is prone to misjudgment due to their subjective perception and visual fatigue, and it is
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difficult to meet the demand for high-precision identification for
intelligent orchards (Dutot et al., 2013). The problems previously
discussed will lead to a large lag in the tracking management
process of orchard diseases, which causes the improper use
of pesticides and reduces the quality of fruit. Therefore, the
accurate identification of diseases is of great significance to
improve the yield and quality of apples and to cultivate disease-
resistant varieties.

With the development of computer vision, machine learning
techniques have been widely used in the agricultural field in
recent years, and a series of approaches have been achieved in
crop disease identification (Aravind et al., 2018; Kour and Arora,
2019; Mohammadpoor et al., 2020). In recent years, the main
techniques, which are widely used in crop disease identification
include artificial neural network (ANN) (Sheikhan et al., 2012),
the K Nearest Neighbors (KNN) algorithm (Guettari et al., 2016),
random forests (RF) (Kodovsky et al., 2012), and so on. For
example, Wang et al. (2019) proposed a method for identifying
cucumber powdery mildew based on a visible spectrum by
extracting the spectral features and training a Support Vector
Machine (SVM) classifier to establish a classification model,
optimizing the radial basis kernel function, and the recognition
accuracy of the method reached 98.13%. In contrast, Prasad
et al. (2016) proposed a mobile client-server architecture for
leaf disease detection and diagnosis based on the combination
of a Gabor Wavelet Transform (GWT) and a Gray-Level Co-
occurrence Matrix (GLCM). The mobile terminal captures the
object image and then transmits it to the server after pre-
processing. The server then performs GWT-GLCM feature
extraction and classification based on the KNN algorithm. The
system can monitor farmland information through the mobile
terminal at any stage. Although the previously discussed studies
achieved outstanding performances in disease identification
tasks, the low-level feature representations extracted from
them are limited to intuitive shallow features, such as the
colors, textures, and shapes of the images. Thus, it is difficult
to achieve competitive performance on apple leaf disease
identification tasks.

Compared with machine learning algorithms that require
cumbersome image pre-processing and feature extraction (Kulin
et al., 2018; Zhang et al., 2018b), convolutional neural
networks (CNNs) can directly learn robust high-level feature
representations of apple diseases from images. The extracted
high-level feature representation is richer and better compared
with the method of manually extracting features; therefore,
CNNs have achieved excellent results in multiple visual tasks
(Ren et al., 2017; Liu et al., 2018; Bi et al., 2020). In recent
years, with the continuous emergence of advanced deep learning
architectures such as the ResNet (He et al., 2016), ResNeXt
(Xie et al., 2017), and DenseNet (Huang et al., 2017), the
recognition accuracy and speed are constantly being refreshed
on the public dataset, ImageNet. In order to solve the problem
of the mobile deployment of the model, scholars have proposed
various lightweight architectures, such as Xception (Chollet,
2017), MobileNet (Howard et al., 2017; Sandler et al., 2018),
ShuffleNet (Ma et al., 2018; Zhang et al., 2018a), and so on.
In order to provide a stable, efficient, low-cost, and highly

intelligent disease identification method, Chao et al. (2020)
proposed that the XDNet combined with DenseNet and Xception
can enhance the feature extraction capability of the model. The
model achieved an accuracy of 98.82% in identifying five apple
leaf diseases with fewer parameters. Liu et al. (2020) adopted the
Inception structure and introduced a dense connection strategy
to build a new neural network model, which realized the real-
time and accurate identification of six different kinds of grape
leaf diseases. In addition, Ramcharan et al. (2019) deployed a
trained cassava disease recognition model for a mobile terminal.
Tests under natural conditions in the field found that complex
conditions, such as different angles, brightness, and the occlusion
of the image taken, could adversely affect the performance of
the model, which also proves that image classification under the
complex background of the field is challenging.

An attention mechanism can provide a novel solution for
feature extraction. The attention mechanism can assign larger
weights to regions of interest and smaller weights to backgrounds
and extract information that contributes more to classification
to optimize the model and to make judgments that are more
accurate. In other studies, attention mechanisms have achieved
excellent performance in tasks, such as classification, detection,
and segmentation (Hu et al., 2018; Karthik et al., 2020; Mi et al.,
2020; Hou et al., 2021). Inspired by the above researches, this
study proposes a new CNN for apple diseases recognition. The
main contributions and innovations of this study are summarized
as follows:

1. A new Apple Leaf Disease Identification Data set (ALDID) is
generated by using image generation techniques. In order to
enhance the generalization performance of the model, image
augmentation techniques are used to expand the data set and
simulate apple leaf disease images collected under different
conditions, laying a foundation for the training of the model.

