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Many studies have evaluated the effectiveness of genomic selection (GS) using cross-
validation within training populations; however, few have looked at its performance for
forward prediction within a breeding program. The objectives for this study were to
compare the performance of naïve GS (NGS) models without covariates and multi-
trait GS (MTGS) models by predicting two years of F4:7 advanced breeding lines for
three Fusarium head blight (FHB) resistance traits, deoxynivalenol (DON) accumulation,
Fusarium damaged kernels (FDK), and severity (SEV) in soft red winter wheat and
comparing predictions with phenotypic performance over two years of selection based
on selection accuracy and response to selection. On average, for DON, the NGS model
correctly selected 69.2% of elite genotypes, while the MTGS model correctly selected
70.1% of elite genotypes compared with 33.0% based on phenotypic selection from
the advanced generation. During the 2018 breeding cycle, GS models had the greatest
response to selection for DON, FDK, and SEV compared with phenotypic selection.
The MTGS model performed better than NGS during the 2019 breeding cycle for
all three traits, whereas NGS outperformed MTGS during the 2018 breeding cycle
for all traits except for SEV. Overall, GS models were comparable, if not better than
phenotypic selection for FHB resistance traits. This is particularly helpful when adverse
environmental conditions prohibit accurate phenotyping. This study also shows that
MTGS models can be effective for forward prediction when there are strong correlations
between traits of interest and covariates in both training and validation populations.

Keywords: genomic selection, Fusarium head blight, wheat, resistance, multi-trait genomic selection, forward
prediction

INTRODUCTION

Resistance to the disease Fusarium head blight (FHB) is important in wheat (Triticum aestivum L.)
production, particularly in the Southeastern US. Fusarium head blight is a fungal disease caused by
Fusarium graminearum and incurs nearly US$4.2 billion in losses annually (Wilson et al., 2017).
The F. graminearum pathogen produces the mycotoxin deoxynivalenol (DON), which is harmful
for humans and animals that consume infected grain (FDA, 2010; Sobrova et al., 2010).
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Traditionally, wheat breeders have primarily relied on
phenotypic selection within their breeding programs to advance
breeding material. However, phenotypic selection has its
limitations, especially with low-heritability traits of interest that
are difficult to phenotype. Difficulties with phenotyping are
also compounded by genotype × environment interactions that
can lead to differential responses between genotypes across
environments, reducing the accuracy of selections. Alternatives
to phenotypic selection include marker assisted selection (MAS)
and genomic selection (GS). Marker assisted selection can be
effective for qualitative traits controlled by one or two genes or
quantitative traits that are controlled by large-effect quantitative
trait loci (QTL) (Xu and Crouch, 2008). However, MAS is
less effective for complex quantitative traits controlled by many
small-effect QTL (Bernardo and Yu, 2007; Heffner et al., 2009).
Genomic selection is an effective alternative to both phenotypic
selection and MAS, in that it incorporates allelic effects across the
entire genome, making it ideal for quantitative traits. Genomic
selection can also reduce the time within a breeding cycle, as
two rounds of GS can be performed compared to one cycle of
phenotypic selection allowing for greater genetic gain over time
(Bernardo and Yu, 2007; Heffner et al., 2009; Asoro et al., 2013;
Rutkoski et al., 2015).

Genomic selection was first applied to animal breeding,
particularly in the dairy industry, but it has since been
adapted by plant breeders over the last decade (Meuwissen
et al., 2001; Heffner et al., 2009). Genomic selection uses
a training population (TP), a panel of lines that have been
phenotyped for a trait of interest and genotyped using whole-
genome sequencing, to train a genomic prediction model. The
genomic prediction model then uses relatedness between all
genotypes to obtain genome-estimated breeding values (GEBVs)
for breeding lines, otherwise known as the validation population
(VP), that have only been genotyped. The breeder can then
make selections based on the GEBVs for a trait of interest
(Meuwissen et al., 2001).

Most studies involving GS have focused on increasing
prediction accuracy by manipulating the TP and subsequently
evaluating model performance through cross-validation within
the TP (Habier et al., 2007; Heffner et al., 2009; Jannink et al.,
2010; Combs and Bernardo, 2013; Akdemir et al., 2015; Isidro
et al., 2015; Larkin et al., 2019). Many have also investigated the
genomic prediction model used for GS analysis (Heslot et al.,
2012). While these methods are valuable, few have researched the
effectiveness of applying GS in breeding programs for forward
prediction of breeding lines (Bernardo, 2016). However, when
investigated, many have seen mixed results regarding prediction
accuracy of forward prediction, compared to cross-validated
prediction accuracy within TPs (Asoro et al., 2013; Combs
and Bernardo, 2013; Massman et al., 2013; Michel et al., 2017;
Belamkar et al., 2018; Calvert et al., 2020). Additionally, there
are few, if any, studies that focus on forward prediction for FHB
resistance in wheat as opposed to grain yield (GY) (Michel et al.,
2016, 2017; Belamkar et al., 2018; Calvert et al., 2020).

In an evaluation of GS in the Kansas State University wheat
breeding program, GS was used to predict GY in a TP where
the prediction accuracy was between r = 0.31 and r = 0.47.

However, when the TP was used for forward prediction, the
highest prediction accuracy between the GEBVs for GY in the
preliminary yield trials (PYTs) and the actual phenotypic results
for GY was r = −0.16 (Calvert et al., 2020). This trend was
also observed in an evaluation of the University of Nebraska
wheat breeding program, where GY data from PYTs from
three years were used to predict the performance of a fourth
year. When no lines for the fourth year were included in the
TP, prediction accuracies for GY were between r = 0.22 and
r = 0.26. However, as more lines from the fourth year were
included in the TP, the prediction accuracy of GY for the
remaining lines in the fourth year increased to between r = 0.37
and r = 0.52, when 90% of the lines from the fourth year
were included in the TP (Belamkar et al., 2018). Phenotypic
selection and GS were also compared in terms of selection
accuracy between the PYT and advanced yield trial generations.
Genomic selection outperformed phenotypic selection during
the 2012 and 2015 seasons, where Nebraska experienced severe
drought and disease stress. Even still, prediction accuracies
were low, indicating that prediction accuracy is not the best
indicator of GS success for forward prediction (Belamkar
et al., 2018). Another study using forward prediction for GY
in wheat adapted to central Europe found that the use of
GS (r = 0.39) to select high performing lines for multiple-
environment trials was far better than phenotypic selection
(r = 0.21) (Michel et al., 2017).

