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The emergence of coronavirus disease 2019 (COVID-19) caused by severe acute
respiratory syndrome coronavirus 2 (SARS-CoV-2) has affected global public health
and economy. Despite the substantial efforts, only few vaccines are currently approved
and some are in the different stages of clinical trials. As the disease rapidly spreads,
an affordable and effective vaccine is urgently needed. In this study, we investigated
the immunogenicity of plant-produced receptor-binding domain (RBD) of SARS-CoV-2
in order to use as a subunit vaccine. In this regard, RBD of SARS-CoV-2 was fused
with Fc fragment of human IgG1 and transiently expressed in Nicotiana benthamiana
by agroinfiltration. The plant-produced RBD-Fc fusion protein was purified from the
crude extract by using protein A affinity column chromatography. Two intramuscular
administration of plant-produced RBD-Fc protein formulated with alum as an adjuvant
have elicited high neutralization titers in immunized mice and cynomolgus monkeys.
Further it has induced a mixed Th1/Th2 immune responses and vaccine-specific
T-lymphocyte responses which was confirmed by interferon-gamma (IFN-γ) enzyme-
linked immunospot assay. Altogether, our results demonstrated that the plant-produced
SARS-CoV-2 RBD has the potential to be used as an effective vaccine candidate
against SARS-CoV-2. To our knowledge, this is the first report demonstrating the
immunogenicity of plant-produced SARS-CoV-2 RBD protein in mice and non-
human primates.

Keywords: COVID-19, SARS-CoV-2, receptor-binding domain, Nicotiana benthamiana, plant-produced
recombinant protein, Fc fusion protein, subunit vaccine
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INTRODUCTION

In December 2019, the unknown pneumonia cases have been first
reported in Wuhan, Hubei Province, China, which were initially
reported to be caused by novel coronavirus (nCoV-2019) and
later named as SARS-CoV-2. The disease condition associated
with it is referred as Coronavirus Disease (COVID-19). The
virus was closely related to the severe acute respiratory syndrome
coronavirus (SARS-CoV) that cause massive outbreak in 2002–
2003 (Amanat and Krammer, 2020; Li Q. et al., 2020; Malik et al.,
2020; Quinlan et al., 2020; She et al., 2020; Singhal, 2020). In
short time, the virus spreads rapidly to more than 200 countries
(Malik et al., 2020; She et al., 2020). As of April 2021, more
than 130 million confirmed cases with a toll of more than 2.9
million deaths were globally reported and the number of infected
patients has still been exponentially increasing daily (World
Health Organization, 2021). Furthermore, only few vaccines
are currently approved. Thus, the development of affordable
effective vaccine or therapeutics is highly essential to control and
prevent the infection.

SARS-CoV-2 belongs to the family Coronaviridae in the
genera of Betacoronavirus, which are known to infect mammals.
Coronaviruses (CoVs) are enveloped and single-stranded positive
sense RNA viruses (Banerjee et al., 2019; Amanat and Krammer,
2020; Li H. et al., 2020; Rabi et al., 2020; Yuki et al., 2020).
The CoV genome consists of 6–11 open reading frames (ORFs)
encoding for non-structural polyproteins and structural proteins.
The SARS-CoVs have four major structural proteins such as spike
(S) surface glycoprotein, membrane (M) protein, envelope (E)
protein, and nucleocapsid (N) protein, which are essential for
viral assembly and infection (Bosch et al., 2003; Masters, 2006;
Banerjee et al., 2019; Li H. et al., 2020; Malla et al., 2020; Rabi
et al., 2020; Yuki et al., 2020). S glycoprotein plays a major role
in viral attachment to host cells during the viral infection and
cleaved by the host proteases into S1 and S2 subunits. SARS-CoV-
2 infection starts with pre-fusion of receptor binding domain
(RBD) located on the S1 subunit to host receptor, angiotensin
converting enzyme 2 (ACE2 receptor) and followed by S2 subunit
post-fusion, leading to viral RNA penetration into host cells (Li
et al., 2003; Li, 2016; Yuan et al., 2017; Walls et al., 2019; Rabi
et al., 2020; Shanmugaraj et al., 2020c; Yuki et al., 2020; Zhou
et al., 2020). In addition, RBD was known to elicit potent immune
response and considered as prime target for eliciting of host
neutralizing antibodies (Wang et al., 2018; Li H. et al., 2020;
Smith et al., 2020). Furthermore, previous studies demonstrated
that the sera isolated from animals immunized with inactivated
SARS-CoV virus significantly neutralize the virus by inhibiting
the binding of RBD with ACE2 receptor which proved that the
antibodies targeting the RBD domain could prevent the virus
infection (He et al., 2004, 2005a,b; Zhu et al., 2013; Li H. et al.,
2020).

Currently, recombinant proteins are produced mainly by
bacterial fermentation or mammalian cell cultures, which
still have many limitations including high production costs,
immunogenicity profile, and pathogen contamination (Kelley,
2009; Phoolcharoen et al., 2011; Gomes et al., 2016; Kodati
et al., 2016; Fuenmayor et al., 2017; Kaur et al., 2018;
Rattanapisit et al., 2019a). Plant expression system is considered

as the cost-effective platform for the production of vaccine
antigens, diagnostic reagents, valuable biopharmaceuticals such
as therapeutic immunoglobulins, human enzymes, and human
growth factors (Gleba et al., 2005; Miao et al., 2008; Phoolcharoen
et al., 2011; Ahmad et al., 2019; Rattanapisit et al., 2019a,b,
2021). Plant expression system offers several advantages in
terms of rapidity, flexibility, post-translational modification of
recombinant proteins, safety due to lack of animal pathogen,
toxin contamination and scalability compared to other available
conventional systems (Vitale and Denecke, 1999; Ma et al., 2003;
Phoolcharoen et al., 2011; Shahid and Daniell, 2016; Bellucci
et al., 2017). Hence, plant platform can be considered as an
alternative platform for economical production of commercially
viable biopharmaceuticals and vaccines especially for developing
countries during pandemic situation (Phoolcharoen et al., 2011;
Shanmugaraj et al., 2020a).

