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High yield is the primary objective of maize breeding. Genomic dissection of grain yield

and yield-related traits contribute to understanding the yield formation and improving

the yield of maize. In this study, two genome-wide association study (GWAS) methods

and genomic prediction were made on an association panel of 309 inbred lines. GWAS

analyses revealed 22 significant trait–marker associations for grain yield per plant (GYP)

and yield-related traits. Genomic prediction analyses showed that reproducing kernel

Hilbert space (RKHS) outperformed the other four models based on GWAS-derived

markers for GYP, ear weight, kernel number per ear and row, ear length, and ear diameter,

whereas genomic best linear unbiased prediction (GBLUP) showed a slight superiority

over other modes in most subsets of the trait-associated marker (TAM) for thousand

kernel weight and kernel row number. The prediction accuracy could be improved

when significant single-nucleotide polymorphisms were fitted as the fixed effects.

Integrating information on population structure into the fixed model did not improve the

prediction performance. For GYP, the prediction accuracy of TAMs derived from fixed

and randommodel Circulating Probability Unification (FarmCPU) was comparable to that

of the compressed mixed linear model (CMLM). For yield-related traits, CMLM-derived

markers provided better accuracies than FarmCPU-derived markers in most scenarios.

Compared with all markers, TAMs could effectively improve the prediction accuracies for

GYP and yield-related traits. For eight traits, moderate- and high-prediction accuracies

were achieved using TAMs. Taken together, genomic prediction incorporating prior

information detected by GWAS could be a promising strategy to improve the grain yield

of maize.

Keywords: grain yield, genome-wide association study, trait-associatedmarkers, prediction accuracy, fixedmodel

INTRODUCTION

Maize serves as an important cereal and forage crop and plays an important role in
sustaining global food security. Improvement of grain yield is a major and longstanding
breeding goal for maize. Kernel number per ear (KNE) and thousand kernel weight
(HKW) are the major components of grain yield per plant (GYP). Kernel number
per row (KNR) and kernel row number (KRN) are the important components of
the KNE. Ear length (EL) and ear diameter (ED) affect GYP in different degrees.
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In general, compared to GYP, yield components and related traits
are less affected by environments and have higher heritability,
and therefore, can be directly used to facilitate the final yield
of maize (Shi et al., 2017). Identifying loci associated with GYP
and yield-related traits will contribute to understanding their
basis and the correlations between them at a molecular level. In
addition, the identification of important loci and genes involved
will provide useful information for whole-genome selection of
high-yield potential.

Using linkage mapping and genome-wide association study
(GWAS), a large number of quantitative trait loci (QTLs) or
single-nucleotide polymorphisms (SNPs) have been identified
among different populations. For instance, under drought and
heat environments, Millet et al. (2016) detected a large number of
significant SNPs for the grain yield and the grain number using
single-environment and multi-environment GWAS methods.
Zhang et al. (2017) identified 23 QTLs and 25 significant SNPs
for HKW, KRN, and KNR in recombinant inbred lines and
an association panel of 240 maize inbred lines, and a stable
locus (PKS2) influencing KRN, HKW, and kernel shapes was
identified. Using an intermated B73 × Mo17 Syn10 doubled
haploid population and a natural population, Zhang et al. (2020)
detected 100 QTLs and 138 SNPs for GYP and yield-related traits
and found that eight significant SNPs were co-located within
intervals of seven QTLs. These studies enforce the complex of
GYP and yield-related traits, which are governed by a mixture
of many large-effect and small-effect genomic components.

Traditional marker-assisted selection (MAS) and marker-
assisted recurrent selection (MARS) use only a few large-
effect QTLs or markers, where efficient selections are made
in maize breeding programs. Genomic selection (GS) uses
whole genome-wide molecular markers to predict the breeding
values of individuals. Therefore, it can capture both major
and minor effect markers and is efficient for complex traits,
especially for grain yield. GS has been shown to outperform
MAS for grain yield and physiological traits in maize doubled
haploid populations (Cerrudo et al., 2018), and for days
to silking/anthesis and anthesis–silking interval in a nested
association mapping population (Guo et al., 2021). Annual gain
from GS outperformed that from MAS by 2-fold for winter
wheat and approximately 3-fold for maize at a moderate accuracy
(Heffner et al., 2010). Genetic gains of maize stover index and
yield + stover index were 14–50% larger with GS than with
MARS (Massman et al., 2013), which is consistent with the
simulation results that GS produced up to 43% greater genetic
gains than MARS for polygenic traits with low heritability
(Bernardo and Yu, 2007). The primary advantages of GS over
phenotypic selection are reflected in its low cost per cycle and
the time for variety development. In maize advanced test-cross
yield trials, GS reduced the cost by 32% over phenotype-based
selection with similar selection gains (Beyene et al., 2019). With
respect to cost reduction in maize breeding, breeders can test-
cross half of all available lines, evaluate them in first-stage multi-
environment trials, and then utilize the phenotypic data to
predict the remaining half through GS (Crossa et al., 2017).

In GS, prediction models are established using prior
phenotypic and marker data in a training population. The

genomic estimated breeding value (GEBV) is predicted based
on the marker effects estimated from the training population
in a test population with genotypic data and no phenotypic
data (Meuwissen et al., 2001). Many parametric methods such
as GBLUP and Bayesian (Bayes) methods including Bayes A,
Bayes B, Bayes C, and Bayes least absolute shrinkage and
selection operator, semi-parametric models such as RKHS, and
nonparametric methods have been developed to fit marker
effects and predict phenotypes (Meuwissen et al., 2001; Gianola
et al., 2006, 2011; Parmley et al., 2019; Sun et al., 2020).
Multivariate models were developed to simultaneously consider
information from multi-environment trials or multi-trait data
(Burgueño et al., 2012; Montesinos-López et al., 2016; Schulthess
et al., 2018). Previous studies showed that no single GS model
had better performance compared with other models in all
cases due to different backgrounds of training and testing
populations, different traits, and different experimental designs
(Pérez-Rodríguez et al., 2012; Ali et al., 2020). In maize, practical
applications of GS have been widely demonstrated in many
aspects including inbred line prediction (Zhao et al., 2012;
Liu et al., 2019), hybrid performance prediction (Guo et al.,
2019; Schrag et al., 2019; Li et al., 2020), and combining
ability prediction (Riedelsheimer et al., 2012). These findings
demonstrate the potential of GS helping in the selection of elite
parents and hybrid combinations.

