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Recent technical advances in the computer-vision domain have facilitated the
development of various methods for achieving image-based quantification of stomata-
related traits. However, the installation cost of such a system and the difficulties of
operating it on-site have been hurdles for experimental biologists. Here, we present
a platform that allows real-time stomata detection during microscopic observation.
The proposed system consists of a deep neural network model-based stomata
detector and an upright microscope connected to a USB camera and a graphics
processing unit (GPU)-supported single-board computer. All the hardware components
are commercially available at common electronic commerce stores at a reasonable
price. Moreover, the machine-learning model is prepared based on freely available cloud
services. This approach allows users to set up a phenotyping platform at low cost. As
a proof of concept, we trained our model to detect dumbbell-shaped stomata from
wheat leaf imprints. Using this platform, we collected a comprehensive range of stomatal
phenotypes from wheat leaves. We confirmed notable differences in stomatal density
(SD) between adaxial and abaxial surfaces and in stomatal size (SS) between wheat-
related species of different ploidy. Utilizing such a platform is expected to accelerate
research that involves all aspects of stomata phenotyping.

Keywords: affordable phenotyping, real-time image analysis, stomatal density, stomatal size, microscopy

INTRODUCTION

Stomata are pores of plant leaves that regulate gas exchange. Plants modulate the degree of stomatal
opening (aperture) to adjust CO2 uptake and water loss in response to environmental conditions
such as light intensity, humidity, temperature and CO2 concentrations. In addition to the regulation
of stomatal aperture, stomatal density (SD) and stomatal size (SS) are also known to influence
gas exchange efficiency (Bertolino et al., 2019). From this viewpoint, quantification of such traits
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is important to gain insights into the molecular mechanisms
that underlie the environmental adaptability of the plant. Genetic
approaches such as Quantitative Trait Loci analysis and Genome-
Wide Association Studies, in addition to forward chemical
genetic screening, have successfully identified factors involved
in such traits (Ziadi et al., 2017; Chen et al., 2020). To detect
genetic and environmental effects on a quantitative trait, it
is crucial to measure the data variation using a large sample
(Tsuchimatsu et al., 2020). However, quantification of stomata-
related phenotypes has often had to rely on manual methods,
limiting the throughput of the research.

Recent technological advances in the computer-vision
domain have allowed the development of various algorithms,
pipelines or platforms to quantify stomata-related phenotypes
through analysis of microscopic images. For example, Jayakody
et al. (2017) have built a HOG classifier to detect the stomata
of grapevine leaf imprints. Toda et al. (2018) have also
utilized HOG in an image-analysis pipeline to detect the
stomata of dayflower leaf disks. Meanwhile, Fetter et al.
(2019) have utilized a convolutional neural network (CNN),
a deep learning architecture, to identify stomata from a
variety of microscopic images taken from various plant
species. Other deep learning models, e.g., YOLO, SSD, and
Mask R-CNN, have been proposed as useful adjuncts in
stomata detection and trait measurement (Sakoda et al.,
2019; Casado-García et al., 2020; Jayakody et al., 2021).
As exemplified by those studies, deep learning has been
demonstrated to be efficacious in the quantification of
stomatal traits.

However, we faced several issues in implementing the above
systems in a laboratory environment. First, to train a deep
neural network model, a computer equipped with a high-
performance graphics processing unit (GPU) and sufficient
random-access memory (RAM) was required. Moreover, to use
the trained deep learning model in daily analysis, an additional
personal computer (PC), preferably also with a GPU, was ideally
needed. This involves a high implementation cost to establish
the image-analysis system. Second, we experienced difficulty in
implementing real-time analysis that could observe and detect
stomata on the fly. Attainment of such systems has been desirable
for experimental biologists because they are expected to relieve
the labor of injecting the acquired microscopic image into an
independent program. However, manufacturers of laboratory-
grade CCD/CMOS cameras designed for microscopic image
acquisition often do not make drivers, software development
kits or application programming interfaces available to users,
but use proprietary dedicated software to run the devices. This
makes it difficult for a “home-brewed” image-analysis program
to access the camera connected to the microscope for on-
site analysis.