2. A novel attention-based apple leaf disease recognition model,
namely, the Coordination Attention EfficientNet (CA-ENet),
is proposed. A network search technique is first used to
determine the optimal structure of the model, and the
optimal parameters of network depth, width, and input image
resolution are obtained. Then, the deep separable convolution
is applied to the coordination attention convolution (CA-
Conv) infrastructure to greatly reduce the number of
parameters and avoid an overfitting problem. Finally, a
coordinated attention block is embedded in the infrastructure
to realize the integration of characteristic channel information
and spatial information attention and to strengthen the
learning ability of the model for important information in the
lesion area.

The remainder of the study is organized as follows: In section
Materials and Methods, the detailed information of the dataset
is introduced and expanded by data augmentation techniques.
The model proposed in this study and the related content
of attention visualization is introduced in detail. The section
Results and Discussion presents the experiments for evaluating
the performance of the model and analyzes the results of the
experiments, discussed the impact of data augmentation and
external interference on the performance of the model. The last
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section, Conclusion and Future Work, summarizes the work of
this study and prospects for further research.

MATERIALS AND METHODS

This section introduces the materials and methods used in the
study in detail, including the collected apple diseased leaf images
and the ALDID established after augmentation. It also presents
the proposed model and the attention visualization method.

Image Acquisition
The study was conducted from July 2020 to October 2020, at
the apple planting experimental station of the Northwest A&F
University in Qianxian County, Shaanxi province. By using a
variety of different types of mobile devices, a huge number
of field environment apple leaf images under different angles
and distances are collected. There are a total of 5,170 disease
images with a resolution of 3,000 × 3,000 pixels, including
those of five species of the Glomerella leaf spot (Colletotrichum
fructicola), Apple leaf mites (Panonychus ulmi), Mosaic (Apple
mosaic virus), Apple litura moth (Spodoptera litura Fabricius),
and Healthy leaves. In addition, 3,000 disease images under a
single background of three kinds of laboratories, namely, Black
rot (Physalospora obtuse), Scab (Venturia inaequalis), and Rust
(Gymnosporangium yamadai), were collected from the public
dataset PlantVillage. The above two data sets are shuffled and
mixed to generate the original data set of common apple diseases.

Figure 1 shows random samples of each category in the data
set. There are a large number of complex background images in
the data set. At the same time, it can be seen that Apple litura
moth (G) and Apple leaf mites (H) leaves have relatively similar
geometric features. The difference between the two diseases can
be expressed as a fine-grained image classification problem. A
variety of different forms of samples can increase the diversity
of the data set, making it closer to various different situations
that may occur in the real situation. However, it also constitutes
a greater test for the image classification task and puts forward
higher requirements for the comprehensive performance of the
model.

Image Augmentation
When acquiring the apple disease images, the samples obtained
varied in the apple leaf growth position, weather condition,
shooting angle, and there are interference factors such as
equipment noise. In order to enable the model to learn as many
irrelevant patterns as possible and avoid overfitting problems, the
images of the dataset need to be expanded and normalized.

In the data expansion, Gaussian blurring, contrast
enhancement by 30% and decrease by 30%, and brightness
enhancement by 30% and decrease by 30% are adopted to
simulate different weather conditions for all samples of the
original dataset. The images are also rotated by 90◦, 270◦, a
horizontal flip, and a vertical flip to simulate the change of
shooting angle, then the original data set is added. A Mosaic
disease image is randomly selected to enhance and display the

FIGURE 1 | Eight common apple leaf disease types. (A) Healthy, (B) Mosaic, (C) Rust, (D) Glomerella leaf spot, (E) Black rot, (F) Scab, (G) Apple litura moth, and (H)

Apple leaf mites.
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FIGURE 2 | Image enhancement example of the mosaic disease. (A) Original image, (B) Gaussian blur, (C) 90◦ rotation, (D) High contrast, (E) Low contrast, (F) 270◦

rotation, (G) Horizontal symmetry, (H) Vertical symmetry, (I) High brightness, and (J) Low brightness.