Both GWAS and GS use the same input datasets, including a
phenotype dataset and a genotype dataset; thus, only additional
analyses are required (Spindel et al., 2016). Several studies have
discussed the advantages of combining GWAS and GS models
that incorporate trait-associated markers (TAMs) detected by
GWAS as random or fixed effects in GS models (Spindel et al.,
2016; Bian and Holland, 2017; Herter et al., 2019; Liu et al., 2019;
Rice and Lipka, 2019). However, the effects of TAM derived from
different GWAS methods on prediction accuracy have rarely
been reported. In this study, an association panel of 309 inbred
lines was genotyped with 58,129 markers using genotyping-by-
sequencing (GBS), and the performance of GYP, ear weight (EW),
HKW, KNE, KNR, KRN, EL, and ED was evaluated in multi-
environment trials. The main objectives of this study were to
(1) identify significant SNPs for eight traits using two GWAS
methods, (2) compare the prediction accuracies of different
GS models, (3) investigate the prediction accuracy by treating
significant SNPs and population structure as the fixed effects, and
(4) evaluate the effects of TAMs derived from different GWAS
methods on prediction accuracy.

MATERIALS AND METHODS

Plant Materials and Trial Designs
The panel consisted of 16 new selected inbred lines, 128
core germplasms of China, and 165 expired U.S. plant variety
protection inbred lines, as previously reported (Ma et al., 2021).
The panel was evaluated at four sites: Dancheng (33.646◦

N, 115.257◦ E), Yuanyang (35.012◦ N, 113.704◦ E), Yucheng
(34.411◦ N, 116.274◦ E), and Sanya (18.381◦ N, 109.183◦ E) in
2017, and at one site (Yuanyang) in 2019. The field trial had
a randomized complete block design with three replicates per
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genotype and environment. Entries were planted in two-row
plots that were 3.75m in length, 0.60m spacing between rows,
and 0.33m spacing between plants.

Phenotyping and Analyses
Grain yield per plant, EW, HKW, KRN, KNR, EL, and ED
were measured manually in three ears with good self-pollination
for each genotype. KNE was calculated from KRN and KNR.
Heritability at the per mean level and multi-environment
ANOVA were calculated using QTL IciMapping v4.0 software
(Meng et al., 2015). Pearson’s correlation coefficient was
calculated using the R package Performance Analytics. Best linear
unbiased estimate (BLUE) values of each trait were calculated
using QTL IciMapping v4.0 and were used as phenotypes for
GWAS and GS analyses.

Association Mapping Analysis
The GBS genotypic data of the panel have been described in
a previous study (Ma et al., 2021). Markers with minor allele
frequencies (MAF) less than 5%, missing rates greater than 10%,
and heterozygous rates greater than 10% were removed. Finally,
58,129 SNPs were adopted for GWAS. The kinship matrix was
calculated using the Centered_IBS method in TASSEL v5.2.60
(Bradbury et al., 2007). The subgroups (K) were estimated using
the Bayesian Markov chain Monte Carlo method in Structure
v2.3.4 (Pritchard et al., 2000). The Q matrix of two subgroups (K
= 2) was used to control the population structure as previously
described (Ma et al., 2021). To reduce false associations, a single-
locus method, namely, compressed mixed linear model (CMLM)
(Zhang et al., 2010), and one multi-locus method, namely,
fixed and random model Circulating Probability Unification
(FarmCPU) (Liu et al., 2016), were carried out using the GAPIT
package (Lipka et al., 2012). The Q and K matrices were
incorporated into both GWAS methods. A multiple testing
correction is not required in multi-locus methods because all loci
are estimated and tested simultaneously (Zhang et al., 2019b).
Therefore, a less stringent p-value threshold of 1/58,129 =

1.72E−05 was used to identify significant SNPs in the two GWAS
methods. Other parameters were set default based on the GAPIT
manual. Linear regression was used to calculate the phenotypic
variation explained (PVE) of FarmCPU, whereas the PVE of
CMLM was calculated using GAPIT. Candidate genes were
scanned from 50 kb upstream to downstream of each significant
locus using ANNOVAR (Wang et al., 2010).

Genomic Prediction
The prediction was done using GBLUP, Bayes A, Bayes B, Bayes
C, and RKHS. Kernel averaging was used in the RKHS, and
bandwidth parameters were set at 1/5M, 1/M, and 5/M, where
M is the median squared Euclidean distance. Seven subset sizes
of TAMs, that is, 100, 500, 1,000, 5,000, 10,000, 20,000, and
40,000 were selected according to the ranks of –log10(p value)
calculated by FarmCPU and CMLM based on BLUE values. The
prediction accuracy of seven subsets was compared to that of all
markers (58,129). For the eight traits, TAMswere all treated as the
random effects (randommodel) in all GSmodels. For traits where
significant SNPs (p < 1.72E−05) were detected, the significant

SNPs were treated as the fixed effects and other remaining
markers were treated as the random effects (fixed model). In
the fixed model, one Q matrix (Q1) calculated using Structure
was added into GBLUP and RKHS models as the fixed effects
to evaluate the impact of population structure on the prediction
accuracy. In addition, significant SNPs were all fitted as the
random effects in RKHS to evaluate their potential application.

Randomized imputation was adopted for missing makers,
according to the known genotype frequency. For each marker,
individuals were coded as 2 (homozygous minor allele), 0
(homozygous major allele), and 1 (heterozygous). Recoding and
imputation were carried out using the R software. Five GS
models, TAMs, fixed model, random model, and fixed effects of
Q matrix were performed using the R package, BGLR (Pérez and
de los Campos, 2014). For all models, the length of the Gibbs
chain was 12,000 iterations, with the first 3,000 samples discarded
as burn-in. A 5-fold cross-validation scheme with 100 replicates
was used to divide the association panel into training and testing
sets. The mean correlation coefficient between GEBVs and BLUE
values in the testing sets was used to estimate the accuracies of
different GS models and different SNP densities.