In this study, we produced SARS-CoV-2 RBD-Fc fusion
protein by fusing SARS-CoV-2 RBD to the Fc domain of human
IgG1 at the C-terminus and cloned into geminiviral vector
for expression in Nicotiana benthamiana plants. The plant-
produced RBD-Fc showed specific binding with both human
embryonic kidney 293 (HEK293) and Chinese hamster ovary
(CHO) cells produced ACE2 protein. Further the plant-produced
RBD-Fc was shown to be immunogenic and significantly boosted
a humoral and cell-mediated immune response in both mice
and cynomolgus macaques (Macaca fascicularis). Our results
demonstrated that this plant-produced protein has the potential
for use as a vaccine candidate against SARS-CoV-2.

MATERIALS AND METHODS

Construction of SARS-CoV-2 RBD-Fc
Plant Expression Vector
The RBD of SARS-CoV-2 (SARS-CoV-2 RBD) (Genbank
accession number: YP_009724390.1; F318-C617) was designed
to anneal with Fc region of human immunoglobulin G1
(IgG1) (GenBank accession number: 4CDH_A) by peptide
linker 3XGGGGs at the C-terminus (Figure 1). The nucleotide
sequence of SARS-CoV-2 RBD was codon optimized and
commercially synthesized (Genewiz, Suzhou, China) with XbaI
and BamHI restriction sites for cloning with the Fc region,
that contains BamHI and SacI restriction sites at the 5′ and 3′
ends, respectively. The SARS-CoV-2 RBD and human Fc region
were ligated into a geminiviral vector (pBYR2eK2Md; pBYR2e)
(Chen et al., 2011; Diamos and Mason, 2018) using XbaI and
SacI restriction sites to construct the plant expression vector
pBYR2e-SARS-CoV-2 RBD-Fc. The murine leader sequence
(Shanmugaraj et al., 2020b) and ER retention signal peptide
(SEKDEL) was included at N-terminus and C-terminus of the
gene construct, respectively (Figure 1).

Expression of SARS-CoV-2 RBD-Fc in
Nicotiana benthamiana via.,
Agroinfiltration
The plant expression vector pBYR2e-SARS-CoV-2 RBD-Fc was
transformed into Agrobacterium tumefaciens strain GV3101

Frontiers in Plant Science | www.frontiersin.org 2 May 2021 | Volume 12 | Article 682953

https://www.frontiersin.org/journals/plant-science
https://www.frontiersin.org/
https://www.frontiersin.org/journals/plant-science#articles


fpls-12-682953 May 13, 2021 Time: 13:33 # 3

Siriwattananon et al. Plant-Produced SARS-CoV-2 RBD-Fc Elicits Neutralizing Responses

FIGURE 1 | Diagrammatic representation showing the T-DNA of plant expression vector pBYR2e-SARS-CoV-2 RBD-Fc and the overview of transient expression in
N. benthamiana plants. RB and LB, left and right borders of the T-DNA used in Agrobacterium DNA delivery into plant cells; Pin II 3’, the terminator from potato
proteinase inhibitor II gene; P19, the RNA silencing suppressor from Tomato Bushy Stunt Virus (TBSV); P35s, 35s promoter from Cauliflower Mosaic Virus (CaMV);
P35s × 2, 35s promoter from CaMV with duplicated enhancer; Ext3’ FL, 3’ region of tobacco extension gene; Rb7 5’ del, tobacco RB7 promoter; SIR, short
intergenic region of Bean Yellow Dwarf Virus (BeYDV); LIR, long intergenic region of BeYDV; C2/C1, Rep/RepA gene from BeYDV encoding for replication initiation
protein (Rep) and RepA.

cells by electroporation (MicroPulser, Bio-Rad, United States).
The recombinant Agrobacterium clones were confirmed by
polymerase chain reaction (PCR) using the RBD gene-specific
primers. Agrobacterium containing pBYR2e-SARS-CoV-2 RBD-
Fc was resuspended with 1xinfiltration buffer (10 mM 2-(N-
morpholino) etanesulfonic acid (MES), 10 mM MgSO4, at pH
5.5) to get final OD600 of 0.2 prior to agroinfiltration. The
Agrobacterium suspension was injected into the adaxial side of
6-week-old N. benthamiana leaves. The infiltrated plants were

maintained in an optimal 16-h light/8-h dark condition at 28◦C
and harvested after 4 days post infiltration (dpi).

Purification of Plant-Produced
SARS-CoV-2 RBD-Fc Fusion Protein
The infiltrated leaves were harvested and extracted with 1xPBS
(phosphate-buffered saline: 137 mM NaCl, 2.68 mM KCl,
10.1 mM Na2HPO4, 1.76 mM KH2PO4 pH 7.4) and clarified by
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centrifugation at 26,000 g for 45 min at 4◦C. The supernatant
was filtered by using 0.45 µm S-Pak membrane (Merck,
Massachusetts, United States). The clarified supernatant was
purified by affinity column chromatography with protein-A
beads (Expedeon, Cambridge, United Kingdom). The purified
column was equilibrated and washed by 1xPBS pH 7.4 followed
by elution with 0.1 M glycine buffer pH 3. Subsequently, the
pH of the eluted proteins was neutralized by using Tris-HCl
pH 8.8. The purified SARS-CoV-2 RBD-Fc was concentrated
by using Amicon R© ultracentrifugal filter (Merck, Massachusetts,
United States) and filtered through 0.22 µm syringe filter
(Merck, Massachusetts, United States). The purified plant-
produced SARS-CoV-2 RBD-Fc fusion protein was analyzed by
using sodium dodecyl sulfate-polyacrylamide gel electrophoresis
(SDS-PAGE) and western blotting under reducing and non-
reducing conditions. The SARS-CoV-2 RBD-Fc samples were
subjected to 8% sodium dodecyl sulfate polyacrylamide gel
electrophoresis and stained by Coomassie staining solution for
protein visualization. For western blot analysis, the separated
proteins were transferred to nitrocellulose membrane (Biorad,
United States) and detected with a 1:5,000 sheep anti-human
gamma chain-HRP conjugate antibody diluted in 1xPBS (The
Binding Site, United Kingdom). The yield of purified plant-
produced RBD-Fc fusion protein was estimated by direct ELISA
assay using human IgG (Abcam, United Kingdom) as protein
standard. The samples were probed by using anti-human gamma
chain-HRP fusion (The Binding Site, United Kingdom) at the
dilution of 1:1,000 in 1xPBS. A 3,3,5,5′-Tetramethylbenzidine
(TMB) solution (Promega, United States) was added into the
plate as a colorimetric developer followed by the addition of 1M
H2SO4. The absorbance at 450 nm was read using a 96-well plate
reader (Molecular Devices, United States).