To resolve such issues, we designed a microscopic system
intended to analyze stomatal traits in real time, which can be
easily and affordably prepared. The hardware system consists
of an upright microscope connected to a USB video device
class (UVC)-compatible camera and a Jetson Nano, a GPU-
supported single-board computer. We chose each component to
be generally available at electronic commerce sites (e.g., Amazon,

eBay) at an affordable price, so that the total cost does not exceed
USD 1,000. Moreover, the UVC compatibility of the camera
allows it to be controlled from open-source computer-vision
libraries. Using this system, we built an analysis pipeline to detect
the stomata of wheat leaf blade imprints using an SSD, a deep
learning architecture designed for object detection (Liu et al.,
2015). The train/test dataset annotation and the model training
were performed using free cloud services, which also minimized
the preparation cost.

Using this platform, we investigated the phenotypic traits
of wheat stomata. Here, we demonstrate that our platform
can easily quantify wheat SD and SS in large numbers of
samples. By increasing the sample number, we were able to
detect the difference in the SD between adaxial and abaxial
surfaces with high statistical confidence. Notably, a negative
correlation between SD and SS within a single leaf was also
detected. As exemplified by the case study, utilizing such a
platform is expected to accelerate research involving all aspects of
stomata phenotyping in fields such as plant physiology, breeding
and agriculture.

MATERIALS AND EQUIPMENT

Required Hardware
Server PC

• NVIDIA Jetson Nano B01 (NVIDIA, United States).
• 5 V/4 A AC/DC power supply for Jetson Nano.
• UHS-I microSD card (preferably larger than 64 GB).
• USB A-MicroB conversion cable.
• LAN cable.
• Internet accessible environment.
• (Optional) USB memory for storing the acquired image.
• An additional PC or an adapter that can read/write a SD

card image for the Server PC.

Microscope
• Upright C-mount trinocular microscope with ×4 and

×10 lenses, e.g., SW380T 40–2500X (Swift Optical
Instruments, United States). Alternatively, a binocular
microscope can be used with an additional eyepiece
C-mount adapter.

• UVC-compatible with C/CS mountable camera with a
resolution preferably over 8 MP. e.g., WE3170 (GAZO,
Japan), ELP-USB13M02-MFV (ELP, China).

Client PC
• Arbitrary PC with USB 2.0 connection available.

Required Software
Server PC

• Configuration provided by NVIDIA1. However, for the
initial SD card image, we strongly prefer using JetCard,2 an
AI development friendly configuration. This image enables

1https://developer.nvidia.com/embedded/learn/get-started-jetson-nano-devkit
2https://github.com/NVIDIA-AI-IOT/jetcard
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users to skip the time consuming and complex installation
of the python-related libraries including ones that are
required by our GUI system, as well as Jupyter Notebook
(Lab) Server and initial user account setup. Instructions
written in the section “Methods” assume that users have
used the JetCard image.

• We prepared a simple browser-based GUI that can
be run in Jupyter Notebook3. This package also
contains the stomata detection SSD model weights
prepared as described in the Methods section.
Alternatively, users can run their custom python
code that receives camera input and simultaneously
processes data.

• Users may connect the display to the Jetson Nano
while setup, however, upon running the analysis
program, the display must be disconnected and
be controlled by the client PC (headless mode) to
ensure sufficient free GPU memory for executing the
deep neural network model and image analysis upon
real-time analysis.

Client PC
• Any software that can perform an SSH connection

to the server PC.
• Web browser.
• 1x USB-A port.
• The present system has been tested in the following

PC environments, although most of the commercially
available PC environments are expected to work. If the
OS does not have an SSH client at default, download any
arbitrary SSH client.

– macOS Catalina 10.15.7 with Google Chrome
(91.0.4472.114).

– Windows 10 Pro version 1909 (OS Build: 18363.1440)
with Microsoft Edge (91.0.864.59).

METHODS

Configuration
Microscopy

• Remove the lens unit of the camera if present and
mount it on the C-mount trinocular tube of the
microscope. The camera can alternatively be mounted
to the eyepiece of the microscope using the eyepiece/
C-mount adapter.