RESULTS

Phenotypic Descriptions and Correlations
Descriptive statistics revealed that extensive phenotypic
variations were observed in GYP and seven yield-
related traits in the panel under different environments
(Supplementary Table 1). The heritability for eight traits ranged
from 0.59 (EW and KRN) to 0.77 (EL) (Supplementary Table 2).
Significant and positive pairwise correlations were observed
between different traits. GYP had high correlations with EW,
KNE, KNR, and ED, moderate correlations with KRN and EL,
and low correlations with HKW (Supplementary Figure 1).
ANOVA across environments showed that the effects of
genotype, environment, and genotype × environment
interactions were significant (p < 0.001) for all traits
(Supplementary Table 2). This showed that the association
panel was highly affected by environments. Therefore, the BLUE
values were used for GWAS and GS analyses.

Significant Trait Marker Associations and
Their Prediction Accuracies
In total, 58,129 high-quality SNPs were used to perform GWAS
for eight traits using BLUE values. FarmCPU and CMLM were
used to control false associations for all traits. A total of 22
significant SNPs were identified with a p-value threshold of
1.72E−05, and the average PVE of all significant signals was
4.20% (Table 1). FarmCPU detected 17 association signals, which
was higher than CMLM (7) (Table 1). One significant SNP each
was found for GYP, EW, and HKW. Eight, eight, and four
significant SNPs were detected for KRN, ED, and EL, respectively.
One pleiotropic SNP (S3_62750920) was found between EW
and ED. A SNP for ED, namely, S7_174915679, was detected
using the two GWAS methods. The prediction accuracy of the
significant SNPs was ranged from 0.26 to 0.45 using RKHS
(Supplementary Figure 2).
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TABLE 1 | Significant SNPs and candidate genes for grain yield and yield-related traits using two GWAS methods.

SNP name* Trait§ p value PVE† Method# Candidate gene

S3_53872814 GYP 1.68E−05 5.92 FarmCPU Zm00001d040612

S3_62750920 EW 1.02E−05 5.98 FarmCPU Zm00001d040748, Zm00001d040751

S1_47210783 HKW 1.56E−05 6.16 CMLM Zm00001d028812

S1_10685412 KRN 1.43E−05 1.99 FarmCPU Zm00001d027671

S1_179199207 KRN 3.38E−06 4.80 FarmCPU Zm00001d031137, Zm00001d031138

S3_134708533 KRN 2.45E−06 1.44 FarmCPU Zm00001d041715, Zm00001d041716

S4_135839291 KRN 2.79E−06 1.32 FarmCPU Zm00001d050992

S4_234082607 KRN 1.54E−07 2.29 FarmCPU Zm00001d053559

S4_86484873 KRN 1.08E−07 1.74 FarmCPU Zm00001d050406, Zm00001d050409

S7_105588532 KRN 5.13E−08 7.38 FarmCPU Zm00001d020310, Zm00001d020311

S8_145121832 KRN 2.46E−06 0 FarmCPU Zm00001d011266

S1_69620597 EL 5.84E−07 1.35 FarmCPU Zm00001d029416

S3_174651102 EL 2.11E−08 7.21 FarmCPU Zm00001d042631, Zm00001d042632

S4_117775505 EL 7.78E−06 0.70 FarmCPU Zm00001d050712, Zm00001d050714

S4_174433366 EL 4.36E−06 4.80 FarmCPU Zm00001d051912

S1_233432714 ED 7.53E−06 10.26 FarmCPU Zm00001d032659, Zm00001d032661

S2_118387989 ED 1.47E−05 5.43 CMLM Zm00001d004568, Zm00001d004571

S2_118390724 ED 1.59E−05 5.39 CMLM Zm00001d004568, Zm00001d004571

S2_118625688 ED 1.46E−05 5.43 CMLM Zm00001d004572, Zm00001d004573

S2_118744667 ED 1.21E−05 5.54 CMLM Zm00001d004573, Zm00001d004574

S3_62750920 ED 1.01E−05 5.64 CMLM Zm00001d040748, Zm00001d040751

S7_13345176 ED 4.01E−06 3.77 FarmCPU Zm00001d019027, Zm00001d019028

S7_174915679 ED 1.22E−05 5.54 CMLM Zm00001d022310

S7_174915679 ED 3.94E−06 0.76 FarmCPU Zm00001d022310

*Numbers before and after “_” represent chromosome and position, respectively.
§GYP, EW, HKW, KRN, EL, and ED are abbreviations of grain yield per plant, ear weight, thousand kernel weight, kernel row number, ear length, and ear diameter, respectively.
†
PVE, phenotypic variation explained.
#CMLM, compressed mixed linear model; FarmCPU, fixed and random model Circulating Probability Unification.

Prediction Accuracy of Different Prediction
Models
Five GS models were evaluated using seven subsets of TAMs
derived from FarmCPU and CMLM. The prediction accuracies
ranged from 0.10 to 0.84 and differed among prediction models
and traits. Regardless of the marker effects, the prediction
accuracy of RKHS using TAMs was the highest, followed
by GBLUP, and Bayes B was the least for GYP, EW, and
KNE (Tables 2 and 3, Supplementary Table 3). The prediction
accuracies of the RKHS exceeded those of the other models
by 3.85–68% for GYP and by 1.52–33.33% for KNE (Table 2,
Supplementary Table 3). For EW, the percentage increase in
accuracy of RKHS over the other four models using CMLM-
derived TAMs ranged from 1.85 to 64%, whereas that of
RKHS over the other models using FarmCPU-derived TAMs
was large, with the percentage increase ranging from 26.09 to
210% (Table 3). Slight increases in the prediction accuracies of
RKHS over the other models were also demonstrated in most
subsets for KNR, EL, and ED (Supplementary Tables 4–6). For
HKW, GBLUP was slightly superior to RKHS, Bayes A, Bayes
B, and Bayes C (Table 4). In most of the marker sets, a small
advantage of GBLUP over other models was also observed in
KRN (Table 5).