Liquid Chromatography—Mass
Spectrometry (LC-MS) of Plant-Produced
SARS-CoV-2 RBD-Fc Fusion Protein
The purified proteins were separated on SDS-PAGE. The targeted
protein band was excised and sent to National Center for Genetic
Engineering and Biotechnology, Pathum Thani, Thailand for
LC-MS analysis. The protein was enzymatically digested with
trypsin and injected into Hybrid quadrupole Q-Tof impact
IITM (Bruker Daltonics Ltd., Hamburg, Germany) equipped
with a Nano-captive spray ion source was coupled to a nanoLC
system: Ultimate 3000 LC System (Thermo Fisher Scientific,
United States). Equipment operation was controlled by Compass
1.9 software (Bruker Daltonics Ltd., Hamburg, Germany). The
resulting MS/MS spectra were searched using the Mascot Sever
(Matrix Science) against SwissProt database. For Mascot searches,
the peptide mass tolerance was set at 0.6 Da and the fragment
mass tolerance was set at 1.2 Da.

ACE2 Binding by ELISA
The binding activity of plant-produced SARS-CoV-2 RBD-
Fc fusion protein to ACE2 protein was demonstrated by
ELISA. Briefly, 96-well ELISA plate was coated by 100 ng of
two different ACE2 protein derived either from HEK293-cells

(Abcam, United Kingdom) or CHO-cells (InvivoGen, California,
United States). For blocking, 5% skim milk in 1xPBS was added
into the wells and incubated for 2 h at 37◦C. After blocking, the
plate was washed three times with 1xPBST (1xPBS plus 0.05%
Tween-20) and incubated with various concentrations of plant-
produced SARS-CoV-2 RBD-Fc fusion protein in 1xPBS. The
SARS-CoV-2 RBD proteins in the wells were detected by addition
of 1: 100 dilution of plant-produced anti-SARS-CoV-2 (H4) mAb
(Shanmugaraj et al., 2020b) and followed by a 1:1,000 dilution
of anti-human Kappa chain-HRP fusion (SouthernBiotech,
United States) in 1xPBS for 1 h at 37◦C. For colorimetric
development, a TMB solution (Promega, United States) was
added into the wells followed by addition of 1M H2SO4 for
terminating the enzymatic reaction. The absorbance at 450 nm
was measured using a 96-well microplate reader (Molecular
Devices, United States).

Immunization of Mice and Non-human
Primates
Mice immunization protocols were approved by the Institutional
Animal Care and Use Committee, Faculty of Medicine,
Chulalongkorn University (Protocol review No. 012/2563).
Seven-week-old female ICR mice (n = 5 per group) were
intramuscularly (IM) immunized via., anterior tibialis with
10 µg of plant-produced SARS-CoV-2 RBD-Fc fusion protein
without adjuvant or formulated with 0.1 mg alum (InvivoGen,
California, United States) on days 0 and 21. Mice sera were
collected prior to the first immunization (pre-bleed, day 0)
and 14 days post-vaccination to assess the SARS-CoV-2-specific
antibody response. The mice were sacrificed on day 35 (14
days after second booster) to collect the spleen for quantitative
measurement of SARS-CoV-2 RBD-specific T-cell responses.

For non-human primate immunogenicity studies, all
procedures were reviewed and approved by the National
Primate Research Center of Thailand-Chulalongkorn University
(NPRCT-CU) Animal Care and Use Committee (Protocol review
No. 207512) and the facility has been AAALAC International
Accredited (1752). Thirteen SPF juvenile cynomolgus macaques
(Macaca fascicularis), aged between 2.5 and 3.5 years old, and
body weight between 2.18 and 3.17 kg, were assigned into three
groups in which the control group (n = 3) was immunized by PBS
adjuvanted with 0.5 mg alum, and other two groups (n = 5 per
group) were administered with 25 and 50 µg of plant-produced
SARS-CoV-2 RBD-Fc fusion protein along with 0.5 mg alum
adjuvant, respectively. Monkeys were received two intramuscular
injections on day 0 and 21. The blood samples were collected
on day 0 (pre-immunization) and 14 days after each vaccination
(days 14 and 35) to assess SARS-CoV-2 RBD specific IgG,
neutralizing antibody and cell-mediated immune responses.