Server PC
• Create the SD card image of Jetson Nano

using the JetCard image at any available PC by
downloading and writing the image file available at
https://github.com/NVIDIA-AI-IOT/jetcard. Users will
need a PC with an adapter to read/write SD card. Detailed
instructions of how to prepare are thoroughly described at
the website.

3https://github.com/totti0223/onsite_stomata_platform

• Insert the SD card with its image into the Jetson Nano.
• Power on the Jetson Nano with headless mode (no

monitor connected).
• Connect the microscopy camera to the USB A

port of Jetson Nano.
• Connect the LAN cable to Jetson Nano.

– For security reasons, we do not recommend the Jetson
Nano to be always connected to the internet. We prefer
the LAN cable to be disconnected after the initialization
step described below. After setup, the system can be run
completely offline.

Client PC
• Initialization.

– Connect the client PC to the Jetson Nano with the USB
A-Micro B cable.

– Open the terminal and establish SSH connection with the
following command.

– ssh -p jetson jetson@192.168.55.1.
– Using the Jetson Nano as the server PC through USB

connection will automatically assign its IP address to
192.168.55.1, which is the default value configured in
NVIDIA Jetson series (e.g., Nano, Xavier, TX2) as of
June 2021.

– Install additional python libraries with the following
command in the terminal.

– pip3 install ipywidgets scikit-image.

• Download the GUI and dependencies with the following
command. Ensure the user is in the home directory
(e.g. cd $HOME).

– git clone https://github.com/totti0223/onsite_stomata_
platform.git.

– cd onsite_stomata_platform.
– git clone https://github.com/tensorflow/models.git.

– Close the terminal.
– Disconnect LAN cable from the Jetson NANO.

• GUI execution for stomatal detection.

– Open the terminal again and establish SSH connection
this time with port forwarding.

– ssh -p jetson -L 8888:localhost:8888 jetson@192.16
8.55.1.

– If the JetCard image is used for Jetson Nano, port
8888 is occupied by JupyterLab instead of Jupyter
Notebook. Both applications are compatible at the
current state.

– Open a web browser, and type the following url for
JupyterLab connection.

– localhost:8888.
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– Type jetson for password.
– Locate and click the folder “onsite_stomata_platform” to

move to its directory.
– Click and open “main_En.ipynb.”
– Execute each cell from the top. Execute the cell

as described below and the GUI will start inside
the notebook.

– _ = pme.stream(pipeline_func = pipeline_func,
output_directory = None, camera_id = 0,
videocapture_api_backend = 200,
camera_initial_settings = {‘format’: [‘M’, ‘J’, ‘P’, ‘G’],
‘height’: 768, ‘width’: 1024, ‘fps’: 30}).

– The above code assumes users are using the
ELP-USB13M02-MFV camera. If users want
to test their Jetson Nano with a USB Web
Camera or other input devices, simply delete
camera_initial_settings = {...} from above.

– If the GUI would not start or execute properly
due to JupyterLab specific configuration or
version incompatibility, shutdown the ipynb
notebook and reaccess by Jupyter Notebook. In
brief, change the “/lab” to “/tree” in the URL. See
https://jupyterlab.readthedocs.io/en/stable/getting_
started/starting.html for details.

• GUI execution for custom image analysis interface.

– If users want to use their own stomata detection model
in their GUI, the most simple way is to rename the
existing “saved_model” folder to “_saved_model” and
copy their own “saved_model” folder into the directory.
Depending on their training condition and SS, users may
have to change their input image size from the camera
(from the GUI pulldown menu) to obtain optimal results.
Notably, if users would like to prepare an image analysis
module other than bounding box detection (e.g., instance
segmentation), the user will need to prepare a custom
pipeline func. In any case, the module can be modified
in the notebook cell, in which the existing codes are self
explanatory for users who have sufficient skills to prepare
their own custom pipeline.

• Access https://github.com/totti0223/onsite_stomata_
platform for further details online and future updates.