effect as shown in Figure 2. Table 1 represents the structure
information of the ALDID. It can be seen from Table 1 that the
sample distribution is balanced after image expansion, which
is in line with the actual application scenario. It can ensure
that the model extracts different features of each category in
a balanced manner, ensuring its correct training and avoiding
overfitting. This study also divides the ALDID according to
the ratio of training set: validation set = 4:1 for model training
and validation. The training set is used to train the model,
and the validation set is used to check whether the model
training process converges normally and whether there is an
overfitting problem.

During the training process, a large fluctuation of the feature
value range will affect the convergence of the model, which is
not conducive to the model learning different feature differences,
and the images need normalization. In order to test the stability
of the model, 500 images were randomly selected from each
type of disease image in the original data set, and a total of
4,000 images were selected from eight different diseases. After
scrambling these 4,000 images, five different interference factors,
namely, Gaussian noise, salt and pepper noise, 180◦ rotation,
30% sharpness enhancement, and 30% sharpness reduction were
randomly added, and a Model Robustness Test Data set (MRTD)
was generated. After the training process is completed, the
MRTD is then used to test the model to verify the effect of the
model training. The above work laid the foundation for the use
of the model.

CA-ENet Network
The existing CNN methods of increasing network depth, width,
and input image resolution can obtain richer and higher

fine-grained features, but, there will be serious problems such
as gradient disappearance and model degradation. The problem
is that only changing a single variable cannot achieve better
results. The basic network architecture EfficientNet-B0 (Tan
and Quoc, 2019), which uses neural architecture search (NAS)
techniques to optimize the above three factors at the same time,
balances the three dimensions of depth, width, and resolution,
and can be further adjusted by the scaling factor. Therefore, in
this study, we use the EfficientNet architecture as the feature
extraction network.

Different types of apple leaf diseases have different
morphological characteristics with regard to lesions, but
there is a high degree of similarity between certain types
of diseases, which means apple disease classification can be
viewed as a fine-grained image classification problem, and
existing models still have difficulty achieving satisfactory results.
Therefore, in order to enhance model effectiveness, attention
to the lesion area is the key to solving this problem. The widely
used channel attention mechanism, SENet (Hu et al., 2018),
has a significant effect on improving final performance, but this
operation ignored the location information of the features, which
is also important for generating spatial selective attention maps.
In order to identify these differences, the CA-ENet is proposed to
achieve real-time and accurate apple disease identification. The
overall structure of the model is shown in Figure 3.

The model mainly included three parts: the pre-network for
the Batch Normalization of input images, the backbone network
CA-Conv for feature extraction, and the rear part that outputs the
recognition result through the fully connected layer. Pre-network
uses a layer of 3 × 3 ordinary convolutions with a step of 1 to
perform the convolution operation on the input image, the input
image resolution is 380× 380, and the featuremapwith the depth
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TABLE 1 | The composition of apple leaf disease identification data set (ALDID).

Category Healthy Mosaic Rust Glomerella leaf spot Black rot Scab Apple litura moth Apple leaf mites

Training 8,240 8,240 7,000 8,360 7,000 7,000 8,200 8,320

Validation 2,060 2,060 2,000 2,090 2,000 2,000 2,050 2,080

Total 10,300 10,300 10,000 10,450 10,000 10,000 10,250 10,400

FIGURE 3 | Structure of the Coordination Attention EfficientNet (CA-ENet) for apple disease identification.

of the output feature matrix of 48 is obtained. Then, the obtained
feature matrix are input into the 32 CA-Conv module embedded
with the CA block. Finally, the 3 × 3 ordinary convolutions and
pooling are used to further abstract features and then output
through a fully connected layer with eight nodes.