In addition to traditional GS, researchers have begun
investigating the efficacy of multi-trait GS (MTGS). Multi-trait
GS uses mixed models that incorporate secondary traits that
are genetically correlated with a trait of interest as covariates to
improve the prediction accuracy for the trait of interest (Calus
and Veerkamp, 2011; Jia and Jannink, 2012; Covarrubias-Pazaran
et al., 2018). Multi-trait GS can improve prediction accuracies
for low-heritability traits when high-heritability secondary traits
are used as covariates (Calus and Veerkamp, 2011; Guo et al.,
2014; Jia et al., 2018). Many studies have evaluated MTGS models
for cross-validation, particularly for GY in wheat using high-
throughput phenotyping traits (Rutkoski et al., 2016; Sun et al.,
2017; Crain et al., 2018; Lozada and Carter, 2019; Guo et al.,
2020). Others have evaluated resistance traits related to FHB in
wheat using phenological traits, such as heading date (HD) and
plant height (PH), or other FHB resistance traits as covariates
(Rutkoski et al., 2012; Schulthess et al., 2018; Steiner et al.,
2019; Larkin et al., 2020; Moreno-Amores et al., 2020). Few
have evaluated the use of MTGS for forward prediction. One
study used high-throughput phenotyping traits as a covariate in
a MTGS model for forward prediction of GY in wheat, though
the prediction accuracy was unfavorable unless a large TP was
used (Calvert et al., 2020). Therefore, our aim is to validate the
use of MTGS models compared to naïve GS (NGS) models to
predict FHB resistance in wheat, using secondary FHB resistance
traits regularly collected throughout the season within a breeding
program based on results from Larkin et al. (2020).

The University of Arkansas soft red winter wheat (SRWW)
breeding program makes over 800 unique crosses per year.
Progenies are then tested over the following 10 seasons prior
to releasing a new cultivar (Mason et al., 2018). Breeding
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lines are not evaluated for FHB resistance traits until the
F4:7 advanced (ADV) and F4:8 elite (ARE) trials, where they
are evaluated in misted and inoculated FHB disease nurseries
at two locations in a RCBD design with two replications.
Selections are made based on three FHB resistance traits: type
II resistance, which is resistance to the spread of FHB within
a spike, otherwise known as severity (SEV) (Schroeder and
Christensen, 1963); type III resistance, or resistance to Fusarium
damaged kernels (FDK) (Argyris et al., 2003; Goral et al., 2019);
and type IV resistance, or resistance to DON accumulation
(Mesterhazy, 1995).

Some elite lines are also grown in regional statewide variety
testing trials, as well as the USDA-ARS Uniform Eastern (UE)
and Southern nurseries (US), Southeastern University Grains
(Sungrains) cooperative nurseries, and foundation seed increases.
The UE and US nurseries include approximately 36 elite breeding
lines from public and private SRWW breeding programs in
the Southern and Eastern US, grown between 22 and 36
locations with between one and three replications per location
annually (Boyles et al., 2019). The Sungrains cooperative consists
of Southeastern US SRWW breeding programs that performs
regional testing within the Southeastern US (Harrison et al., 2017;
Johnson et al., 2017; Mason et al., 2018; Boyles et al., 2019).
Select breeding lines from the ADV and ARE are grown in these
regional Sungrains nurseries.

In theory, GS can improve selection accuracy in the early
generations of the breeding program for FHB resistance traits
while also reducing time and resources spent for phenotyping.
In this study, we evaluated the selection accuracy of GS from the
advanced through elite generations and compared to phenotypic
selection through forward prediction using NGS and MTGS
models. The three goals for this study were to: (1) compare NGS
and MTGS with phenotypic selection for three FHB resistance
traits, including DON, FDK, and SEV for new breeding lines
that have not been phenotyped at the advanced generations;
(2) compare the selection accuracy between NGS, MTGS, and
phenotypic selection between the advanced and elite generations
of the University of Arkansas SRWW breeding program; and
(3) compare the response to selection between NGS, MTGS, and
phenotypic selection between the advanced and elite generations
of the University of Arkansas SRWW breeding program.

MATERIALS AND METHODS

Plant Materials
Breeding Materials
Two generations of the ADV trials, 2017–2018 and 2018–
2019, consisting of F4:7 breeding lines from the University of
Arkansas wheat breeding program and doubled haploid (DH)
lines developed through the Sungrains cooperative, were used
as VPs to predict three FHB traits, DON, FDK, and SEV.
Approximately 20% of breeding lines from the ADV18 and
ADV19 yield trials were selected and advanced to the ARE19
and ARE20 yield trials for the 2018–2019 and 2019–2020 growing
seasons, respectively. Genotypes were advanced based on both GS
and phenotypic selection (Table 1).

Training Populations
A population of 355 SRWW genotypes was used as the initial
2018 TP (TP18_FHB) for this study to predict GEBVs for
DON, FDK, and SEV in the ADV18 trial. The population
consisted of 187 genotypes from the University of Arkansas, 87
from Louisiana State University, 40 from North Carolina State
University, 38 from the University of Georgia, and one genotype
each from Syngenta AG, Pioneer Hi-Bred International, Inc.,
and Virginia Polytechnic Institute and State University (Larkin
et al., 2020). The 2019 TP (TP19_FHB) for the three FHB traits
consisted of the 355 genotypes from TP18_FHB, as well as the
104 genotypes from the ADV18 trial.

Experimental Design and Trait
Measurements
Winter wheat is planted during the fall and harvested during the
late spring in the southern United States, therefore the growing
season spans two years. The TP18_FHB genotypes were evaluated
for three FHB resistance traits, including DON, FDK, and SEV,
over four seasons between 2014 and 2017 at two locations, at
the Milo J. Shult Agricultural Research and Extension Center in
Fayetteville, AR, United States (FAY) and the Newport Research
and Extension Center near Newport, AR, USA (NPT). The data
collection and experimental design methods were outlined in
Larkin et al. (2020), as TP18_FHB was the same population
used in their study.

The AVD18, ADV19, and ARE19 FHB nurseries for the
2017–2018 and 2018–2019 growing seasons were grown at
two locations, FAY and NPT, in a randomized complete block
design (RCBD) with two replications per location using the
same methods described with respect to the TP18_FHB and
TP19_FHB populations in Larkin et al. (2020). This was also
the case for the ARE20 FHB nursery; however, it was only
grown in NPT during the 2019–2020 season due to poor
growing conditions in FAY. Data were also collected for HD,
PH, DON, FDK, and SEV for the FHB nurseries using methods
described in Larkin et al. (2020).