Generation of Stomata Detection Model
For annotating images used for machine-learning model training,
we used Labelbox4, a cloud labeling service that is currently
free for academic usage. We uploaded and labeled 697 wheat
leaf imprint images so that each stoma for the training set was
annotated with a circumscribed bounding box. Each image had
a resolution of 2048 × 3072 (height × width) pixels that were
acquired as described in the following section “Plant Materials,
Growth Condition, and Sample Preparation.” Annotated dataset
was then exported from Labelbox to the local environment in

4https://labelbox.com

JSON format. Next, labeled images were resized to 1024 × 1536,
padded with black pixels to the size of 1024 × 2048, and were
split into two sized 1024 × 1024. The image transformation and
the converting bounding-box coordinates were performed using
Albumentations (Buslaev et al., 2020), an image augmentation
library. Sets of images and annotations were then converted to
COCO json format, then finally to TFRecord format.

The training of the stomata detection model was performed by
following the steps of the section “Training and Evaluation with
TensorFlow 2” of the Tensorflow Model Garden repository5.
The training process was run in Google Colaboratory6,
a freely available cloud programming service with GPU
accessibility. Detailed codes and instructions to reproduce the
regarding system as well as the stomata detection model is
described in Google Colaboratory executable notebook7 hosted
at https://github.com/totti0223/onsite_stomata_platform.
Briefly, the default config parameters provided in the
repository were used for training. We used an SSD (Liu
et al., 2015) with MobileNetV2 backbone, pretrained with
COCO dataset, with an input size of 640 × 640 (Refer
to ssd_mobilenet_v2_fpnlite_640 × 640_coco17_tpu-8 at
Tensorflow Model Garden). As a result, we obtained a model that
detects stomata with a mean Average Precision (mAP) of 0.825
and 0.636 with the intersection-over-union (IoU) threshold of
0.3 and 0.5 against the test dataset, respectively. The trained
model was downloaded from Google Colaboratory to the local
environment as a SavedModel format, and used for the GUI.
Notably, the test dataset was created by acquiring 50 images
using the microscopy proposed in this research with a resolution
of 768 × 1024.

Plant Materials, Growth Condition and
Sample Preparation
Training Data
A series of 25 bread wheat accessions with serial numbers from
LPGKU2305 to LPGKU2329 (National BioResource Project–
Wheat, Japan) and a Swiss winter wheat cultivar “ArinaLrFor”
(Singla et al., 2017) were used as training data. The first leaves
of young plants and the flag leaves after heading were collected
from those wheat accessions in the greenhouse. The epidermal
thin imprints were prepared by pasting and drying clear nail
polish on the leaves. In some cases, first imprints were taken
from the leaves using dental impression material (Dent Silicone
AQUA, Shofu Inc., Kyoto, Japan) and used as the templates for
the nail-polish imprints. The nail-polish imprints were put on
glass slides and observed directly or after mounting with glycerol.
Of note, samples were placed on the microscopic stage so that
stomata were aligned as horizontally as possible. The microscope
was a normal bright-field microscope, Olympus BX61 (Tokyo,
Japan), equipped with a normal lens UPlanFLN. The camera
was an RGB camera of 6.3 MP CMOS, a WRAYCAM-NOA

5https://github.com/tensorflow/models/blob/master/research/object_detection/
g3doc/tf2_training_and_evaluation.md
6https://colab.research.google.com
7https://colab.research.google.com/github/totti0223/onsite_stomata_platform/
blob/main/StomataDetectorModelTraining.ipynb
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630 (Wraymer Inc. Osaka, Japan). These images were used for
initial training for the detection model described in the prior
“Generation of Stomata Detection Model” section. Other bread
wheats, a cultivar Yumechikara and a synthetic hexaploid wheat,
were used to acquire datasets for validation. These samples were
observed using the same method as the samples used for the
measurements below.

SD and SS Measurements
A hexaploid bread wheat Triticum aestivum (cultivar: Chinese
Spring), a tetraploid wheat Triticum turgidum (extracted
tetraploid wheat harboring AABB subgenomes of Chinese
Spring) (Yang et al., 1999), diploid wheat-relative grasses
Triticum urartu (accession: KU-199-01) and Aegilops tauschii
(accession: KU-2076), and a model grass Brachypodium
distachyon (accession: Bd21) were used in this study. The seeds
were germinated on moist filter papers in the dark at 4◦C, then
the seedlings were grown in plant pots under continuous white
LED light in an air-conditioned room maintained at 22◦C. The
first leaves of four-leaf-stage plants were used for observation.
Microscopic images were taken from three plants of each species.
The slides were prepared using the same method as for preparing
the training data described above. The microscope, camera and
image processing devices were as described above.