Evaluation of SARS-CoV-2 RBD-Specific
Total Antibody Responses by ELISA
96-well plate was coated with 100 ng of SARS-CoV-2 spike
protein RBD derived from Sf9 insect cells (GenScript,
United States) and incubated overnight at 4◦C. Then, the
wells were blocked with 5% skim milk powder in 1xPBS for 2
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h at 37◦C. Subsequently, the animal sera were twofold serially
diluted with 1xPBS starting at 1:100 was loaded on the wells
and incubated for 2 h at 37◦C. Goat anti-mouse IgG HRP
conjugate antibody (Jackson ImmunoResearch, Pennsylvania,
United States) and goat anti-monkey IgG HRP conjugation
(Abcam, United Kingdom) diluted 1:2,000 in 1xPBS were added
into the wells for detecting mouse and monkey antibodies,
respectively, and the plate was incubated for 2 h at 37◦C. TMB
substrate (Promega, United States) was added into the plates
for colorimetric development. The enzymatic reactions were
terminated by adding 1M H2SO4. The absorbance was measured
at 450 nm using a microplate reader (BMG Labtech, Germany).
Between each step, the plates were washed by 1xPBST for three
times. For mouse IgG1 and IgG2a analysis, the mice sera were
twofold serially diluted with 1xPBS starting 1:100 in the same
fashion and detected by 1:2,000 goat anti-mouse IgG1 (HRP) and
goat anti-mouse IgG2a heavy chain (HRP) antibody (Abcam,
United Kingdom), respectively, diluted in 1xPBS. The endpoint
titer of IgG1 and IgG2a were also computed for monitoring
Th2 and Th1 lymphocyte responses, respectively. The endpoint
titers were determined as the highest dilution of immunized
sera, which had A450 more than cut off calculated from A450 of
pre-immunized sera in the dilution of 1:100 in 1xPBS (Frey et al.,
1998). All experiments were performed in duplicates and 1xPBS
was used as a control. The statistical analyses of immunological
data were performed using GraphPad Prism software version
8.0. Statistical significance was calculated by two-way analysis
of variance (ANOVA). All data in each group were compared
by using Tukey’s multiple comparisons test and the values of
p < 0.05 were considered as statistically significant.

In vitro Microneutralization Assay
Microneutralization assay was performed using Vero E6 cell
line and live SARS-CoV-2 virus isolated from a COVID-
19 patient and conducted in a certified biosafety level 3
facility of Microbiology department, Faculty of Science, Mahidol
University, Bangkok, Thailand. The cells were plated in 96-well
plate at 1× 104 cells/well in DMEM (Dulbecco’s Modified Eagle’s
medium supplemented with 10% heat-inactivated FBS, 100 U/mL
of penicillin and 0.1 mg/mL of streptomycin) and incubated
for overnight. The immunized sera and positive convalescent
serum from COVID-19 patient were heat-inactivated at 56◦C
for 30 min. The immunized sera were twofold serially diluted
in duplicates and incubated with 100 of 50% tissue culture
infective dose (TCID50) of the SARS-CoV-2 virus in DMEM
at 37◦C for 1 h. Virus control at 100TCID50 and uninfected
cell control wells were included in all plates. Subsequently,
the mixture of diluted serum and virus was transferred to
the cell monolayer and incubated at 37◦C with 5% CO2 for
2 days. After incubation, the cells were washed once with
1xPBS and then fixed and permeabilized with ice-cold 1:1
methanol/acetone fixative solution at 4◦C for 20 min. The cells
were washed 3 times with 1xPBST and blocked with 2% BSA
at room temperature (RT) for 1 h. After washing, the viral
nucleocapsid was detected using 1:5,000 of SARS-CoV/SARS-
CoV-2 nucleocapsid (N) monoclonal antibody (SinoBiological,
United States) and incubated at 37◦C for 1 h followed by

adding 1:2,000 of HRP-conjugated goat anti-rabbit polyclonal
antibody (Dako, Denmark) diluted with 1xPBS and incubated
at 37◦C for 1h. The KPL SureblueTM TMB substrate (SeraCare,
United States) was added for colorimetric development. Then the
reaction was stopped by the addition of 1N HCl. The absorbance
at 450 and 620 nm was read by a SunriseTM microplate reader
(Tecan, Switzerland). The absorbance differences between 450
and 620 nm (A450–A620) of diluted samples were compared with
the 50% specific signal of the cut point, which was calculated
by the following equation to determine the potent neutralization
titers of the immunized sera.

Acutpoint =

(
Avirus control − Acell control

2

)
+ Acell control

Where AVirus control and Acell control are the average of A450-A620
of virus control wells and cell control wells, respectively. The
neutralizing titers were defined as the reciprocal highest dilution
providing the average of A450–A620 of the diluted serum well
more than the cut point. The neutralizing antibody titers of each
experimental group were compared by GraphPad Prism 8.0 using
Mann-Whitney test. The significant differences were considered
when p < 0.05.

Mouse IFN-γ ELISPOT Assay
For mouse splenocyte preparation, the spleen cells were
aseptically plated in the petri-dish and dissociated into single-
cell suspension using needle#21 for 2–3 times. The separated
splenocytes were cultured in R5 medium (RPMI1640 with
100 U/mL penicillin, 100 U/mL streptomycin, 5% heat-
inactivated fetal bovine serum (FBS, Gibco, United States) and
2-mercaptoethanol) and centrifuged at 1,200 g 4◦C for 5 min.
Subsequently, splenocytes were lysed with 1xACK lysis buffer,
added R5 medium and collected the cell pellet by centrifugation
at 1,200 g 4◦C for 5 min. Finally, splenocytes were counted
and adjusted for using in ELISpot assay. The IFN-γ secreting
cells were quantified by using mouse IFN-γ ELISpot assay
kit (Mabtech, Stockholm, Sweden). Briefly, splenocytes were
resuspended at 5 × 106 cells/mL in R5 medium. The 96-well
plates (Millipore, Bedford, MA, United States) were coated with
500 ng of anti-mouse IFN-γ (AN18) monoclonal antibody (mAb)
(Mabtech, Stockholm, Sweden) in 1xPBS at 37◦C with 5% CO2
for 3 h. Then, the plates were washed six times with 1xPBS and
blocked with R10 medium at RT for 1 h. A quantity of 5 ×
105 splenocytes per well were activated by lyophilized SARS-
CoV-2 peptide pools (BioNet-Asia, Thailand, and Mimotopes,
Australia) at a final concentration of 2 µg/mL at 37◦C with 5%
CO2 for 40 h. R5 medium and concanavalin A (ConA) were used
as negative and positive controls, respectively. After incubation,
the plates were washed six times with 1xPBST followed by three
times with 1xPBS. Then, the plates were incubated with anti-
mouse IFN-γ-biotinylated mAb (Mabtech, Stockholm, Sweden)
diluted in 1xPBS at RT for 3 h. After washing, streptavidin-
alkaline phosphatase (ALP: Mabtech, Stockholm, Sweden) was
added and incubated at RT for 1 h. The substrate solution
(5-bromo-4-chloro-3-indolyl-phosphate/nitro blue tetrazolium;
BCIP/NBT) were added into the wells and incubated until
distinct spots emerge. Reactions were stopped by washing
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extensively in tap water and rinsing the underside of membrane.
Inspect and count spots were performed with an ELISpot reader
(ImmunoSpot R© Analyzer, United States). Results were expressed
as spot-forming cells (SFCs)/106 splenocytes. The positive
responses were defined as > 50 SFCs/106 splenocytes over the
background signal. The result analyses were conducted using
Kruskal-Wallis test in GraphPad Prism 6.0. All p-values < 0.05
were defined as significant.