Phenotypic Data Analyses
Phenotypic data was analyzed using a single stage mixed linear
model within the PROC MIXED procedure in SAS 9.4 to obtain
adjusted means for HD, PH, DON, FDK, and SEV (SAS Institute
Inc., Cary, NC, United States). The following model was fit to the
phenotypic data:

yijk = µ+ genotypei + rep(env)jk + envk + (genotype × env)ik + εijk

where yijk is the observed phenotype, µ is the population mean,
genotypei is the fixed effect of the ith genotype, rep(env)jk is
the random effect of the jth replication nested within the kth
location-year (or location) (env), envk is the random effect of
the kth location-year (or location), (genotype × env)ik is the
random effect of the interaction between genotype and location-
year (or location), and εijk is the residual error term, where
εijk ∼ N(0,Iσ2

ε ), where I is an identity matrix and σ2
ε is the

residual error variance.
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TABLE 1 | Description of the number of genotypes, composition, and experimental design of two generations of F4:7 advanced nurseries (ADV), and F4:8 elite nurseries
(ARE), as well as the initial training population (TP18_FHB) used to predict three Fusarium head blight (FHB) resistance traits, including deoxynivalenol (DON)
accumulation, Fusarium damaged kernels (FDK), and severity (SEV).

Triala Generationb Conventional
lines

DH lines Total Location(s) Rep(s) Designc

TP18_FHB – 355 – 355 9 2 RCBD

ADV18 F4:7/DH 64 40 104 2 2 RCBD

ADV19 F4:7/DH 50 70 120 2 2 RCBD

ARE19 F4:8/DH 16 6 22 2 2 RCBD

ARE20 F4:8/DH 12 11 23 1 2 RCBD

aTrial types and the years each were grown. TP18_FHB was grown over four years between 2013–2014 and 2016–2017; 18, 2017–2018; 19, 2018–2019; 20, 2019–
2020.
bBreeding trials consisted of conventionally bred genotypes as well as doubled haploid (DH) genotypes.
cRCBD, randomized complete block design.

Phenotypic Pearson correlations were calculated between
DON, FDK, HD, PH, and SEV within TP18_FHB and TP19_FHB
as well as the ADV and ARE FHB nurseries using the
multivariate function in JMP Pro 15.2.0 software (SAS Institute
Inc., Cary, NC). Entry mean-based broad-sense heritability (H2)
was calculated for each trait using the following equation:

H2
=

σ2
genotype

σ2
genotype +

σ2
genotype × env

nenv +
σ2
ε

nenv × nrep

where σ2
genotype is the genotypic variance, σ2

genotype × env is the
variance of the interaction between genotype and location-year,
nenv is the number of location-years where the trait was evaluated,
σ2

ε is the residual error variance, and nrep is the number of
replications within each location-year. Variance components
were obtained from the single stage mixed linear model described
above for each trait using the PROC MIXED procedure in
SAS 9.4. Narrow-sense heritability (h2) was calculated using
the “marker_h2” function within the “heritability” package in
R v4.0.3 software for TP19_FHB due to a lack of shared
genotypes within the TP (Kruijer et al., 2015; R Core Team,
2020). The analysis used a genome relationship matrix obtained
from the “A.mat” function within the “rrBLUP” package in
Rv4.0.3 software using the marker set described below as
well as the abovementioned phenotypic data (Endelman, 2011;
Endelman and Jannink, 2012; R Core Team, 2020).

Genotyping by Sequencing
All genotypes were genotyped using genotyping by sequencing
(GBS) using methods described in Larkin et al. (2020). Single
nucleotide polymorphism (SNP) calling was performed using
the TASSEL 5.0 GBSv2 pipeline using 64 base tag length and
a minimum tag count of five (Bradbury et al., 2007). Reads
were aligned to the International Wheat Genome Sequencing
Consortium (IWGSC) RefSeq v1.0 “Chinese Spring” wheat
reference sequence (Appels et al., 2018) using the Burrows-
Wheeler aligner version 0.7.17 (Li and Durbin, 2009).

Raw SNP data generated from the TASSEL pipeline were
filtered using PLINK software (Purcell et al., 2007) to remove
taxa with more than 85% missing data and heterozygosity
greater than 30%. Genotypic data were then filtered to select

for biallelic SNPs with minor allelic frequency of greater than
five percent, less than 20% missing data, and heterozygosity less
than or equal to 10%. Missing marker data were then imputed
using BEAGLE software, based on windows encompassing the
entire chromosome (Browning et al., 2018). Markers were again
filtered after imputation to select SNP markers with minor allele
frequency greater than five percent and heterozygosity of less
than equal to 10% using PLINK software. Markers aligning to
unassembled contigs were also removed for a final genotypic
dataset of 5,202 SNP markers.

Principal component analyses were performed within each
of the TPs to evaluate the genetic relationships between
subpopulations using the PCA function in TASSEL 5.0. These
relationships between the first three principal components were
visualized for each TP using the “scatterplot3d” package in R
v4.0.3 software (Ligges et al., 2018; R Core Team, 2020).

Genomic Selection
Two different models were tested for both TPs to obtain GEBVs
for DON, FDK, and SEV for the ADV18 and ADV19 trials. The
first model was a naïve genomic BLUP (GBLUP) model with no
covariates (NGS). The second model was a MTGS GBLUP model
where DON was predicted using FDK and HD as covariates, FDK
was predicted using DON and SEV as covariates, and SEV was
predicted using FDK and PH as covariates. The optimal covariate
combinations for the MTGS models were determined in Larkin
et al. (2020) for the FHB traits.

Cross Validation
Mean prediction accuracies between the NGS and MTGS models
for each TP were obtained using a five-fold cross-validation
analysis performed using the Genomic Selection function in
TASSEL 5.0 (Bradbury et al., 2007). The GBLUP model used for
the analyses is described as follows:

y = Xβ + Zu+ εi

where u is a vector of genotype effects, which is assumed to
have a normal distribution u∼N(0,Gσ2

u), where G is the genomic
relationship matrix, obtained using the Kinship function within
TASSEL 5.0, which uses the same methodology as the “rrBLUP”
package in R (Endelman, 2011; Endelman and Jannink, 2012),
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and σ2
u is the variance of the individual genotype effects; β is a

vector of fixed effects; X is a design matrix relating fixed effects to
phenotypic observations (y); Z is a design matrix relating random
effects to phenotypic observations; and εi is the residual error at
the ith locus, which is assumed to have a normal distribution
εi ∼ N

(
0, Iσ2

ε

)
, where I is the identity matrix and σ2

ε is the
residual error variance. The GEBV from the GBLUP model is
equivalent to the sum of all allele effects of a genotype from
the ridge regression BLUP (RR-BLUP) model (VanRaden, 2008;
Endelman, 2011).