To sample images from a wide range of leaf areas in
an unbiased manner, images were acquired according to the
following protocol. At first, we decided a whole target area to
be acquired and prepared the imprint. Approximately a middle
third of total leaf length was selected as the target because the
middle parts of wheat leaves show smaller variation in SD among
subsamples than subsamples from the distal and proximal parts
of the leaves (Teare et al., 1971). Second, the angles of the imprint
and camera were adjusted to align cell files along the left-right axis
in the image. Third, start acquiring a series of images from the
top left and scanned across the target area to the bottom right.
Each horizontal scan-lines is distant from the next ones with
approximately the image size. When the current frame displayed
is not good due to distortion, breaking, bubbles or shallowness
of the imprint, we ignored that frame and went further to a
better frame. During such a data quality evaluation, the real-time
feedback was helpful to know whether or not the image quality
was in a permissible range.

Data Analysis and Visualization of SD
and SS
To calculate the SD, the total number of automatically detected
stomata was divided by the microscopic field area (0.984 mm2 in
our hardware setting). To measure the SS, the x- and y-lengths
of each bounding-box were used as stomatal length and width,
respectively, after scaling the values from units of pixels to
micrometers (1.116 µm/pixel for ×4 lens, and 0.445 µm/pixel
for ×10 lens). The bounding-box size of the stomata may be
incorrect when the box coordinates contain a lower limit (0)
or upper limit (1024 for the x-axis and 768 for the y-axis)
because some part of the stomata protrudes from the image.
Therefore, these marginal stomata were ignored in the SS
calculation. The ground truth of stomatal length and width were

manually measured on imageJ8 with Rectangle selection tool.
Data visualization by scatter, density, box and jitter plots was
performed using the ggplot2 package (Wickham, 2016) in the R
language9. Statistical tests including t test and correlation tests
were performed using the stats package in the R language.

RESULTS

Platform Appearance
The appearance of the platform and the schematic diagram of the
dataflow prepared by following the Methods section are shown
in Figures 1A,B. The camera input image was processed in the
server PC (Jetson Nano), while the client PC was connected to
the server PC by a web browser through a USB connection.
Therefore, the latter does not require a specific operating system
or hardware specification, which allows multiple users to connect
their PCs to the platform without installing any specific programs
(Supplementary Movie)10.

The executed GUI is embedded inside the Jupyter Notebook
(Figure 1C and Supplementary Figure 1). Moreover, the raw
program code of the image-analysis module is written directly
inside the cell of the Notebook. This allows easy program
development and debugging for any users upon customization.
In our configuration, the camera image sequence is processed
through an SSD to obtain the coordinates of the detected stomata
and then displayed as an annotated output. The processing speed
of the platform depends on the camera input image size and the
content of the image-analysis program, as well as the presence or
absence of a display of the annotated image. In our configuration,
it was about 1.4 frames per second.

Stomatal Density Measurement
To test the performance of stomata counting, we compared
stomatal numbers per unit area (SD) from different types of
tissues. In general, SDs differ between adaxial and abaxial leaf
surfaces. In the case of Triticeae, the adaxial surface has a higher
SD than the abaxial (Rajendra et al., 1978; Wang and Clarke,
1993). We measured SDs from adaxial and abaxial imprints of
bread wheat leaves. More than 150 images, each of a 0.984 mm2

microscopic field, were analyzed. The mean SDs were 23.2 and
16.8 stomata/mm2 for adaxial and abaxial surfaces, respectively
(Figure 2A). The true SDs, that is, the manually counted data,
were 22.5 and 16.2 stomata/mm2, indicating error rates of only
2.84 and 3.70% for SD estimation.