Non-human Primate IFN-γ ELISpot Assay
For peripheral blood mononuclear cells (PBMCs) preparation,
the cells were isolated by density gradient separation using
Isoprep (Robbins Scientific Corporation, CA). Briefly, after
removal of plasma, EDTA-treated whole blood was diluted
(1:1) with RPMI1640 medium containing 2 mM L-Glutamine
(Gibco, United States) and layered over Isoprep. Samples were
then centrifuged at 1,200 g for 30 min. The PBMC layer was
harvested and washed twice with RPMI1640. Then, the cells were
resuspended in R10 medium (RPMI1640 supplemented with 100
U/mL of penicillin, 100 U/mL of streptomycin and 10% heat-
inactivated fetal bovine serum (FBS, Gibco, United States) for
applying in ELISpot assay. The antigen-specific cells secreting
monkey IFN-γ were enumerated by using monkey IFN-γ
ELISpot assay kit (Mabtech, Stockholm, Sweden). Briefly, PBMCs
were stimulated with SARS-CoV-2 spike peptides pools (BioNet-
Asia, Thailand, and Mimotopes, Australia) at 37◦C with 5%
CO2 for 40 h. R5 medium and phytohemagglutinin (PHA)
were served as negative and positive control, respectively. The
secreted monkey IFN-γ were detected by anti-monkey IFN-
γ-biotinylated mAb (Mabtech, Stockholm, Sweden) and followed
by addition of ALP solution (Mabtech, Stockholm, Sweden). For
spot development, BCIP/NBT-plus substrate solution was added
into the wells and incubated until distinct spots emerge. The spots
were inspected and counted by ELISpot reader (ImmunoSpot R©

Analyzer, Germany). Results were expressed as spot-forming cells
(SFCs)/106 PBMCs following the subtraction of the negative
control. The positive responses were defined > 100 SFCs/106

PBMCs over the background. Statistical analyses were presented
using GraphPad Prism 8.0. Comparison of frequencies of
populations in each group was made using Friedman and Mann-
Whitney tests. All p-values < 0.05 were defined as significant.

RESULTS

Transient Expression of SARS-CoV-2
RBD-Fc Fusion Protein in Nicotiana
benthamiana
The nucleotide sequence of RBD of SARS-CoV-2 was codon-
optimized and fused with Fc region of human IgG1 at the
C terminus of the RBD gene construct. The codon-optimized
SARS-CoV-2 RBD-Fc fusion gene was cloned into the geminiviral
plant expression vector pBYR2e. For expression of RBD-Fc
fusion protein in plants, N. benthamiana plants were infiltrated
with Agrobacterium containing pBYR2e-SARS-CoV-2 RBD-Fc
(Figure 1). The leaves infiltrated with Agrobacterium containing

pBYR2e-SARS-CoV-2 RBD-Fc showed significant phenotypic
necrosis compared to the leaves infiltrated by Agrobacterium
without the plant expression vector (Figure 2A).

Purification and Characterization of
Plant-Produced RBD-Fc Fusion Protein
Plant-produced SARS-CoV-2 RBD-Fc fusion protein was
extracted and purified from crude extract by single-step protein
A affinity chromatography. The purified SARS-CoV-2 RBD-Fc
fusion protein was concentrated and filtered by using 0.22
µm syringe filter. The purity of the purified plant-produced
SARS-CoV-2 RBD-Fc was analyzed by SDS-PAGE gel stained
with Coomassie blue staining under reducing and non-reducing
condition. The purity of SARS-CoV-2 RBD-Fc fusion protein
was found to be higher than 90% based on the visual inspection
of a Coomassie-stained SDS gel (Figure 2B). The SARS-CoV-2
RBD-Fc fusion protein was further analyzed by western blot
probed with anti-human gamma chain-HRP conjugate antibody.
The protein band corresponding to the molecular weight of
65 kDa was observed in reducing condition (Figure 2C; lane
1). In addition, the plant-produced SARS-CoV-2 RBD-Fc
fusion protein under non-reducing condition was observed
at approximately 150 kDa (Figure 2C; lane 2), which implies
that the SARS-CoV-2 RBD-Fc fusion protein could be linked
by disulfide bond into dimeric form. The expression level of
plant-produced SARS-CoV-2 RBD-Fc was quantified by ELISA
and found to be 25 µg/g fresh weight. The authenticity of purified
plant-produced SARS-CoV-2 RBD-Fc fusion protein was further
confirmed by using a high-resolution LC-TOF MS/MS analysis
as shown in Supplementary Document.