During the model optimization process, a NAS technique is
used to search for the optimal model structure. The operation
process can be abstractly expressed as Equation (1):

N (d,w,r)=⊙i=1,2,...,sF
Li
i

(

X(Hi ,Wi ,Ci)

)

(1)

where ⊙ is the multiplication symbol. FLii means arithmetic
operation, it is repeatedly executed Li times in the operation
Fi. X is the input feature matrix. (Hi, Wi, and Ci) represents
the height, width, and output channels of X. The NAS process
can be optimized by adding the constraints of model accuracy,
parameter, and calculation amount with Equations (2) and (5).

max(d,w,r)[Accuracy(N(d,w,r))] (2)

N (d,w,r)=⊙i=1,2,...,sF̂
d·L̂i
i (X(r·Ĥi ,r·Ŵi ,r·Ĉi)

) (3)

Memory(N)≤tar_memory (4)

FLOPs(N)≤tar_flops (5)

The d, w, and r are the sparseness that scales the depth, width,
and resolution of the network, respectively, the tar_memory and
tar_flops are the constraints on the number of parameters and
calculations. Through the above optimization calculation, the
best d, w, and r values of the EfficientNet-B0 structure can be
obtained, and on this basis, the magnification factors d and w of

EfficientNet-B4 are 1.8 and 1.4, respectively, and the input image
resolution r is 380 × 380 pixels. From the discussed method, the
optimal CA-ENet structure parameters can be calculated and are
shown in Table 2.

The operators inTable 2 perform arithmetic operations on the
input features. The magnification of each CA-Conv6 in Stage 3–
Stage 8 is 6; that is, in the first layer of convolution, the depth
of the feature matrix of the input layer is increased to 6 times
of the input, and the size of the convolution kernel is 3× 3 or 5
× 5. The resolution, output channels, and repeat correspond to
the resolution of the input layer, the depth of the output feature
matrix, and the number of repetitions of the layer structure in
the depth direction. The steps given by first-stride are only for
the first layer structure of each stage, and the steps of the other
layer structures are all 1. The network is composed of seven-
stage CA-Conv blocks, and its structure is shown in Figure 4.
First, the input feature matrix is sent to CA-Conv through an
ordinary 1 × 1 convolution for dimension upgrade. After the
h-swish activation function, the feature is extracted through the
deep separable convolution with a convolution kernel size of
k × k (k = 3 or 5) and a step of 1 or 2. The use of a deep
separable convolution structure greatly reduces the number of
model parameters, and at the same time, can play an important
role in avoiding model overfitting. Then, the obtained feature
matrix is divided into two branches, one of which is assigned a
weight to each channel by a Coordinate Attention Block (CAB),
and another one without any processing is multiplied by the two
weights passed through the CAB to obtain the weighted feature
matrix. Finally, the dimension is reduced by 1 × 1 convolution
and output to the subsequent structure after adding with the
input feature matrix.

The global pooling method can compress the global spatial
information into the channel descriptor, but this results in a
lack of location information. In order to capture the precise
location information of the features, in the CAB in Figure 4, the
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TABLE 2 | Details about coordination attention EfficientNet (CA-ENet).

Stage Operator Resolution Output channels Repeat First-stride

1 Conv, 3 × 3 380 × 380 48 1 2

2 CA-Conv1, 3 × 3 190 × 190 24 2 1

3 CA-Conv6, 3 × 3 190 × 190 32 4 2

4 CA-Conv6, 5 × 5 95 × 95 56 4 2

5 CA-Conv6, 3 × 3 48 × 48 112 6 2

6 CA-Conv6, 5 × 5 24 × 24 160 6 1

7 CA-Conv6, 5 × 5 24 × 24 272 8 2

8 CA-Conv6, 3 × 3 12 × 12 448 2 1

9 Conv, 3 × 3 12 × 12 1,792 1 1

10 Avg Pooling, 1 × 1 12 × 12 1,792 1 1

11 fc 1 × 1 × 1,792 8 1 1

FIGURE 4 | Structure of coordination attention convolutional (CA-Conv).

global pooling is decomposed into two one-dimensional feature
encoding processes according to Equation (6). Furthermore,
two one-dimensional average pooling operations along the
horizontal and vertical directions are used to aggregate the input
features into two separate direction-aware feature maps. This
operation captures both direction-aware and position-sensitive
information, thus enabling the model to locate the region of
interest more accurately. The generated two separate direction-
aware feature maps are concatenated in the depth direction,
and the feature channel attention weight is generated through
a 1 × 1 convolution compression channel, and the position
information is embedded in the channel attention. Then, the
Batch Nomalization (BN) operation is applied to the feature
matrix and divided into two parts through a non-linear activation
function, the feature depth is adjusted to be consistent with
the input feature through 1 × 1 convolution, and the position

information is saved in the generated attention map. Finally, the
weights of the two attention maps are multiplied by the input
features to strengthen the feature representation of the attention
region and improve the ability of the network to locate the
regions of interest accurately.