Despite the obvious difference in SD between adaxial and
abaxial surfaces as shown in Figure 2A, the stomatal counts
of single images varied, and the distributions of adaxial and
abaxial surfaces largely overlap. This means that no significant
difference between the surfaces can be detected in some cases
of small samples. When four images were randomly sampled
from our dataset and Welch’s t tests were performed, 3,652 of
10,000 (∼37%) simulations resulted in no significant difference

8https://imagej.nih.gov/ij/
9https://www.r-project.org/
10https://youtu.be/CHk6Mw3kabc
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FIGURE 1 | Stomatal detection platform. (A) Schematic diagram of the workflow. (B) Appearance of the platform. Numbers in insets describe the individual
components. 1, UVC-compatible camera (ELP-USB13M02-MFV); 2, upright trinocular microscope (SW380T); 3, server PC (Jetson Nano B01); 4, client PC
(Macbook Pro 13-inch, 2017). (C) Screenshot of the GUI run in the client PC through the Google Chrome web browser.

(p > 0.05). In the case of 10-each random samples, only 33 of
10,000 (0.33%) simulations resulted in no significant difference,
confirming the importance of sample size in statistical tests.
While these simulations were performed from data for manually
counted SD, the same random sampling with our automatically
estimated SDs that included some errors resulted in no significant
difference in 4,907 (∼49%) and 81 (0.81%), respectively, of
10,000 simulations of 4- and 10-each random samples. These
simulations suggest that increasing sample size has a higher

impact than increasing accuracy in SD estimation and statistical
power, given that the error rate is sufficiently low.

In addition, we asked whether our phenotyping system can
also be used to quantify the stomatal patterning parameter. Our
image acquisition protocol provides the images in which cell files
are aligned horizontally, thus the y-coordinates of stomata are
limited to the position of stomatal files. This property allows us
to automatically collect the interval lengths between stomatal files
along the y-axis of the image (Supplementary Figure 2A). Such
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FIGURE 2 | A case study of SD and SS. (A) Automatically measured SD of abaxial (red) and adaxial (blue) surfaces. The first leaves from bread wheat (Triticum
aestivum) were observed at the four-leaf stage of seedlings. Gray horizontal bars indicate mean values. (B) Automatically measured SS of different species with a
series of genome sizes. Besides a scatter plot of length (x-axis) and width (y-axis), the density plots along each axis are shown. “x6_Tr,” “x4_Tr,” “x2_Tr,” “x2_Ae,”
and “Br” indicate hexaploid T. aestivum, tetraploid Triticum turgidum, diploid Triticum urartu, diploid Aegilops tauschii and diploid Brachypodium distachyon,
respectively. More than a thousand stomata were measured for each species. Abaxial stomata from the former four species and adaxial stomata of Brachypodium
were measured because the Brachypodium has rich abaxial prickle hairs that hinder automatic measurements. (C) Local SD and local mean stomatal length of
bread wheat (T. aestivum). Data were collected by automatic measurements. Each point represents a single microscopic image with a size of 0.984 mm2. Besides a
scatter plot of SD (x-axis) and length (y-axis), the box plots along each axis are shown.

analyses for the interval lengths were performed for our adaxial
and abaxial datasets of the bread wheat. The results indicate that
there are two types of intervals, namely around 130 and 230 µm,
in the abaxial surface (Supplementary Figure 2B). On the other
hand, the adaxial data show continuously varying interval lengths
from 140 to 240 µm (Supplementary Figure 2C). As exemplified
by those results, the stomatal position data obtained from the
present system can be used to quantify some aspects of the
stomatal pattern.

Stomatal Size Measurement
Our analysis system detects each stoma as a bounding box
and records each box size as representing the individual SS.
Thus, the x-length and y-length indicate the stomatal length
(guard cell length) and stomatal width (sum of guard cell widths,
subsidiary cell widths and pore width), respectively, when the
leaf distal–proximal axis corresponds to the left–right axis of
the microscopic field (Supplementary Figure 3A). Comparison
between the predicted and hand-measured SS of wheat-related
species with different SS below resulted in Pearson’s correlation
coefficients of r = 0.92 and r = 0.73 for stomatal length and width,
respectively (Supplementary Figures 3B,C).