The five-fold cross-validation approach randomly divided the
TP into five equal sized groups. Four of the five groups were then
used as the TP to train the GBLUP model to calculate GEBVs
for the fifth group, serving as the VP, where the phenotypic
values were set as missing. In the case of the MTGS models, the
phenotypic data for the covariate traits were used as a fixed effect
in the model. The GEBVs calculated for the VP were compared
to the actual phenotypic values using a Pearson correlation. The
five-fold cross-validation process was repeated over 100 iterations
for a total of 500 iterations. The mean prediction accuracies
between the NGS and MTGS models were compared between
both TPs using a generalized linear mixed model (GLMM) and
Fisher’s LSD with an α of 0.05, implemented in PROC GLIMMIX
in SAS 9.4. Mean prediction accuracy comparisons between the
NGS and MTGS models for each TP were visualized using the
“yarrr” package in R v4.0.3 (Phillips, 2017; R Core Team, 2020).

Forward Prediction
Both TPs were then used to obtain predictions for their respective
VPs using the NGS and MTGS GBLUP models associated with
each trait. For example, TP18_FHB was used to calculate GEBVs
for DON, FDK, and SEV for the ADV18 trial using the NGS and
MTGS models (Table 2).

Once GEBVs for each trait for each model were obtained,
GEBVs were compared to the adjusted mean of the trait of
interest for each genotype in the following generation using
a Pearson correlation using the multivariate function in JMP
15.2.0 software. For example, GEBVs for DON obtained for
ADV18 were compared to the adjusted mean DON for each
genotype across the ADV18 and ARE19 generations. This serves
as a form of prediction accuracy for the respective model and
TP. A scatterplot visualizing the comparison between GEBVs
and adjusted means across years for each genotype, as well
as individual genotypes advanced to the next generation, was
created using the “ggplot2” package in R v4.0.3 for each model
for each TP (Wickham et al., 2016; R Core Team, 2020). Selection
accuracy was also determined as the percentage of genotypes
advanced to the ARE generation that were above average based on
GEBVs from the NGS or MTGS models as well as above average
based on phenotypic values.

Response to selection was also compared between the NGS
and MTGS models and phenotypic selection, based on the
adjusted means from the ADV generations for FHB traits, using
a selection pressure of 50%. The response to selection formula is
as follows:

R = H2S

where H2 was the broad-sense heritability calculated as above,
and S is the selection differential, calculated as S = µSelected −

µUnselected where µSelected is the mean of the phenotypic data
for the top 50% of genotypes selected for genotypes in the ARE
generations using either phenotypic selection, NGS, or MTGS,
and µUnselected is the mean of the full unselected population of the
genotypes in the ARE generation of the breeding cycle (Falconer
and McKay, 1996; Arruda et al., 2016b; Lozada et al., 2020).

RESULTS

Variation in Fusarium Head Blight
Resistance Traits
Both FHB TPs as well as the ADV and ARE FHB trials had
significant variation for all five traits. The ADV18 FHB trial had
the highest mean DON and FDK, but it also had the lowest
mean SEV. The ARE20 FHB trial had the lowest mean DON
and FDK, likely due to stronger genetic resistance (Table 2). All
trials also had significant correlations between the three FHB
traits. Correlations between DON and HD were consistently
positive, however, the correlations were not significant with
smaller population sizes, while DON was significantly correlated
with PH only in ADV19. There were generally negative
correlations between FDK and PH apart from ADV19, however,
the significance of the correlations between FDK and PH were
not significant with smaller population sizes. There were strong
negative correlations between SEV and HD and PH for nearly all
trials, however, they were not significant for smaller populations.
High heritability was also observed for all three FHB traits in
addition to HD and PH (Table 2).

Population Structure
Genotyping by sequencing identified 5,202 SNPs across the entire
wheat genome after filtering and imputation. The number of SNP
markers were unevenly distributed between genomes, where the
B genome had the largest number of markers (2,315), followed by
the A (2,210) and D (677) genomes, which was consistent with
other studies using GBS SNPs (Arruda et al., 2016a; Larkin et al.,
2020). The chromosome with the largest number of SNPs was
3B at 477, while the chromosome with the smallest number was
4D (38). The proportion of heterozygosity within the dataset was
2.5% and the average minor allele frequency was 21.6%.

The PCA of the initial TP18_FHB population showed two
primary clusters within the population. Genotypes from all
breeding programs appeared in both clusters, although there was
evidence of sub-clustering by breeding program within the two
main clusters. This clustering has also been observed in other
studies using SRWW populations adapted to the Southeastern
US and is hypothesized to result from the large number of linked
SNPs called between lines with and without a translocation from
Triticum timopheevii Zhuk., which harbors stem rust (Puccinia
graminis f. sp. tritici) and powdery mildew (Blumeria graminis
f. sp. tritici) resistance genes Sr36 and Pm6 (Nyquist, 1962;
Benson et al., 2012; Sarinelli et al., 2019; Larkin et al., 2020).
The population structure was generally low, where the first three
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TABLE 2 | Descriptive statistics, Pearson phenotypic correlations, and heritabilities (H2) for adjusted means for two training populations, two advanced F4:7 nurseries,
and two elite F4:8 nurseries for three Fusarium head blight (FHB) resistance traits, including deoxynivalenol (DON), Fusarium damaged kernels (FDK), and severity (SEV)
as well as heading date (HD) and plant height (PH).