In vitro Binding Activity of
Plant-Produced RBD-Fc Fusion Protein
The binding of plant-produced SARS-CoV-2 RBD-Fc fusion
protein was confirmed by ELISA by using commercial HEK293
and CHO-produced ACE2 protein as the capture reagent.
The various dilutions of purified plant-produced SARS-CoV-
2 RBD-Fc was incubated with commercial ACE2 proteins. For
detection of SARS-CoV-2 RBD, anti-SARS-CoV-2 (H4) mAb
(Shanmugaraj et al., 2020b) and anti-human kappa chain-HRP
conjugate antibody were added into the wells. The results
showed that plant-produced SARS-CoV-2 RBD-Fc fusion protein
produced saturable binding to both commercial ACE2 proteins
with substantially high affinity in comparison to PBS control
(Figure 3), which confirms the authenticity of plant-produced
SARS-CoV-2 RBD-Fc.

Immunogenicity in Mice
Mice immunogenicity was assessed in 7-week-old female
Mlac:ICR mice by immunizing intramuscularly on days 0 and
21 with 10 µg of plant-produced SARS-CoV-2 RBD-Fc fusion
protein with or without alum adjuvant. Mice sera were collected
on days 0, 14, and 35 (Figure 4A). SARS-CoV-2 RBD-specific
antibodies were evaluated by ELISA using commercial SARS-
CoV-2 RBD-His protein produced from Sf9 cells as a capture
antigen. The SARS-CoV-2 RBD-specific immune responses were
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FIGURE 2 | Expression profiles of plant-produced SARS-CoV-2 RBD-Fc fusion protein. Phenotype of leaf infiltrated with Agrobacterium control (1) and
Agrobacterium containing pBYR2e-SARS-CoV-2 RBD-Fc (2) after 4 dpi (A). SDS-PAGE analysis of plant-produced SARS-CoV-2 RBD-Fc fusion protein stained with
Coomassie staining (B) and western blot of plant-produced SARS-CoV-2 RBD-Fc fusion protein probed with anti-human gamma-HRP conjugate antibody (C). Lane
1 and 2, purified plant-produced SARS-CoV-2 RBD-Fc fusion protein under reducing and non-reducing condition, respectively.

observed after first immunization of plant-produced SARS-CoV-
2 RBD-Fc alone, whilst a slightly increased specific-mouse total
IgG response was observed in SARS-CoV-2 RBD-Fc immunized
with alum. All mice immunized with plant-produced RBD-Fc
elicited significantly higher antibody titer after second booster
compared with the control group (Figure 4B). Plant-produced
SARS-CoV-2 RBD-Fc was found to be immunogenic, while
the addition of alum adjuvant could significantly improve its
immunogenicity. In addition, we appraised the levels of SARS-
CoV-2 RBD-specific IgG1 and IgG2a subclasses, which are
indicators of Th2 and Th1 lymphocyte responses in mice,
respectively. The results demonstrated that plant-produced
SARS-CoV-2 RBD-Fc induced both SARS-CoV-2 RBD-specific
IgG1 (Figure 4C) and IgG2a (Figure 4D) with the IgG1 bias. The
in vitro neutralizing ability of the immunized sera was evaluated.
The SARS-CoV-2 RBD-Fc without adjuvant induced neutralizing
antibody against SARS-CoV-2 after the second dose at a dilution
of 1:1,280 (Figure 4E). Interestingly, mice sera immunized by

SARS-CoV-2 RBD-Fc adjuvanted with alum displayed maximum
SARS-CoV-2 neutralization with a dilution more than 1:10,240
(Figure 4E). IFN-γ levels of splenocytes isolated from mice was
tested by IFN-γ ELISpot assay. The results showed that plant-
produced RBD-Fc elicited IFN-γ secretion which was statistically
significant compared with mock control group (Figure 4F).

Immunogenicity in Non-human Primates
Cynomolgus macaques (Macaca fascicularis) were
intramuscularly immunized with 25 and 50 µg of plant-produced
SARS-CoV-2 RBD-Fc with the presence of alum on day 0 and
21. Monkey sera were collected on day 0, 14, and 35 (Figure 5A).
Plant-produced SARS-CoV-2 RBD-Fc protein adjuvanted with
alum was capable of inducing dose-independent SARS-CoV-2
RBD-specific IgG antibodies in monkeys after first and second
immunization with the dilution 1:800, and 1:51,200, respectively
(Figure 5B). Specifically, the microneutralization assay was
performed by using Vero E6 cell line to evaluate the level of
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FIGURE 3 | Binding activity of the plant-produced SARS-CoV-2 RBD-Fc with the commercial angiotensin-converting enzyme 2 (ACE2 proteins) derived from
HEK293 and CHO cells analyzed by ELISA. PBS was used as negative control. Data are presented as mean ± standard deviation (SD) of triplicates in each sample
dilution.

neutralizing antibodies against live SARS-CoV-2. Sera collected
14 days after the first immunization (day 14) showed neutralizing
activity against the SARS-CoV-2 and increased at day 35 (14
days after the second immunization) with the neutralization
titer approximately 5,120 (Figure 5C). In addition, cell-mediated
immune responses in cynomolgus monkeys were monitored by
IFN-γ ELISpot assay by using peripheral blood mononuclear
cells isolated from immunized sera on day 35. The specific
IFN-γ expression was detected in monkeys immunized with two
doses of plant-produced SARS-CoV-2 RBD-Fc, and a significant
difference from the control group was detected compared to
immunized monkeys (Figure 5D).

DISCUSSION

The recent emergence of coronavirus diseases (COVID-19) in
China is responsible for the current global pandemic and public
health crisis (Li Q. et al., 2020; Malik et al., 2020; Singhal,
2020; Yuki et al., 2020). Few vaccines are currently approved for
human use. Hence, it is highly essential to develop safe, effective
vaccines and therapeutics against this infection to prevent its
spread. Recently, several groups have predicted and assessed the
immunogenicity potential of SARS-CoV-2 related proteins and
showed that SARS-CoV-2 S protein is the suitable candidate for
recombinant vaccine development as it can elicit potent immune
response and is the major target of neutralizing antibodies. The
receptor-binding domain (RBD) of SARS-CoV-2 plays a key role
in viral attachment and entry into the host cells by interaction
with the ACE2 receptor in the host cells (Li et al., 2003; Lei
et al., 2020; Quinlan et al., 2020; Rabi et al., 2020; Shanmugaraj
et al., 2020c; Sun et al., 2020; Xie et al., 2020; Yuki et al., 2020).
Particularly, RBD domain has multiple conformational epitopes,
which can induce host immune responses and highly potent
neutralizing antibodies (He et al., 2005a,b; Zhu et al., 2013; Wang

et al., 2018; Smith et al., 2020). Hence, RBD domain in the S
protein is considered as a potential target and could serve as
a potent immunogen for developing the possible SARS-CoV-
2 vaccines.