zc=
1

H×W

H
∑

i=1

W
∑

i=1

xc(i,j) (6)

As the above-mentioned information embedding method can
directly obtain the global receptive field and encode the
accurate position information, so the transformation operation
is performed on it using the 1 × 1 convolution transformation
function F1. As shown in Equation (7), [zh, zw] is the splicing
operation along a spatial dimension, δ is the non-linear activation
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function, and f is the intermediate feature map that encodes the
spatial information in both horizontal and vertical directions.
Then, through two 1× 1 convolutions, f h and f w are transformed
into tensors with the same number of channels, respectively.
As shown in Equations (8) and (9), attention weights can be
calculated, and the output of the CA block after the Re-weight
is calculated by Equation (10).

f=δ(F1(
[

zh,zw
]

)) (7)

gh=σ (Fh(f
h)) (8)

gw=σ (Fw(f
w)) (9)

yc(i,j) =xc(i,j)×ghc (i)×gwc (i) (10)

In order to reduce the amount of calculation and speed up
reasoning while ensuring the effect of the activation function,
a new activation function, h-swish, is applied into CA-Conv
(Howard et al., 2019). The activation functions of sigmoid and h-
sigmoid are shown in Equations (11) and (12). It can be seen from
Figure 5 that the above two activation functions are relatively
close and the calculation process of h-sigmoid is more concise,
so h-sigmoid can be used to replace sigmoid in Equations (13)
and (14). Figure 6 shows the approximation of the effect of h-
swish on the swish activation function. It can be seen that the two
curves are basically the same, and the calculation speed of the
h-swish is faster.

sigmiod (x)=
1

1+e−x
(11)

h− sigmiod (x)=
relu6(x+3)

6
(12)

FIGURE 5 | Schematic diagram of the sigmoid and h-sigmoid activation

functions.

swish (x)=x · sigmoid(x) (13)

h− swish (x)=x·(h− sigmoid) (14)

EXPERIMENTAL RESULTS AND
DISCUSSION

Model Training Details
In order to verify the performance of the proposed method, a
proposed network is trained via the ALDID. Thus, the proposed
method is realized on the Pytorch 1.7.1 deep learning framework,
while all experiments were conducted on an Intel R© Xeon(R)
Gold 5217 CPU@3.00 GHz server equipped with an NVIDIA
Tesla V100 (32GB) GPU. The operating system is Ubuntu 18.04.5
LTS 64. In order to accelerate the model convergence while
keeping stable training, the initial learning rate is set to .01, and it
decays according to the cosine learning rate change curve during
the training process, and finally decays to .001. The number of
training iterations for all models is 50 epochs.

Performance of Proposed CA-ENet
In order to evaluate the performance of the proposed method,
multiple state-of-the-art methods were applied to the MRTD. In
order to ensure that the results are comparable, the same training
strategy was used. The test result is visually displayed with a
confusion matrix. In order to facilitate the display of labels, the
full names of some diseases are abbreviated. In this case, “GLS”
in the confusion matrix stands for Glomerella leaf spot, “ALM”
stands for Apple litura moth, and “ALMS” stands for Apple
leaf mites.

Figure 7 can intuitively show the classification performance of
the Coordination Attention EfficientNet, with the final accuracy
reaching 98.92%. The misclassification mainly occurred between
Apple leaf mites and Apple litura moth and between Apple litura

FIGURE 6 | Schematic diagram of the swish and h-swish activation functions.
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FIGURE 7 | Confusion matrix of the CA-ENet.

moth and Healthy leaves. The main feature of the apple leaf mites
is that the damaged leaves showmany dense chlorosis gray-white
spots. In contrast, after being damaged by apple litura moth, the
insect spots formed on the leaves were elliptical and dense, and
the leaf surface was wrinkled. The above two kinds of leaf spots
have certain similarities in geometric and color characteristics,
leading to misjudgment. Furthermore, affected by the complex
background, a small number of leaves damaged by apple litura
moths were mistakenly identified as healthy leaves. It can be seen
that accurate recognition in a complex background has been a
great challenge, but the number of misjudgments in this model is
still within an acceptable range and can be maintained at a low
level. The proposed CA-Conv structure can extract richer fine-
grained features of the image and perceive the regions of interest
with a higher degree of attention. It can also be seen that the
model shows a good recognition effect and has strong robustness
to the problem of apple leaf disease recognition.