Triala Trait Summary statistics Correlations

Mean Min Max Range SD H2b DONc FDK SEV HDd

FHB_TP18 DON 10.53 0.08 92.80 92.72 11.35 0.74 − − − −

FDK 32.49 0.00 100.00 100.00 29.93 0.79 0.40*** − − −

SEV 27.88 0.00 100.00 100.00 25.78 0.82 0.32*** 0.73*** − −

HD 94.69 74.00 118.00 44.00 10.19 0.90 0.25*** −0.05ns†
−0.10* −

PHe 90.27 56.46 121.87 65.40 10.06 0.91 0.01ns
−0.29*** −0.36*** 0.34***

FHB_TP19 DON 14.26 6.15 37.50 31.35 4.59 0.60 − − − −

FDK 38.22 6.00 92.12 86.12 14.86 0.68 0.45*** − − −

SEV 28.67 3.75 91.71 87.96 12.97 0.93 0.12* 0.55*** − −

HD 97.91 86.76 116.50 29.74 8.30 0.92 0.31*** 0.02ns
−0.54*** −

PH 90.40 71.12 113.03 41.91 6.96 0.74 0.00ns
−0.29*** −0.31*** 0.16***

ADV18 DON 16.64 3.60 51.50 47.90 7.60 0.62 − − − −

FDK 39.32 2.00 75.00 73.00 16.29 0.77 0.62*** − − −

SEV 15.44 0.00 85.00 85.00 14.88 0.38 0.27** 0.54*** − −

HD 112.22 108.00 117.00 9.00 2.16 0.90 0.28** −0.10ns
−0.34*** −

PH 89.46 68.58 119.38 50.80 8.53 0.71 −0.05ns
−0.22* −0.18* 0.25***

ADV19 DON 10.09 0.12 74.50 74.38 10.08 0.61 − − − −

FDK 31.01 0.00 98.00 98.00 23.94 0.83 0.86*** − − −

SEV 25.60 0.00 95.00 95.00 25.54 0.45 0.76*** 0.86*** − −

HD 102.38 97.00 109.00 12.00 2.35 0.81 0.10ns
−0.04ns

−0.17ns
−

PH 81.20 63.50 101.60 38.10 7.16 0.74 0.29*** 0.09ns 0.01ns 0.35***

ARE19 DON 8.51 0.59 64.10 63.51 8.32 0.50 − − − −

FDK 27.04 1.00 95.00 94.00 21.06 0.71 0.84*** − − −

SEV 23.55 0.00 90.00 90.00 22.87 0.43 0.74*** 0.86*** − −

HD 102.20 98.00 108.00 10.00 2.27 0.84 0.01ns
−0.28ns

−0.28ns
−

PH 80.06 53.34 93.98 40.64 7.14 0.76 0.21ns
−0.12ns

−0.18ns 0.41*

ARE20 DON 7.30 0.99 19.30 18.31 3.95 0.78 − − − −

FDK 15.21 2.00 60.00 58.00 12.49 0.84 0.78*** − − −

SEV 16.83 0.00 60.00 60.00 13.11 0.76 0.65*** 0.82*** − −

HD 99.49 94.00 111.00 17.00 3.39 0.76 0.09ns† 0.09ns
−0.08ns

−

PH 89.69 76.20 101.60 25.40 6.20 0.87 0.01ns
−0.05ns

−0.11ns 0.48**

aTP, training population; ADV, F4:7 advanced FHB trial; ARE, F4:8 elite FHB trial.
bBroad-sense heritability for FHB_TP18, ADV18, ADV19, ARE19, and ARE20 calculated using entry-mean based heritability. Narrow-sense heritability was
calculated for FHB_TP19.
cDON was recorded in µg g−1, whereas FDK and SEV were recorded in percentage.
dHeading date was recorded as day of year after 1st of January, when 50% of the heads were emerged from the flag leaf.
ePlant height was recorded in inches from the surface of the soil to the tip of the head minus awns if present, but reported in centimeters here.
*Significant at the 0.05 probability level.
**Significant at the 0.01 probability level.
***Significant at the 0.001 probability level.
†ns, nonsignificant at the 0.05 probability level.

principal components only accounted for 5.23, 3.99, and 3.42%
of the total genetic variation (Figure 1). There was no noticeable
differentiation between the TP18_FHB population and ADV18
and the TP19_FHB population and ADV19 (Supplementary
Figures 1A,B).

Cross Validation
Between both TPs, the MTGS models had significantly higher
prediction accuracies compared to NGS models for DON,
FDK, and SEV (Figure 2). Prediction accuracies for DON
decreased between TP18_FHB and TP19_FHB while prediction

accuracies for FDK and SEV increased. The decrease in
prediction accuracy for DON was likely a result of background
population structure within TP19_FHB between genotypes from
the TP18_FHB population, which does not contain genotypes
with Fhb1, and ADV18 which does contain genotypes with Fhb1
(Supplementary Figure 1A). The trait with the highest mean
prediction accuracies among the NGS models for TP18_FHB was
DON, with a mean accuracy of 0.61, while the trait with the
highest prediction accuracy for TP19_FHB was SEV (r = 0.61).
The trait with the second highest mean prediction accuracy
among the NGS models for TP18_FHB was SEV (r = 0.54)
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FIGURE 1 | Population structure of 355 soft red winter wheat genotypes using 5,202 single nucleotide polymorphism (SNP) markers. This population represents the
training population used to predict three Fusarium head blight (FHB) resistance traits including deoxynivalenol (DON) concentration, Fusarium damaged kernels
(FDK), and severity (SEV) (TP18_FHB) for the 2018 advanced Fusarium head blight trial (ADV18). Colors represent the origin of the genotypes. AR, developed at the
University of Arkansas, Fayetteville; GA, developed at the University of Georgia, Athens; LA, developed at Louisiana State University, Baton Rouge; NC, developed at
North Carolina State University, Raleigh; Pioneer, developed by Pioneer Hi-Bred International; Syngenta, developed by Syngenta and AgriPro; and VA, developed by
Virginia Polytechnic Institute and State University, Blacksburg; PC, principal component.

while DON and FDK had the same mean prediction accuracy for
TP19_FHB (r = 0.49). Fusarium damaged kernels had the lowest
mean prediction accuracy among the NGS models for TP18_FHB
(r = 0.45). The ranking of traits between the MTGS models was
not consistent with the NGS models or between TPs. Severity
had the highest prediction accuracy in TP18_FHB (r = 0.76),
followed by FDK (r = 0.74) and DON (r = 0.72). With TP19_FHB,
DON also had the MTGS model with the lowest mean prediction
accuracy (r = 0.66), while FDK and SEV had mean prediction
accuracies of 0.74 (Figure 2).