Since 1980s, plants have been utilized for the development
of highly valuable biopharmaceuticals either for human or
veterinary applications. Plant-based expression system offers
several key advantages over conventional systems in terms of
production speed, cost, and safety (Basaran and Rodríguez-
Cerezo, 2008; Paul and Ma, 2011; Krenek et al., 2015; Yao
et al., 2015; Burnett and Burnett, 2019; Shanmugaraj et al.,
2020a; Daniell et al., 2021). Remarkably, plant-based expression
system can produce large amounts of recombinant antigens in a
relatively short time period within few weeks after making the
gene construct (D’Aoust et al., 2008, 2010; Rybicki, 2009; Vézina
et al., 2009; Pillet et al., 2016; Rattanapisit et al., 2020; Ward
et al., 2020). The concept of plant-produced biopharmaceuticals
and vaccines has been assessed and well explored by number of
research groups worldwide. Several plant-produced therapeutics
(Kizhner et al., 2015; Ma et al., 2015; Mor, 2015; Prevail Ii
Writing Group et al., 2016) and vaccines (Yuki et al., 2013;
Hendin et al., 2017; Donini and Marusic, 2019) are currently in
pipeline for clinical trials and approval, Notably plant-produced
Glucocerebrosidase enzyme (ElelysoTM) for the treatment of type
I Gaucher’s disease has been approved by US Food and Drug
Administration (Fox, 2012) and tobacco-derived seasonal flu
VLP vaccine from Medicago Inc., is currently in final stages of
clinical trial (Ward et al., 2021). Hence, plant-based expression
could be an alternative option for rapid production of emergency
vaccines or therapeutic antibodies (Iyappan et al., 2018; Diego-
Martin et al., 2020; Rattanapisit et al., 2020; Shanmugaraj and
Phoolcharoen, 2021; Siriwattananon et al., 2021).

The geographical distribution of virus is increasing rapidly
and global concern on this pandemic demands an affordable
and scalable protein production platform that can produce
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FIGURE 4 | Immunogenic studies in mice. Schematic representation of immunization protocol and sample collection. Groups of mice (five mice per each group)
were intramuscularly immunized with 10 µg of SARS-CoV-2 RBD-Fc fusion protein alone or with alum adjuvant, followed by booster dose at 21 days after first
immunization. Mice sera were collected on day 0 (pre-bleed) and day 14 post-immunization (A). Titers of SARS-CoV-2 RBD-specific total IgG (B), IgG1 (C), and
IgG2a (D) in the immunized sera collected on day 0, 14, and 35 were analyzed by indirect ELISA using Sf9-produced SARS-CoV-2 RBD-His as the capture antigen.
Potent neutralizing antibody titers in mice sera were tested by in vitro microneutralization assay using Vero E6 cell line and live SARS-CoV-2 (E). The functional
profiles of SARS-CoV-2 RBD-specific T-cell responses expressing in mouse splenocytes immunized with plant-produced SARS-CoV-2 RBD-Fc adjuvanted with
alum were determined by mouse ELISpot assay (F). Data presented as mean ± SD of the endpoint titers in each mice vaccination group (n = 5). ∗p < 0.05;
∗∗p < 0.01; ∗∗∗p < 0.001; ∗∗∗∗p < 0.0001.
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FIGURE 5 | Immunogenic studies in non-human primates (Macaca fascicularis). Experimental design of immunogenicity studies in non-human primates. Thirteen
juvenile-adult non-human primates were separated into 3 groups; Control group was immunized with PBS adjuvanted by alum (n = 3) and two experimental groups
were immunized with 25 and 50 µg SARS-CoV-2 RBD-Fc along with alum adjuvant (n = 5 per group). All non-human primates were intramuscularly injected either
with PBS or plant-produced RBD-Fc for 3 weeks interval (on day 0 and 21). The sera were collected on day 0 and 14 after each boost (A). Serum specific IgG
response in non-human primates were determined by ELISA (B). Virus neutralizing titer of RBD immunized non-human primate sera against live SARS-CoV-2 were
evaluated (C). The functional profiles of SARS-CoV-2 RBD-specific T-cell responses expressing in non-human primate peripheral blood mononuclear cells
immunized with plant-produced RBD-Fc adjuvanted with alum on day 14 after second immunization (D). ∗p < 0.05; ∗∗p < 0.01; ∗∗∗p < 0.001; ∗∗∗∗p < 0.0001.
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recombinant proteins relatively in short time with much
reduced cost. Hence in this study, we have demonstrated the
rapid production of SARS-CoV-2 RBD-Fc fusion protein in
N. benthamiana plants that could be used as a potential vaccine
candidate for prevention of SARS-CoV-2 infection.

Significant efforts have been made by the scientific community
across the world to develop the effective vaccine against SARS-
CoV-2. Plant-derived vaccine candidates for other coronaviruses
such as SARS and porcine epidemic diarrhea virus are shown
to elicit potent immunogenic response in animal studies (Kang
et al., 2005; Pogrebnyak et al., 2005). Earlier studies showed that
full length S protein-based vaccine could cause liver damage or
enhance virus infection. RBD-based vaccines formulated with
alum was shown to elicit high level of protective immunity in
animal experiments (He et al., 2006; Du et al., 2007; Jiang et al.,
2012; Chen et al., 2017, 2020a,b). Hence based on the available
data on the immunogenicity of SARS-CoV-2 proteins, we have
chosen RBD for plant expression.