The mean SS, or the range of SS, is a species-specific trait,
and useful for taxonomic classification in a case where no
macroscopic trait is available to classify the different species
clearly (Aryavand et al., 2003; Boza Espinoza et al., 2020).
It is known that SSs correlate well with genome size in
Triticum and other plants (Masterson, 1994; Beaulieu et al.,
2008). Hexaploid bread wheat (T. aestivum) has a large genome
consisting of A, B and D subgenomes (∼17 Gb) (International
Wheat Genome Sequencing Consortium (IWGSC) et al., 2018).
Tetraploid wheat with A and B subgenomes has approximately
two-thirds of the hexaploid genome size. The diploid wild
species, A. tauschii and T. urartu, which are the progenitors
of bread wheat D and A subgenomes, respectively, have
approximately a third of the genome size (Luo et al., 2017;

Ling et al., 2018). We measured the SS of these plants using
our bounding-box measurement system. The mean SSs were
87.2 µm × 54.4 µm, 66.3 µm × 40.7 µm, 59.0 µm × 36.4 µm,
and 57.4 µm × 33.9 µm (length × width) for the AABBDD
hexaploid, AABB tetraploid, AA diploid and DD diploid
species, respectively, showing a clear correlation with the
genome sizes (Figure 2B). This result shows that our automatic
measurement performs well for a particular variation in SS,
and is thus useful to describe this species-specific stomatal trait.
Interestingly, the SS distributions partly overlapped between
plants of different genome sizes, as shown by the scatter and
the density plots (Figure 2B). In addition to determining the
mean values, revealing such variations in a large sample number
is important to identify the presence or absence of significant
differences among species.

Brachypodium distachyon, a model grass, has a small genome
(0.27 Gb) (The International Brachypodium Initiative, 2010).
The molecular mechanism of formation of the dumbbell-shaped
stomata of grass has been demonstrated in genetic studies using
this species (Raissig et al., 2017). Its stomata are so small
that only a portion of the stomata were detected when the
low magnification (×4) lens was used, as was the case for
wheat stomata in the present study (Supplementary Figure 4).
This was because our model was trained with images of large
wheat stomata. However, they were successfully detected with a
lens of greater magnification (×10) (Supplementary Figure 4).
The Brachypodium stomatal length and width were 27.9 ± 3.5
and 17.3 ± 2.8 µm (mean ± standard deviation), respectively
(Figure 2B). Most cereal crops and wild grass species have
genome sizes intermediate between those of B. distachyon and
T. aestivum, thus their stomata can be expected to be detected
if the image is acquired with an appropriate lens and resolution.

Correlation Between SD and SS
Previous studies have demonstrated that the variation in SS
within a species is negatively correlated with the SD of the tissues
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observed (Rajendra et al., 1978). Such a negative correlation
has been reported between different genotypes and between
different leaf positions in a shoot. However, our knowledge
is very limited (Smith et al., 1989) about whether the same
relationship exists between small microscopic fields within leaves
of the same genotype, leaf position and growth condition. We
found that this negative correlation was observed in our dataset
that consisted only of the first leaves from a single cultivar
(Figure 2C). The adaxial and abaxial datasets showed significant
negative correlations (p = 6.26e–08 and 1.55e–07, respectively,
in Pearson’s correlation test) between mean stomatal lengths
and SDs of different microscopic fields. Interestingly, the mean
stomatal lengths were almost the same for adaxial and abaxial
surfaces (86.7 ± 3.9 and 87.2 ± 3.7 µm, respectively), although
the SDs were different (Figure 2C). This may suggest that
the size of each stoma is determined according to the local
SD of only a small surrounding region, but the response to
the local SD differs between adaxial and abaxial stomata. Our
system and others that support high-throughput phenotyping
can contribute to obtaining greater insight into such unknown
developmental mechanisms.

DISCUSSION

In this study, we proposed a platform that enables real-time
stomata detection using microscopic observation. The setup
cost of the hardware does not exceed USD 1,000, and the
stomata detection model and the training data labeling can be
prepared based on freely available services. Using the platform,
we demonstrated SDs and their variation in adaxial and abaxial
leaf surfaces, and characterized the SS distribution in several
wheat-related species of different genome sizes. In addition, we
could show that the adaxial and abaxial stomata in a bread wheat
exhibit the same mean size even though they show different
densities, and SD and SS of each surface correlate negatively.
Our results indicate that experimental biologists can benefit from
these cutting-edge technologies in image processing, not only by
developing the algorithm but also by using free cloud services
and reasonably inexpensive hardware, implementing real-time
image processing and a user-friendly user interface. We discuss
below some possible options, applications and future challenges
of the present system.