Impact of Using Significant SNPs and
Population Structure as Fixed Effects on
Prediction Accuracy
The prediction accuracies of using significant SNPs and
population structure as the fixed effects were evaluated in traits
where significant SNPs were detected. In most of the TAM
subsets, using 4–8 significant SNPs as the fixed effects improved
the prediction accuracy by 1.43–40% and 1.37–22.41% for KRN
and EL, respectively, when compared with the random model in
all five models (Table 5, Supplementary Table 5). For GYP, EW,
and HKW, the prediction accuracy did not change (or slightly
decreased) when treating one significant SNP as a fixed effect
compared to fitting all markers as the random effects in GBLUP
and RKHS. However, the accuracy of the fixed model slightly
increased or was similar to that of the random model in the
three Bayes prediction models. For ED, the fixed model based on
FarmCPU-derivedmarkers improved the accuracy by 1.35−16%,
whereas that of CMLM-derived markers had similar prediction
performance as the random model in most cases. In general, the
prediction accuracy could be improved when significant SNPs
were fitted as the fixed effects.

To evaluate the effect of population structure on prediction
accuracies, the Q matrix calculated using Structure was
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TABLE 2 | Prediction accuracy of random model, fixed model, and population structure model based on trait-associated markers in five prediction models for grain yield

per plant.

Model* Scenario§ Prediction accuracy#

100† 500 1,000 5,000 10,000 20,000 40,000 58,129

Bayes A CMLM-RAN 0.51

(0.08)

0.56

(0.07)

0.56

(0.08)

0.56

(0.08)

0.53

(0.08)

0.47

(0.09)

0.29

(0.11)

0.09

(0.12)

FarmCPU-RAN 0.51

(0.08)

0.56

(0.07)

0.56

(0.07)

0.56

(0.08)

0.53

(0.08)

0.46

(0.09)

0.29

(0.11)

FarmCPU-FIX 0.52

(0.08)

0.56

(0.08)

0.56

(0.08)

0.57

(0.08)

0.54

(0.09)

0.47

(0.10)

0.33

(0.11)

Bayes B CMLM-RAN 0.48

(0.09)

0.53

(0.08)

0.53

(0.08)

0.54

(0.08)

0.51

(0.09)

0.44

(0.09)

0.26

(0.11)

0.08

(0.12)

FarmCPU-RAN 0.48

(0.09)

0.54

(0.08)

0.53

(0.08)

0.54

(0.08)

0.51

(0.09)

0.44

(0.09)

0.25

(0.11)

FarmCPU-FIX 0.49

(0.09)

0.54

(0.08)

0.54

(0.08)

0.56

(0.08)

0.53

(0.09)

0.45

(0.10)

0.32

(0.12)

Bayes C CMLM-RAN 0.50

(0.09)

0.55

(0.07)

0.55

(0.08)

0.56

(0.08)

0.53

(0.08)

0.46

(0.09)

0.28

(0.12)

0.09

(0.12)

FarmCPU-RAN 0.50

(0.09)

0.55

(0.07)

0.55

(0.07)

0.56

(0.08)

0.53

(0.08)

0.46

(0.09)

0.28

(0.11)

FarmCPU-FIX 0.51

(0.09)

0.56

(0.08)

0.57

(0.08)

0.57

(0.08)

0.53

(0.09)

0.46

(0.10)

0.33

(0.11)

GBLUP CMLM-RAN 0.52

(0.08)

0.57

(0.07)

0.57

(0.08)

0.59

(0.08)

0.56

(0.09)

0.49

(0.09)

0.30

(0.11)

0.10

(0.12)

FarmCPU-RAN 0.52

(0.08)

0.57

(0.07)

0.57

(0.07)

0.59

(0.08)

0.55

(0.09)

0.48

(0.09)

0.30

(0.11)

FarmCPU-FIX 0.52

(0.08)

0.57

(0.07)

0.57

(0.08)

0.57

(0.08)

0.53

(0.09)

0.46

(0.10)

0.33

(0.12)

FarmCPU-FIX-PS 0.52

(0.08)

0.57

(0.08)

0.57

(0.08)

0.57

(0.08)

0.53

(0.09)

0.46

(0.10)

0.32

(0.12)

RKHS CMLM-RAN 0.54

(0.09)

0.62

(0.07)

0.61

(0.08)

0.62

(0.08)

0.59

(0.09)

0.54

(0.10)

0.42

(0.12)

0.32

(0.14)

FarmCPU-RAN 0.54

(0.09)

0.62

(0.07)

0.61

(0.08)

0.62

(0.08)

0.59

(0.09)

0.54

(0.10)

0.42

(0.12)

FarmCPU-FIX 0.54

(0.08)

0.61

(0.08)

0.61

(0.08)

0.61

(0.08)

0.57

(0.09)

0.52

(0.10)

0.42

(0.11)

FarmCPU-FIX-PS 0.54

(0.09)

0.61

(0.08)

0.61

(0.08)

0.61

(0.08)

0.57

(0.09)

0.52

(0.10)

0.42

(0.11)

*GBLUP, genomic best linear unbiased prediction; RKHS, reproducing kernel Hilbert space.
§CMLM-RAN and FarmCPU-RAN, traits-associated markers from compressed mixed linear model (CMLM) and fixed and random model Circulating Probability Unification (FarmCPU)

are treated as random effects; FarmCPU-FIX, significant SNPs (p < 1.72E−05) are treated as the fixed effects and other remaining markers are treated as the random effects (fixed

model); FarmCPU-FIX-PS, the Q matrix is treated as fixed effect in the fixed model.
†
100–40,000, the number of trait-associated markers.
#Prediction accuracy is represented by mean and standard deviation in brackets.

incorporated into the fixed model in GBLUP and RKHS.
For GYP, EW, and KRN, the accuracy did not change
when the Q matrix was included as a fixed effect in most
cases of RKHS and GBLUP (Tables 2, 3, 5). For HKW, the
population structure had no effect on accuracies in RKHS,
whereas the accuracy decreased by 0.01–0.05 when the Q
matrix was used in the GBLUP model. For EL, the accuracy
reduced by 0.02–0.07 at 500–20,000 TAMs when population
structure was added into the GBLUP fixed model. For ED,
the accuracy improved by 0.02 at 100 and 40,000 CMLM-
derived TAMs and decreased by 0.05 at 40,000 FarmCPU-
derived TAMs when the Q matrix was added in GBLUP,
and the accuracy was same or slightly decreased in the
remaining scenarios.