Performance Comparison
The performance comparison between CA-ENet and the
standard method is shown in Table 3. It can be seen from Table 3

that the proposed model has the best recognition performance
on MRTD, with an accuracy of 98.92%. In this study, multiple
metrics including accuracy, precision, recall, F1-score, parameter,
and calculation are used as evaluation indicators. ResNet-152
takes advantage of the residual structure to make sure it has a
strong feature learning ability, so it can reach an accuracy of
93.75%. The Dense Block, the basic structure of DenseNet-264,

also has the advantages of enhanced feature propagation and
incentive feature reuse, making it achieve a higher accuracy rate
with nearly half of the parameters of ResNet-152. Furthermore,
the accuracy of ResNeXt-101 reaches 95.67%, which is due to
the use of grouped convolution, so it can achieve better results
with fewer convolutional layers than ResNet-152. Although this
structure can improve the final accuracy, the degree of network
fragmentation is very high due to the existence of a large number
of parallel branches, which greatly reduces the computation
efficiency of the model.

EfficientNet uses NAS techniques to simultaneously search
and optimize model depth, width, and input image resolution,
and rationally expand the model architecture to achieve a
high degree of coordination of structural proportions. It has
obvious advantages in extracting more robust and reliable feature
representations and can reach an overall accuracy of 97.27%. The
strong learning ability of the CA module in CA-Conv may cause
attention drift and affect model convergence, while the inverted
residual structure in CA-Conv can suppress features that are not
conducive to classification, ensuring model stability while further
improving the recognition performance, and the effectiveness of
the attention mechanism is verified.

Traditional CNNs do not distinguish the importance of
information when extracting disease features, and there is a large
number of convolutions that repeatedly extract low-contribution
information, which causes a waste of computation resources.
The attention mechanism can automatically extract high-
contribution feature components, with only small parameters
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TABLE 3 | Performance comparison of the CA-ENet with other classical networks.

Accuracy/% Average precision/% Average recall/% Average F1-score Params/M FLOPs/B

ResNet-152 93.75 94.01 93.75 0.936 60 11.0

DenseNet-264 94.90 95.27 94.90 0.949 34 6.0

ResNeXt-101 95.67 96.05 95.67 0.957 84 32.0

EfficientNet-B4 97.27 97.41 97.27 0.972 19 4.2

CA-ENet 98.92 98.95 98.92 0.988 21 4.3

Bold values indicate the best results under each index.

TABLE 4 | Performance of the CA-ENet before and after data augmentation.

Dataset Metrics Glomerella leaf spot Black rot Healthy Mosaic Apple leaf mites Rust Scab Apple litura moth

Original Precision/% 96.9 93.5 99.1 95.0 96.1 100.0 100.0 96.0

99.6 99.8 95.8 100.0 99.8 100.0 99.8 96.8

Recall/% 99.0 100.0 89.6 99.4 99.2 99.7 92.8 95.8

ALDID 99.4 100.0 99.4 98.4 97.6 99.8 99.8 97.0

F1-score 0.979 0.966 0.941 0.972 0.976 0.998 0.963 0.959

0.995 0.989 0.976 0.992 0.987 0.999 0.998 0.969

Bold values indicate the best results under each index.

and calculations increases. The experimental results also show
that, in the identification of apple leaf diseases, the proposed
CA-ENet model is superior to other models in all evaluation
indicators with fewer parameters and can classify apple disease
images more accurately.