In recent years, many companies have released inexpensive
single-board computers. Of these, we used the Jetson Nano for the
system because at present it is one of the most affordable GPU-
harboring PCs (approx. USD 60). However, the GPU memory
of the Jetson Nano is limited to 2 GB, which restricts the
deep learning architecture that can be loaded into the pipeline.
Superior NVIDIA Jetson models such as XAVIER and the TX2
series possess larger GPU memory, thus providing more choices
of system configuration.

For stomata detection, we utilized a deep learning-based
object detection algorithm to infer the bounding-box coordinates
of the stomata. Because the stomata are always oriented
horizontally both in our dataset and under observation
conditions (Figure 1C), the bounding-box coordinates obtained

can be used to estimate the width and length of the stomata.
Although further refinement of the model is potentially needed
to improve accuracy, the current parameters were adequate to
highlight the differences in SS between species (Figure 2B).
Application of alternative deep learning architecture intended for
segmentation, such as Mask R-CNN (He et al., 2017), is expected
to achieve a more precise measurement of the morphology of the
stomata (Jayakody et al., 2021).

We focused on the detection of stomata from wheat-related
species, which have the dumbbell-shaped stomata typical of grass
plants. Similarly, to the increasing reports of stomata detection of
kidney shaped stomata of dicots, detection of dumbbell shaped
stomata of grass are also starting to be established, exemplified by
that of wheat (Sun et al., 2021). In the present study, the training
dataset was prepared from only hexaploid wheat cultivars with
some augmentation, thus the variations in SS and morphology
of diploid and tetraploid species were not included. Despite
this limitation, the trained model detected most of the stomata
from diploid and tetraploid species. This possibly reflects the
morphological similarity of dumbbell-shaped stomata in imprint
images. Enhancing the generalization of performance to detect
the stomata of various grass species might be accomplished
with little effort.

Image processing methods may not perform well because of
difficulties that are common in biological images (Uchida, 2013).
Raw microscopic images acquired on-site often include low-
quality data unsuitable for analysis (Koho et al., 2016), such as
out-of-focus images, nonuniform lighting or physical damage
of the sample. These are often not taken into consideration
during the development of analysis algorithms, and can be
a potential difficulty in operation. An advantage of real-time
analysis is that we can prevent the acquisition of such low-
quality images because we can judge the quality of image-
analysis results during observation. In the case of stomatal
detection using imprint images, causes for these may include
contamination by dust or distortion or a shallow imprint. It is
costly to use manual analysis or to develop another program
to complement the data. Thus, real-time image analysis during
observation enables quality assurance of the analyzed data by
the operator. In addition, high-speed image analysis enables a
time-course analysis, which reveals the dynamics of stomatal
aperture when living cells are observed (Sun et al., 2021).
There is another potential benefit of real-time image processing
for the development of further automatic high-throughput
phenotyping systems. Just as an automatic car-driving system
regulates the speed in response to the real-time detection of
pedestrians and road signs in the camera images, it is possible
to move the stage automatically and acquire multiple images
using a program that links the microscope camera and a
motorized stage. The functionality of an imaging system with
an automated motorized stage has been proposed for high-
throughput stomatal phenotyping (Millstead et al., 2020). There
are motorized stages that are commercially available at a low
price and that are controllable from a PC. Real-time image
processing systems can expand the possibilities of cooperation
between computer and robot as well as cooperation between
computer and human.

Frontiers in Plant Science | www.frontiersin.org 8 July 2021 | Volume 12 | Article 715309

https://www.frontiersin.org/journals/plant-science
https://www.frontiersin.org/
https://www.frontiersin.org/journals/plant-science#articles


fpls-12-715309 November 1, 2021 Time: 12:41 # 9

Toda et al. Affordable Stomatal Phenotyping Platform

While there are some potential challenges for further
generalization of performance and higher throughput, our
present approach will provide the possibility for many
experimental biologists to introduce a cost-effective high-
throughput system that will accelerate a range of studies involving
stomata-related trait analysis.
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