Effect of Different GWAS Methods on
Prediction Accuracy
For GYP, the prediction accuracies of TAMs derived fromCMLM
and FarmCPU were compared in the five models (Table 2),
regardless of the random or fixed models. For EL and ED,
the prediction accuracy of 100 TAMs by FarmCPU was 2.74–
5.97% higher than that by CMLM in the five models. For
the other subsets, the prediction accuracies of CMLM-derived
markers were 8.22–42.11% higher than those of FarmCPU-
derived markers in EL and ED (Supplementary Tables 5, 6).
For the other five traits, the prediction accuracies of CMLM-
TAMs were consistently superior to those of FarmCPU-TAMs
across all subsets in the five models. In particular, the increase
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TABLE 3 | Prediction accuracy of random model, fixed model, and population structure model based on trait-associated markers in five prediction models for ear weight.

Model* Scenario§ Prediction accuracy#

100† 500 1,000 5,000 10,000 20,000 40,000 58,129

Bayes A CMLM-RAN 0.54

(0.09)

0.58

(0.08)

0.57

(0.08)

0.55

(0.09)

0.50

(0.09)

0.44

(0.10)

0.27

(0.12)

FarmCPU-RAN 0.20

(0.11)

0.12

(0.11)

0.15

(0.10)

0.19

(0.11)

0.18

(0.11)

0.14

(0.12)

0.10

(0.12)

0.09

(0.12)

FarmCPU-FIX 0.19

(0.12)

0.14

(0.11)

0.18

(0.11)

0.20

(0.11)

0.19

(0.11)

0.16

(0.11)

0.12

(0.12)

Bayes B CMLM-RAN 0.51

(0.09)

0.55

(0.08)

0.54

(0.08)

0.53

(0.09)

0.48

(0.09)

0.41

(0.10)

0.25

(0.12)

FarmCPU-RAN 0.16

(0.11)

0.13

(0.11)

0.16

(0.11)

0.18

(0.11)

0.17

(0.12)

0.14

(0.12)

0.11

(0.12)

0.09

(0.12)

FarmCPU-FIX 0.15

(0.11)

0.13

(0.11)

0.18

(0.11)

0.20

(0.12)

0.19

(0.12)

0.16

(0.12)

0.12

(0.12)

Bayes C CMLM-RAN 0.53

(0.09)

0.57

(0.08)

0.57

(0.08)

0.55

(0.09)

0.50

(0.09)

0.43

(0.10)

0.27

(0.12)

FarmCPU-RAN 0.23

(0.11)

0.17

(0.11)

0.18

(0.11)

0.19

(0.11)

0.18

(0.11)

0.14

(0.12)

0.11

(0.12)

0.09

(0.12)

FarmCPU-FIX 0.20

(0.12)

0.16

(0.11)

0.20

(0.11)

0.20

(0.11)

0.19

(0.11)

0.15

(0.12)

0.12

(0.12)

GBLUP CMLM-RAN 0.54

(0.09)

0.59

(0.08)

0.58

(0.08)

0.58

(0.09)

0.53

(0.09)

0.46

(0.10)

0.29

(0.12)

0.12

(0.12)

FarmCPU-RAN 0.20

(0.12)

0.19

(0.11)

0.23

(0.11)

0.22

(0.11)

0.20

(0.11)

0.16

(0.12)

0.12

(0.12)

FarmCPU-FIX 0.18

(0.12)

0.17

(0.11)

0.20

(0.11)

0.20

(0.11)

0.19

(0.12)

0.16

(0.12)

0.12

(0.12)

FarmCPU-FIX-PS 0.17

(0.12)

0.16

(0.11)

0.19

(0.11)

0.20

(0.11)

0.19

(0.12)

0.15

(0.12)

0.12

(0.12)

RKHS CMLM-RAN 0.55

(0.09)

0.62

(0.08)

0.61

(0.08)

0.61

(0.09)

0.57

(0.09)

0.52

(0.11)

0.41

(0.13)

0.31

(0.14)

FarmCPU-RAN 0.29

(0.13)

0.33

(0.13)

0.37

(0.12)

0.37

(0.13)

0.34

(0.13)

0.32

(0.14)

0.31

(0.14)

FarmCPU-FIX 0.28

(0.14)

0.28

(0.13)

0.31

(0.13)

0.37

(0.13)

0.36

(0.13)

0.33

(0.14)

0.31

(0.14)

FarmCPU-FIX-PS 0.27

(0.13)

0.27

(0.13)

0.31

(0.13)

0.36

(0.13)

0.36

(0.13)

0.33

(0.14)

0.31

(0.14)

*GBLUP, genomic best linear unbiased prediction; RKHS, reproducing kernel Hilbert space.
§CMLM-RAN and FarmCPU-RAN, traits-associated markers from compressed mixed linear model (CMLM) and fixed and random model Circulating Probability Unification (FarmCPU)

are treated as random effects; FarmCPU-FIX, significant SNPs (p < 1.72E−05) are treated as the fixed effects and other remaining markers are treated as the random effects (fixed

model); FarmCPU-FIX-PS, the Q matrix is treated as the fixed effect in the fixed model.
†
100–40,000, the number of trait-associated markers.
#Prediction accuracy is represented by mean and standard deviation in brackets.

in prediction accuracies for CMLM-TAMs over FarmCPU-
TAMs was large in EW, with the percentage increase ranging

from 32.26 to 383.33% across all scenarios (Table 3). With

respect to TAMs, moderate and high prediction accuracies

were achieved in five prediction models for the eight traits.
The optimum number of TAMs for prediction differed greatly
among the eight traits, two GWAS methods, and five GS
models. These results indicate that it is necessary to determine
the optimum SNP information that can represent sufficient
variations to achieve high prediction accuracies for each
trait before their application in GS breeding. Compared to
all SNPs, higher prediction accuracies were achieved using
TAMs in most scenarios. This indicates that TAMs could

effectively improve the prediction accuracies of GYP and
yield-related traits.