Effect of Data Augmentation on
Identification Performance for Each Class
A variety of data expansion methods is used in the ALDID to
improve the anti-interference ability of the model in complex
situations and prevent the problem of overfitting. In order to
verify the effect of data augmentation, a set of comparative
experiments is designed to evaluate its impact on the final
classification performance. Table 4 shows the accuracy, recall,
and F1-score performance indicators of the proposed model for
each category on the MRTD. The first row of values in each
performance index is the performance obtained after training
on the original dataset, and the second row of values is the
performance obtained after training on the ALDID. It can be seen
from Table 4 that the image diversity of the original data set is
insufficient, and the average F1-score of the proposed method
on the original dataset is 0.969, which is slightly lower than
the performance of the model obtained on the ALDID, but it
can still accurately classify apple leaf diseases. The results show
that the augmented data set is closer to the actual situation, the
ability of the model to adapt to complex scenes is enhanced,
and the anti-interference ability is improved to a certain extent.
The leverage of the deep separable convolution can effectively
reduce the number of model parameters and greatly increase
training speed.

Feature and Network Attention
Visualization
Understanding and analyzing the hidden layer structure of the
model is an important method to comprehensively recognize

the proposed network structure. CNNs are usually trained
in the form of black-box testing and the evaluations of

model performance are limited to the final accuracy and

other indicators, which have certain deficiencies. Visualization
techniques are the way to explore how CNNs learn features and
distinguish categories. So, this section uses the visualization of

layer activation and class activation heatmaps to analyze the
performance of the proposed model. The visualization of layer
activation helps to understand how the continuous convolutional
layer performs feature extraction and completes the conversion

of input features. Figures 8, 9 show the output features of the first
20 channels of the CA-Conv structure in the first and last layers
of the model, respectively. The given example category is apple
leaf mites. In the superficial features of the model, it is obvious
that the lesion area and the background are separated, and the
characteristics of the disease location can be accurately extracted.
The model has high efficiency in extracting deep features and
only contains a few failed convolutions. The channel output
features given here are all valid. Therefore, the stacking of the
CA-Conv structure does not affect feature learning ability of the
model, and the adopted separable convolution can effectively
reduce the feature redundancy and lead to higher efficiency.

Class ActivationMapping (CAM) (Selvaraju et al., 2020) helps
to understand which feature components the model relies on to
make decisions. Table 5 shows the original image of the class
activation and the attention heatmaps of the commonly used
models. The sample images of Glomerella leaf spot, black rot,
apple litura moth, and rust are randomly selected for testing.
Due to the introduction of the attention module CAB, CA-ENet
has a stronger ability to focus on the lesion area. Compared
with other models, CA-ENet has a good positioning effect and
can accurately locate the interest area, whether it is a leaf lesion
in a complex or a simple background. In contrast, ResNet-152,
DenseNet-264, and ResNeXt-101 have deviations or even errors
in their focus positions, which are what affect the robustness and
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FIGURE 8 | Partial output feature maps of the first CA-Conv.

FIGURE 9 | Partial output feature maps of the last CA-Conv.
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TABLE 5 | Comparison of attention heatmaps of different models.

Class Original image ResNet-152 DenseNet-264 ResNeXt-101 CA-ENet

Glomerella leaf spot

Black rot

Apple litura moth

Rust

accuracy of a model. The visual test results of the class activation
heatmaps of the apple leaf diseases show that themodel fully takes
the characteristics of the disease spots into account and achieves
superior recognition performance on apple leaf diseases.

CONCLUSION AND FUTURE WORK

An improved attention-based deep CNN to identify common
apple leaf diseases to support the efficient management of
orchards is proposed in this study. Due to the complex
environment of orchards, in order to be close to the real
application scenarios, 5,170 apple leaf images were collected
by multiple mobile devices and 3,000 disease images were
obtained from a public dataset. Image augmentation techniques
are used to generate the ALDID containing 81,700 diseased
images. By embedding a CA block into a CA-Conv module, the
integration of characteristic channel and location information
was realized. A deep separable convolution is also used to
reduce the number of parameters, and the h-swish activation
function is used to speed up the model convergence. The
proposed model is training with ALDID and testing with
MRTD and conducts a large number of comparative experiments
including various performance evaluation indicators and process
visualizations. The experimental results show that the method
proposed in this study achieves a recognition accuracy of
98.92%, which is better than that of other existing deep
learning methods and achieves competitive performance on
apple leaf disease identification tasks, which provides a reference
for the application of deep learning methods in crop disease
classification. The proposed model has the advantages of a simple
structure, fast running speed, good generalization performance,

and robustness, and has great potential application value. In
the future, a ground mobile inspection platform equipped
with cameras will be built to replace manual operations
and to realize the rapid diagnosis and early warning of
apple diseases.
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