Forward Prediction
When TP18_FHB was used to predict DON, FDK, and SEV for
ADV18, there were significant correlations between the GEBVs
calculated from the NGS and MTGS models and phenotypes
for all FHB resistance traits. The strength of both correlations
decreased for all methods when compared with phenotypic data
from ARE19, with the exception for the MTGS model for SEV,
where the correlation increased to r = 0.60 compared with r = 0.57
(Table 3). Both NGS and MTGS models had higher selection
accuracies compared to phenotypic selection from ADV18 DON
data (52.9%), where the NGS model correctly selected 82.4% of
genotypes in ARE19, while the MTGS model correctly selected
70.6% (Table 3 and Figures 3A,B). The NGS (R =−0.37 µg g−1)
model had the highest response to selection for DON compared

to the NGS model (R = −0.23 µg g−1) and phenotypic selection
(R = 0.20 µg g−1) (Table 3).

When predicting FDK for ADV18, the MTGS model had
the strongest correlations with the ADV18 FDK data as well as
the FDK adjusted means from ARE19. The NGS (R = −4.09%)
model again had the highest response to selection than the MTGS
(R = −2.83%) model and phenotypic selection (R = −1.59%)
for FDK (Table 3). The MTGS and NGS models had the
same selection accuracy for FDK (70.6%) where both models
outperformed phenotypic selection based on adjusted means for
FDK from ADV18 (58.8%) (Table 3 and Figures 3C,D).

The MTGS model had stronger correlations between GEBVs
for SEV and adjusted means for SEV from ADV18 and
ARE19 than the NGS model (Table 3). The MTGS model
also had the strongest response to selection (R = −2.29%)
and selection accuracy (47.1%) compared with the NGS model,
where R = −0.82% and selection accuracy was 41.2%. The NGS
model underperformed phenotypic selection for both response
to selection (R = −1.49%) and selection accuracy (52.9%), with
the MTGS model only underperforming phenotypic selection for
selection accuracy (Table 3 and Figures 3E,F).

When using TP19_FHB to predict FHB resistance traits
for ADV19, the correlations between GEBVs from the MTGS
models and phenotypic results from AVD19 were stronger
than TP18_FHB for all three traits. Correlations between
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FIGURE 2 | Pirate plots comparing the mean prediction accuracies between multi-trait genomic selection (MTGS) models with naïve genomic selection (NGS)
models for three Fusarium head blight resistance traits (FHB), deoxynivalenol (DON) concentration, Fusarium damaged kernels (FDK), and severity (SEV) in soft red
winter wheat across two training populations (TPs): (A) TP18_FHB, TP used to predict three FHB resistance traits for the 2018 advanced F4:7 generation (ADV18);
(B) TP19_FHB, TP used to predict three FHB resistance traits for the 2019 advanced F4:7 generation (ADV19), consisting of all genotypes from TP18_FHB and
ADV18. The x-axis represents the combination of FHB resistance traits and GS model used to predict each trait. The y-axis represents the mean prediction accuracy
across 100 iterations of fivefold cross-validation in the form of a Pearson correlation coefficient (r) between the predicted genome-estimated breeding value (GEBV)
and the actual phenotypic value for the validation populations. Individual points represent the Pearson correlation from each fold of each iteration of cross-validation
for a total of 500 data points. The lines within each plot represent the mean and 95% confidence intervals for prediction accuracy. The curves represent the
smoothed densities of the data.

GEBVs from the MTGS models were stronger than TP18_FHB
when compared with adjusted means from ARE20 for DON
and FDK (Table 3). Response to selection for TP19_FHB
was different from TP18_FHB in that phenotypic selection
outperformed the GS models for DON and SEV, whereas
the MTGS model had a stronger response to selection than
the NGS model and phenotypic selection for FDK (Table 3).
Selection accuracies did change between TPs, as the MTGS model

(69.6%) outperformed both phenotypic selection (13.0%) and
the NGS model (56.5%) for DON for TP19_FHB (Table 3 and
Figures 4A,B). Unlike the results for TP18_FHB, both GS models
had far lower selection accuracies than phenotypic selection
(91.3%), although the MTGS model (60.9%) was better than
the NGS model (34.8%) (Table 3 and Figures 4C,D). Selection
accuracy for SEV also changed, where the MTGS model had
the same selection accuracy as phenotypic selection (82.6%)
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TABLE 3 | Comparison of three selection methods, phenotypic selection based on three FHB resistance traits using two training populations (TP), deoxynivalenol (DON)
concentration, Fusarium damaged kernels (FDK), and severity (SEV) from the advanced trials (ADV), naïve genomic selection (NGS), and multi-trait genomic selection
(MTGS), based on correlations between genome estimated breeding values and the adjusted means from following generations, response to selection, and selection
accuracy of genotypes in the final generation.

TP Trait Method r ADVa r AREb Selection differential Response to selection Selection accuracy

TP18_FHB DON PS − −0.01ns† 0.40 0.20 52.9

NGS 0.22* 0.19ns
−0.73 −0.37 82.4

MTGS 0.53*** 0.10ns
−0.46 −0.23 70.6

FDK PS − 0.14ns
−2.24 −1.59 58.8

NGS 0.41*** 0.38ns
−5.77 −4.09 70.6

MTGS 0.70*** 0.42ns
−3.99 −2.83 70.6

SEV PS − 0.54* −3.46 −1.49 52.9

NGS 0.29** 0.16ns
−1.90 −0.82 41.2

MTGS 0.57*** 0.60* −5.33 −2.29 47.1

TP19_FHB DON PS − 0.51* −1.32 −1.03 13.0

NGS 0.17ns 0.37ns
−0.67 −0.53 56.5

MTGS 0.71*** 0.45* −0.96 −0.75 69.6

FDK PS − 0.67*** −4.07 −3.42 91.3

NGS 0.18* 0.45* −3.21 −2.70 34.8

MTGS 0.83*** 0.64** −4.57 −3.84 60.9

SEV PS − 0.78*** −5.86 −4.45 82.6

NGS 0.25** 0.08ns 0.50 0.38 60.9

MTGS 0.67*** 0.12ns
−0.18 −0.13 82.6

aPearson correlation coefficient between GEBVs and phenotypic data from the ADV population used as a validation population (VP).
bPearson correlations coefficient between GEBVs and adjusted means for phenotypic data from the elite (ARE) generation.
*Significant at the 0.05 probability level.
**Significant at the 0.01 probability level.
***Significant at the 0.001 probability level.
†ns, nonsignificant at the 0.05 probability level.

while also outperforming the NGS model (60.9%) (Table 3 and
Figures 4E,F).