DISCUSSION

Genomic selection is a promising breeding method with the
aim of accelerating the speed and efficiency of breeding
processes. In contrast, GWAS is used to identify QTLs or
genes that underlie important traits for breeding. They seek
to model the different aspects of the genetic architecture of
traits and have complementary advantages (Bian and Holland,
2017). Previous studies have shown the effectiveness of the
GS method using important loci for target traits identified by
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TABLE 4 | Prediction accuracy of random model, fixed model, and population structure model based on trait-associated markers in five prediction models for thousand

kernel weight.

Model* Scenario§ Prediction accuracy#

100† 500 1,000 5,000 10,000 20,000 40,000 58,129

Bayes A CMLM-RAN 0.65

(0.06)

0.72

(0.06)

0.72

(0.05)

0.70

(0.05)

0.67

(0.06)

0.60

(0.07)

0.41

(0.08)

FarmCPU-RAN 0.55

(0.08)

0.58

(0.07)

0.59

(0.07)

0.58

(0.07)

0.54

(0.07)

0.48

(0.08)

0.35

(0.08)

0.20

(0.09)

CMLM-FIX 0.66

(0.06)

0.72

(0.05)

0.73

(0.05)

0.71

(0.05)

0.67

(0.06)

0.60

(0.07)

0.42

(0.09)

Bayes B CMLM-RAN 0.63

(0.06)

0.70

(0.06)

0.71

(0.05)

0.68

(0.06)

0.64

(0.06)

0.57

(0.07)

0.39

(0.08)

0.21

(0.09)

FarmCPU-RAN 0.53

(0.08)

0.56

(0.07)

0.58

(0.08)

0.56

(0.07)

0.52

(0.07)

0.46

(0.08)

0.34

(0.09)

CMLM-FIX 0.64

(0.06)

0.71

(0.05)

0.71

(0.05)

0.69

(0.06)

0.66

(0.06)

0.58

(0.07)

0.41

(0.09)

Bayes C CMLM-RAN 0.65

(0.06)

0.72

(0.06)

0.72

(0.05)

0.70

(0.05)

0.67

(0.06)

0.60

(0.07)

0.41

(0.08)

0.20

(0.09)

FarmCPU-RAN 0.55

(0.08)

0.57

(0.07)

0.59

(0.07)

0.58

(0.07)

0.54

(0.07)

0.48

(0.08)

0.35

(0.08)

CMLM-FIX 0.66

(0.06)

0.72

(0.05)

0.73

(0.05)

0.71

(0.05)

0.67

(0.06)

0.60

(0.07)

0.42

(0.09)

GBLUP CMLM-RAN 0.67

(0.06)

0.73

(0.05)

0.73

(0.05)

0.71

(0.05)

0.68

(0.06)

0.60

(0.07)

0.40

(0.08)

0.20

(0.09)

FarmCPU-RAN 0.56

(0.08)

0.60

(0.07)

0.60

(0.07)

0.58

(0.07)

0.54

(0.07)

0.48

(0.08)

0.34

(0.08)

CMLM-FIX 0.67

(0.06)

0.73

(0.05)

0.73

(0.05)

0.71

(0.05)

0.67

(0.06)

0.60

(0.07)

0.42

(0.09)

CMLM-FIX-PS 0.66

(0.06)

0.72

(0.05)

0.72

(0.05)

0.69

(0.05)

0.64

(0.06)

0.55

(0.07)

0.39

(0.09)

RKHS CMLM-RAN 0.66

(0.06)

0.72

(0.05)

0.72

(0.05)

0.69

(0.06)

0.65

(0.06)

0.56

(0.07)

0.37

(0.08)

0.24

(0.08)

FarmCPU-RAN 0.54

(0.08)

0.58

(0.07)

0.58

(0.07)

0.55

(0.07)

0.51

(0.07)

0.45

(0.08)

0.33

(0.08)

CMLM-FIX 0.66

(0.06)

0.72

(0.05)

0.72

(0.05)

0.69

(0.06)

0.64

(0.06)

0.55

(0.07)

0.39

(0.09)

CMLM-FIX-PS 0.66

(0.06)

0.72

(0.05)

0.72

(0.05)

0.69

(0.05)

0.64

(0.06)

0.55

(0.07)

0.39

(0.09)

*GBLUP, genomic best linear unbiased prediction; RKHS, reproducing kernel Hilbert space.
§CMLM-RAN and FarmCPU-RAN, traits-associated markers from compressed mixed linear model (CMLM) and fixed and random model Circulating Probability Unification (FarmCPU)

are treated as the random effects; CMLM-FIX, significant SNPs (p < 1.72E−05) are treated as the fixed effects and other remaining markers are treated as the random effects (fixed

model); CMLM-FIX-PS, the Q matrix is treated as the fixed effect in the fixed model.
†
100–40,000, the number of trait-associated markers.
#Prediction accuracy is represented by mean and standard deviation in brackets.

GWAS (Bian and Holland, 2017; Liu et al., 2019; Rice and
Lipka, 2019). In this study, we demonstrated the potential
of incorporating prior information for grain yield and seven
yield-related traits explored by GWAS into GS in a maize
association panel.

Prediction models are the major factors that affect the
prediction accuracy of different traits. In this study, GBLUP,
Bayes A, Bayes B, Bayes C, and RKHS were adopted to
compare the prediction accuracies of eight traits based on
GWAS-derived markers. The advantage of RKHS over the
other four models was demonstrated using GYP, EW, KNE,

KNR, EL, and ED in most TAM subsets, which was in line
with many studies on maize, wheat, barley, and Arabidopsis
thaliana (González-Camacho et al., 2012; Heslot et al., 2012;
Pérez-Rodríguez et al., 2012; Liu et al., 2018; Li et al., 2020).
RKHS, as one of the semiparametric methods, does not need
to make most of the assumptions on the relationship between
phenotype and genotype as do parametric models and was
found to have the potential for capturing the total genetic
effects from real data (Gianola et al., 2006; Gianola and van
Kaam, 2008). The inferior performance of the RKHS over
other models has also been reported in maize kernel oil traits
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TABLE 5 | Prediction accuracy of random model, fixed model, and population structure model based on trait-associated markers in five prediction models for kernel row

number.

Model* Scenario§ Prediction accuracy#

100† 500 1,000 5,000 10,000 20,000 40,000 58,129

Bayes A CMLM-RAN 0.71

(0.06)

0.77

(0.05)

0.79

(0.05)

0.78

(0.05)

0.76

(0.06)

0.69

(0.07)

0.52

(0.10)

0.34

(0.12)

FarmCPU-RAN 0.70

(0.05)

0.68

(0.07)

0.64

(0.07)

0.57

(0.10)

0.55

(0.09)

0.49

(0.10)

0.41

(0.11)

FarmCPU-FIX 0.70

(0.05)

0.73

(0.06)

0.73

(0.08)

0.69

(0.07)

0.67

(0.07)

0.63

(0.08)

0.57

(0.09)

Bayes B CMLM-RAN 0.69

(0.07)

0.75

(0.05)

0.78

(0.05)

0.76

(0.06)

0.74

(0.06)

0.66

(0.08)

0.50

(0.10)

0.35

(0.12)

FarmCPU-RAN 0.68

(0.05)

0.69

(0.06)

0.66

(0.07)

0.56

(0.09)

0.53

(0.10)

0.47

(0.11)

0.40

(0.11)

FarmCPU-FIX 0.69

(0.06)

0.73

(0.06)

0.73

(0.06)

0.68

(0.07)

0.66

(0.07)

0.62

(0.08)

0.56

(0.09)

Bayes C CMLM-RAN 0.70

(0.06)

0.77

(0.05)

0.79

(0.05)

0.78

(0.05)

0.76

(0.06)

0.69

(0.07)

0.52

(0.10)

0.35

(0.11)

FarmCPU-RAN 0.69

(0.05)

0.69

(0.06)

0.64

(0.07)

0.56

(0.10)

0.55

(0.09)

0.48

(0.10)

0.41

(0.11)

FarmCPU-FIX 0.70

(0.05)

0.74

(0.06)

0.73

(0.06)

0.69

(0.07)

0.67

(0.07)

0.63

(0.08)

0.57

(0.09)

GBLUP CMLM-RAN 0.72

(0.06)

0.77

(0.05)

0.80

(0.05)

0.79

(0.05)

0.76

(0.06)

0.70

(0.07)

0.53

(0.10)

0.36

(0.12)

FarmCPU-RAN 0.70

(0.05)

0.67

(0.07)

0.63

(0.08)

0.56

(0.10)

0.56

(0.10)

0.50

(0.11)

0.42

(0.11)

FarmCPU-FIX 0.70

(0.05)

0.73

(0.06)

0.73

(0.06)

0.69

(0.07)

0.67

(0.07)

0.63

(0.08)

0.57

(0.09)

FarmCPU-FIX-PS 0.71

(0.05)

0.73

(0.06)

0.73

(0.06)

0.69

(0.07)

0.67

(0.07)

0.63

(0.08)

0.57

(0.09)

RKHS CMLM-RAN 0.70

(0.06)

0.77

(0.05)

0.79

(0.05)

0.77

(0.06)

0.75

(0.06)

0.67

(0.07)

0.51

(0.09)

0.39

(0.10)

FarmCPU-RAN 0.70

(0.05)

0.65

(0.07)

0.62

(0.08)

0.56

(0.09)

0.54

(0.09)

0.49

(0.10)

0.43

(0.10)

FarmCPU-FIX 0.71

(0.05)

0.72

(0.06)

0.72

(0.06)

0.67

(0.07)

0.65

(0.08)

0.61

(0.08)

0.56

(0.09)

FarmCPU-FIX-PS 0.71

(0.05)

0.72

(0.06)

0.72

(0.06)

0.67

(0.07)

0.65

(0.08)

0.61

(0.08)

0.56

(0.09)

*GBLUP, genomic best linear unbiased prediction; RKHS, reproducing kernel Hilbert space.
§CMLM-RAN and FarmCPU-RAN, traits-associated markers from compressed mixed linear model (CMLM) and fixed and random model Circulating Probability Unification (FarmCPU)

are treated as the random effects; FarmCPU-FIX, significant SNPs (p < 1.72E−05) are treated as the fixed effects and other remaining markers are treated as the random effects (fixed

model); FarmCPU-FIX-PS, the Q matrix is treated as the fixed effect in the fixed model.
†
100–40,000, the number of trait-associated markers.
#Prediction accuracy is represented by mean and standard deviation in brackets.

(Hao et al., 2019) and cotton fiber quality traits (Islam et al.,
2020). In this study, GBLUP showed a slight advantage over
RKHS and the other models using TAMs for HKW and KRN.
If additivity has a major effect, RKHS produces a similar
performance as other methods, whereas if non-additive effects
are present, it has a better prediction accuracy (Morota and
Gianola, 2014). Although no single model was consistently
performing better in all scenarios, RKHS could be the best
choice when the computation time and prediction accuracy were
comprehensively considered.