DISCUSSION

Genomic selection is a valuable tool for plant breeders, and
many studies have shown the vast realm of possibilities for its
application (Heffner et al., 2009; Sorrells, 2015; Larkin et al.,
2019). The primary goal for GS is to increase genetic gain
for a trait of interest within a breeding program through the
reduction of time within a breeding cycle and by improving
selection accuracy (Schaeffer, 2006; Bernardo and Yu, 2007;
Heffner et al., 2009; Asoro et al., 2013; Rutkoski et al., 2015).
While most research in GS has focused on optimizing TPs
to increase model predictive ability, less have focused on the
implementation of GS into breeding programs in the form of
forward selection (Bernardo, 2016). In our study, we chose to
focus on forward prediction using NGS and MTGS models and
compared their performance, based on selection accuracy and
response to selection, to phenotypic selection for economically
important traits, such as FHB resistance.

Prediction Accuracy of Training
Populations
In our study, we saw that MTGS models consistently had
significantly higher prediction accuracies for DON, FDK, and

SEV in every TP compared to NGS. These results were consistent
with previous studies involving MTGS for FHB resistance traits
(Schulthess et al., 2018; Larkin et al., 2020; Moreno-Amores et al.,
2020). This follows the general trend for MTGS, where covariate
traits sharing a strong correlation with a trait of interest can
improve prediction accuracies for said trait of interest (Calus and
Veerkamp, 2011; Jia and Jannink, 2012; Schulthess et al., 2016;
Lozada and Carter, 2019; Ward et al., 2019).

Regarding the correlations between FHB resistance traits,
it is interesting to note that HD was consistently negatively
correlated with SEV, and yet positively correlated with DON. The
negative correlation between SEV and HD has been observed in
many different studies (Gervais et al., 2003; Paillard et al., 2004;
Schmolke et al., 2005; Larkin et al., 2020; Moreno-Amores et al.,
2020). This is because wheat genotypes that flower earlier are
exposed to more favorable conditions for FHB infection, such
as higher humidity and rainfall during the early growing season,
versus the later part of the growing season (Buerstmayr et al.,
2019). However, while positive correlations have been observed
between HD and DON in other studies, less is known about
this association (Liu et al., 2012; Agnes et al., 2014; Larkin et al.,
2020). Agnes et al. (2014) suggested that this positive correlation
was related to additional fungal growth after the soft dough
stage (Feekes 11.2). Several groups have also identified QTL
associated with both DON and HD (Schmolke et al., 2005; Lin
et al., 2008; Agnes et al., 2014). Agnes et al. (2014) specifically
identified such a QTL on chromosome 7B, which was co-located
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FIGURE 3 | Scatter plots between genome-estimated breeding values (GEBVs) for three Fusarium head blight (FHB) resistance traits in soft red winter wheat from
two different genomic selection models (GS), including naïve models without covariates (NGS) and multi-trait GS models with covariates (MTGS), and adjusted
means for deoxynivalenol (DON) concentration, Fusarium damaged kernels (FDK), and severity (SEV) across two generations, F4:7 advanced from 2017 to 2018
(ADV18) and F4:8 elite from 2018 to 2019 (ARE19): (A) predictions for DON in ADV18 using a NGS model, (B) predictions for DON using a MTGS model, (C)
predictions for FDK from ADV18 using a NGS model, (D) predictions for FDK using a MTGS model, (E) predictions for SEV in ADV18 using a NGS model, (F)
predictions for SEV using a MTGS model. The x-axis represents adjusted mean for DON, FDK, or SEV across the ADV and ARE generations. The y-axis represents
the GEBVs calculated for DON, FDK, or SEV from the NGS or MTGS models. Different colored data points represent genotypes that were advanced to the next
generation. The solid vertical line represents the mean of the adjusted means for the respective FHB resistance trait from the ADV generation, while the vertical
dashed line represents the mean of the adjusted means for the respective FHB resistance trait from the ARE generations. The solid horizontal line represents the
mean of GEBVs for the respective FHB resistance trait calculated from the NGS or MTGS models. The r label represents the Pearson correlation between GEBVs
and adjusted means.

with the vernalization response gene Vrn-B3. Even so, like most
FHB resistance traits and HD, we believe that this association
is variable and environmentally dependent (Buerstmayr et al.,
2019), as we saw correlations between DON and HD ranging
between r = 0.01 and r = 0.31 (Table 2).

We also updated our TPs for each generation by adding
phenotypic data for genotypes from the previous generation into
the following year’s TP. Other studies have found that updating
TPs helped to prevent the deviation in genetic relationships
between the TP and VP as new germplasm was added and
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FIGURE 4 | Scatter plots between genome-estimated breeding values (GEBVs) for three Fusarium head blight (FHB) resistance traits in soft red winter wheat from
two different genomic selection models (GS), including naïve models without covariates (NGS) and multi-trait GS models with covariates (MTGS), and adjusted
means for deoxynivalenol (DON) concentration, Fusarium damaged kernels (FDK), and severity (SEV) across two generations, F4:7 advanced from 2018 to 2019
(ADV19) and F4:8 elite from 2019 to 2020 (ARE20): (A) predictions for DON in ADV19 using a NGS model, (B) predictions for DON using a MTGS model, (C)
predictions for FDK from ADV19 using a NGS model, (D) predictions for FDK using a MTGS model, (E) predictions for SEV in ADV18 using a NGS model, (F)
predictions for SEV using a MTGS model. The x-axis represents adjusted mean for DON, FDK, or SEV across the ADV and ARE generations. The y-axis represents
the GEBVs calculated for DON, FDK, or SEV from the NGS or MTGS models. Different colored data points represent genotypes that were advanced to the next
generation. The solid vertical line represents the mean of the adjusted means for the respective FHB resistance trait from the ADV generation, while the vertical
dashed line represents the mean of the adjusted means for the respective FHB resistance trait from the ARE generations. The solid horizontal line represents the
mean of GEBVs for the respective FHB resistance trait calculated from the NGS or MTGS models. The r label represents the Pearson correlation between GEBVs
and adjusted means.

advanced through the breeding program (Meuwissen, 2009;
Clark et al., 2012; Lorenz et al., 2012; Lorenz and Smith, 2015;
Neyhart et al., 2017). Studies have also shown that larger TP sizes
can have higher prediction accuracies as well, particularly when
working with more diverse populations where new germplasm
is continually added to the breeding program (Heffner et al.,
2011; Mujibi et al., 2011; Heslot et al., 2012; Poland et al., 2012;

Isidro et al., 2015; Norman et al., 2018). We also observed this
trend for FDK and SEV between TP18_FHB and TP19_FHB;
however, we did not observe this trend for DON, where
prediction accuracy decreased when additional genotypes were
added from ADV18. This can likely be attributed to less variation
and a lower heritability for DON within ADV18. Genotypes
within ADV18 also had the FHB resistance alleles for Fhb1,
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which could have increased background population structure
within TP19_FHB.