Except for GYP, the prediction accuracy of TAMs produced
by CMLM was consistently higher than that by FarmCPU. In

multiple species, FarmCPU outperformed CMLM and other
methods by controlling the inflation of p values, identifying
newly associated SNPs, and overlapping with the reported
loci (Liu et al., 2016). CMLM and FarmCPU use different
strategies to solve the confounding problem and improve
statistical power for the mixed linear model methods (Zhang
et al., 2010; Liu et al., 2016), which results in different
marker information. Different markers, marker distributions,
MAF, and multicollinearity might show the discrepancy in
accuracies of the two GWAS methods. Except for EW,
moderate and high accuracies were displayed in five models
using FarmCPU-derived TAMs for GYP and other traits,
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which were high enough to make efficient predictions. GS
can remarkably accelerate genetic gains by shortening the
breeding cycle even if moderate accuracies are achieved
(Heffner et al., 2010).

Genome-wide association study is a rapid and effective
method for identifying genetic variations in important
germplasms. Based on the prior knowledge of the underlying
genetic architecture detected by GWAS, the advantage of
integrating GWAS with GS was identified in our association
panel. Our results showed that subsets of TAMs that treated
significant SNP as the fixed effects or random effects could
improve the prediction accuracies of GYP and yield-related
traits compared with all markers. This was similar to the
results of the studies by Liu et al. (2020) and Yuan et al.
(2019), who reported that the prediction accuracy of marker
trait-associated SNPs was higher than that of all markers or
random genome-wide SNPs for maize grain yield, flowering
time, and Fusarium ear rot resistance. The study by Lozada
et al. (2019) proved that wheat yield achieved higher accuracies
using three subsets of associated markers that were selected
from GWAS in training populations compared with all markers.
Compared with GS without marker selection by GWAS,
TAMs as the random effects in GS increased the prediction
accuracies, regardless of which TAMs were selected from in
the full dataset or training set (Cericola et al., 2017; Liu et al.,
2019; Ali et al., 2020). In most cases, the prediction accuracy
was the highest at 100–5,000 TAMs and then decreased as the
number of markers increased for the eight traits. A similar
trend was observed in wheat grain yield based on GWAS-
derived markers (Lozada et al., 2019). The decreased trend
of the prediction accuracy was also found in many cases
where evenly distributed SNPs were used and three examples
where randomly selected markers were used in rice (Spindel
et al., 2015). Higher marker density caused a lower prediction
accuracy if significant SNPs were included, but resulted in a
higher accuracy if significant SNPs were excluded for simple
traits that were controlled by one or several genes with the
large effects (Zhang et al., 2019a). The multicollinearity and
complexity of GS models for the estimation of GEBVs became
severe when an increasing number of markers were used (Ali
et al., 2020), which might decrease the prediction accuracy.
The smaller number of TAMs that benefited higher accuracies
could be helpful to lower the costs of genotyping in GS-assisted
breeding. In general, GS based on GWAS results from the
full panel set could help to improve the prediction accuracies,
although the “inside trading” effects lead to inflated values
(Arruda et al., 2016).

In this study, treating one or several significant SNPs as the
fixed effects in GS models resulted in higher accuracies in most
cases, compared with those with only the random effects, which
was in accordance with the trends in accuracy improvement
shown in maize, wheat, and rice (Arruda et al., 2016; Spindel
et al., 2016; Herter et al., 2019; Odilbekov et al., 2019). The
incorporation of large-effect QTL or SNPs as the fixed effects
was also a promising strategy to improve the prediction accuracy
of GS (Bernardo, 2014; Herter et al., 2019). A slightly decreased

accuracy was observed in the fixed model of GBLUP and RKHS
for GYP, EW, and HKW. A similar result was also revealed in
wheat yield stability using GBLUP (Sehgal et al., 2020). Except
for HKW, the genetic architecture of GYP, EW, and yield stability
was complex and hard to capture, which was supported by
the fact that less robust SNPs with low phenotypic variation
were identified. These could lead to the results obtained for
these traits.

Integrating information on population structure into fixed
models did not improve prediction performance and, in some
cases, slightly decreased the accuracies. Similar results were
found in the study by Rio et al. (2019); when taking genetic
structure into account, the prediction accuracy of maize grain
yield, grain moisture, yield index, and male flowering did not
improve compared to standard GBLUP. However, Liu et al.
(2019) showed that taking three principal components as the
fixed effects in the random model could slightly improve the
prediction accuracy. In fact, the impact of population structure
on GS accuracy depends on many factors such as a priori
indicators, prediction strategies, allele effects, allele frequencies
between groups, the features of traits, and populations (Guo
et al., 2014; Liu et al., 2019; Rio et al., 2019). Extended models
that consider this information will guarantee high accuracies
of GEBV.

The major limitation of incorporating TAMs into GS
models depended on the accuracy of GWAS results. Marker
selection strategies based on p values or marker effects
might produce an improper marker set with low accuracies
if the GWAS was incorrect (Jeong et al., 2020). GWAS
results from the full data set that included the training
set and testing sets might produce an overfitted markers
set. In real GS-assisted breeding projects, the training set
is used to conduct prediction models and predict other
breeding populations that only have genotypes. Further
investigation is needed in order to validate the application
prospect of GS based on prior information from the GWAS
results.

Despite these limitations, the combination of GWAS and GS
offers an effective means for germplasm screening of traits with
low heritability where, for instance, a 1% increase in prediction
accuracy could improve genetic gains (Rice and Lipka, 2019).
Furthermore, continued enlargement of the association panel
by incorporating new fixed effects and high-quality phenotypic
data from multi-environment trials is expected to improve the
accuracy of GEBV. Besides, the marker information and training
population will be used to obtain an optimum breeding design
and improve genetic gains through reducing costs. Recently,
GMStool is developed to present the best prediction model with
the optimal marker set based on GWAS results (Jeong et al.,
2020), which provides a useful tool for breeders. As GBS, SNP
array technology, and other high-output genotyping strategies
arise, the genotyping costs are likely to continue to decrease,
whereas the phenotyping costs are usually steady or increasing
(Spindel et al., 2015). Therefore, the combination of GWAS and
GS will become a cost-effective method for selecting high-yield
germplasms in maize and other species.
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