Forward Prediction
Much like the results from the cross-validation analyses of the
TPs, the MTGS models had stronger correlations between their
calculated GEBVs and phenotypic results from their respective
VPs for FHB resistance traits, aligning with other studies
involving MTGS models (Jia and Jannink, 2012; Schulthess
et al., 2016; Lozada and Carter, 2019; Ward et al., 2019; Larkin
et al., 2020). This was clearly observed with TP18_FHB, when
correlations between MTGS GEBVs and ADV18 phenotypic
results were compared with correlations between NGS GEBVs
and ADV18 phenotypic results for all three traits. The prediction
accuracy advantage of the MTGS model was also observed with
correlations between GEBVs and ARE19 phenotypic results for
FDK and SEV when compared with NGS.

Our range in prediction accuracy for the NGS models were
between r = 0.08 and r = 0.45 while the range of our MTGS
models was between r = 0.10 and r = 0.83. These prediction
accuracies were within the range of prediction accuracies
observed for FHB resistance traits in previous studies (Rutkoski
et al., 2012; Arruda et al., 2015, 2016a; Larkin et al., 2020).
However, the observation of lower prediction accuracies under
specific circumstances was consistent with other studies with
forward prediction for GY (Belamkar et al., 2018; Calvert et al.,
2020). In an evaluation of forward prediction in the Kansas
State University wheat breeding program, the highest prediction
accuracy between the GEBVs for GY in the preliminary yield
trials (PYTs) and the actual phenotypic results for GY was
r = −0.16 (Calvert et al., 2020). The same study also used high-
throughput phenotyping traits as covariates in a MTGS model
for forward prediction of GY in wheat, however, the prediction
accuracy was unfavorable unless a large TP was used (Calvert
et al., 2020). This contrasts with our results where the use of other
FHB resistance or agronomic traits as covariates significantly
improved prediction accuracy for both TPs.

The MTGS model was also superior to phenotypic selection
based on ADV18 phenotypic data for all three traits; however, this
advantage disappeared when implementing the models trained
with TP19_FHB. This is likely because genotypes in ADV19
had a much higher prevalence of resistance alleles for Fhb1
compared with TP19_FHB, therefore the TP failed to account for
this major source of genetic resistance to FHB in the VP. This
highlights the importance of the TP being able to account for
population structure existing within the VP, otherwise prediction
accuracies can be lower. Such a result was foreshadowed with
the lower prediction accuracies from the cross-validation for
TP19_FHB, where no genotypes from the initial TP18_FHB
contained resistance alleles for Fhb1, while only a small portion of
genotypes from ADV18 contained the resistance alleles. A more
detailed description of major and minor FHB resistance QTL
present within TP18_FHB can be found in Larkin et al. (2020).

Response to selection was measured as the difference between
the mean of the top 50% of breeding lines in the ARE generation,
selected based on GEBVs and adjusted means of FHB resistance
traits for the ADV population, compared with the mean of the

full ARE population. Other studies have shown that GS could not
have as high of a response to selection as phenotypic selection;
however, our method of excluding phenotypic data from the
ADV genotypes from the selection dataset allowed for greater
independence from bias toward the phenotypic selection method
(Lozada et al., 2019). In terms of response to selection, both GS
models were superior to phenotypic selection for DON and FDK,
and the MTGS model for SEV, when using the TP18_FHB to
predict ADV18. Much like the results for prediction accuracy, this
strong advantage was not observed when using the TP19_FHB
to predict ADV19, except for the MTGS model for FDK, likely
due to the same reasons described above. There have been no
extensive forward prediction studies for FHB resistance traits
in wheat. Regardless, the fact that phenotypic selection did not
significantly outperform the MTGS model across years or traits
indicates that MTGS models may be a good supplement, if
not substitute for phenotypic selection, particularly during years
when it is difficult to phenotype.

When comparing GS models with phenotypic selection for
FHB resistance traits based on selection accuracy, the NGS and
MTGS models had higher selection accuracies for DON using
TP18_FHB, and the MTGS model was equal to phenotypic
selection using TP19_FHB. Both the MTGS and NGS models
were equally more accurate than phenotypic selection for
FDK with TP18_FHB. Additionally, the MTGS model was
equal in performance with phenotypic selection for SEV in
TP19_FHB. It has been mentioned that prediction accuracy does
not necessarily correlate with selection accuracy for forward
prediction (Belamkar et al., 2018).

CONCLUSION

This study showed that both NGS and MTGS could be
successfully implemented into a SRWW breeding program, while
using other agronomic and disease traits as covariates with
reasonable accuracy compared to phenotypic selection and again
asserted its value as a tool for plant breeders. We also found that
MTGS models performed significantly better than NGS models
in terms of both cross-validation within TPs as well as forward
prediction of untested genotypes for economically important
traits, such as FHB resistance traits. This was particularly evident
when there was a strong correlation between the trait of interest
and the covariate trait. This is one of the first studies to show that
MTGS could be effectively implemented for forward prediction
within a wheat breeding program. This is also the first study
to extensively investigate the use of forward prediction when
breeding for FHB resistance in wheat. We found that GS could
serve as a suitable, albeit imperfect, alternative to phenotypic
selection when implemented during years where environmental
conditions prohibit accurate phenotypic selection, particularly
when experiencing late freezing events or extensive lodging.

Prior to implementing GS into their own breeding programs,
breeders must consider the genetic relationships between their
prospective TPs and the breeding lines they hope to use as
their VP. In the case of MTGS, breeders must also consider the
correlations between their traits of interest and secondary traits
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used as covariates, as these correlations can differ between the
TP and VP. For example, there could be a strong correlation
between DON and HD in the TP but there could be a weak
correlation between the two traits in the VP, therefore the MTGS
model might not be more accurate than a NGS model. Inversely,
there could be a strong correlation between traits in the VP while
there is a weak correlation between traits in the TP, therefore
MTGS could be more accurate than expected when forward
prediction is implemented.
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