The presence of Fc domain in fusion protein offers favorable
characteristics such as improving the expression and secretion
of the recombinant proteins, improving protein solubility and
stability (Huang, 2009; Czajkowsky et al., 2012; Yang et al., 2018).
Moreover, Fc domain increases the serum half-life and prolongs
therapeutic protein activities due to pH-dependent binding to
the neonatal Fc receptor (FcRn) leading to prevention of protein
degradation in endosomes as well as reduces renal clearance
rate due to larger molecular weight of protein (Jazayeri and
Carroll, 2008; Suzuki et al., 2010; Carter, 2011; Rath et al.,
2015; Rosales-Mendoza et al., 2017; Yang et al., 2018). Fc
region have been used as a fusion protein partner for several
recombinant proteins such as receptors, ligands, enzymes, and
soluble cytokines for therapeutic applications (Strohl and Knight,
2009; Li and Ravetch, 2011; Czajkowsky et al., 2012; Rattanapisit
et al., 2019c; Liu et al., 2020). In addition to the mentioned
advantages, Fc region is used as a tagged protein for facilitating
the effective purification of recombinant protein by protein A
chromatography that can provide high purity of SARS-CoV-2
RBD-Fc which can be visualized on the Coomassie-stained SDS-
PAGE compared to crude extract sample as shown in previous
studies (Rattanapisit et al., 2019c; Siriwattananon et al., 2021).
Hence, we engineered SARS-CoV-2 RBD by fusing with Fc
region of human IgG1 in order to use it as a subunit vaccine
against SARS-CoV-2.

The SARS-CoV-2 RBD-Fc fusion protein was transiently
expressed as a soluble protein in plants. The results showed that
the expression of SARS-CoV-2 RBD-Fc was achieved rapidly
within 4 days post infiltration with necrosis signal was observed
on the infiltrated leaves (Figure 2A). The recombinant protein
was purified from the plant crude extracts by affinity column
chromatography and used for further studies.

The plant-produced SARS-CoV-2 RBD-Fc apparently showed
effective binding activity with commercial ACE2 proteins
produced from HEK293 and CHO cells (Figure 3). This data
indicated that the SARS-CoV-2 RBD protein folded correctly
in plants and produced authentic antigen. The immunogenicity
of plant-produced SARS-CoV-2 RBD-Fc was tested in mice
and cynomolgus monkeys using alum as an adjuvant. Alum

stimulates the innate immunity, particularly presenting the
antigen to major histocompatibility complex (MHC) class II,
CD40 and CD86 or inducing the Th2 responses to mediate
B-cell differentiation and elicit the antigen specific-IgG1 isotype
(Marrack et al., 2009; Exley et al., 2010; Zhang et al., 2016).
Furthermore, alum is having good safety profile and has been
used as an adjuvant in several currently available licensed
vaccines to enhance the immune response of the antigen
(HogenEsch et al., 2018).

Mice administered with two doses of plant-derived SARS-
CoV-2 RBD-Fc protein formulated with alum as adjuvant
developed the neutralizing immune response (Figure 4E).
The results confirmed the immunogenicity of plant-produced
recombinant SARS-CoV-2 RBD protein. Mice immunized with
RBD with alum showed the higher titer of neutralizing
antibodies compared with the mice immunized with SARS-
CoV-2 RBD alone. The analysis of the mouse specific-
IgG subtypes suggested that plant-produced SARS-CoV-2
RBD induced a mixed Th1/Th2-specific immune responses.
Further the efficacy of plant-produced SARS-CoV-2 RBD-
Fc fusion protein was investigated in cynomolgus monkeys
by administering the SARS-CoV-2 RBD-Fc with alum as
adjuvant. The results confirmed that the plant-produced
SARS-CoV-2 RBD-Fc could induce neutralizing antibodies in
monkeys (Figure 5C). To accomplish the capability of plant-
produced SARS-CoV-2 RBD-Fc in induction of cell-mediated
immune responses, mouse splenocytes and monkey peripheral
blood mononuclear cells were collected 14 days after second
immunization (Figures 4F, 5D). The IFN-γ-expressing T
cells were analyzed by ELISPOT assay. Plant-produced SARS-
CoV-2 RBD-Fc without alum induced SARS-CoV-2-specific
T-cell responses, as evidenced by significant IFN-γ expression
compared with the control (Figure 4F). Addition of alum
adjuvant did not significantly increase the number of IFN-γ in
the animals. These results suggested that plant-produced SARS-
CoV-2 RBD-Fc itself could induce T-cell responses.

These results clearly showed that the plant-expressed SARS-
CoV-2 RBD-Fc fusion protein maintains their authentic structure
and retains its antigenicity. Our results are consistent with those
of previous studies which showed that the vaccine antigens
expressed in N. benthamiana elicited potent immune responses
in animal experiments (Zheng et al., 2009; He et al., 2014). In
consistent with earlier reports on the immunogenicity of RBD
of SARS-CoV, our study showed that neutralizing antibodies
induced by plant produced RBD of SARS-CoV-2 suppress SARS-
CoV-2 infection in vitro (Bisht et al., 2005; Kapadia et al., 2005;
Du et al., 2010). Our data showed the potential of plant-produced
subunit vaccine candidate as the effective SARS-CoV-2 vaccine.

CONCLUSION

In conclusion, our study demonstrated that it was feasible
to produce SARS-CoV-2 RBD protein in N. benthamiana
plants by transient expression system. Further plant-produced
recombinant protein was shown to be immunogenic in mice
and non-human primates. The vaccine elicited both humoral
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and cell mediated immune responses suggesting the potential of
plant- produced RBD as the effective vaccine against SARS-CoV-
2. To our knowledge, this is the first report demonstrating the
immunogenicity of plant-produced SARS-CoV-2 RBD protein
in mice and non-human primates. Collectively this proof of
concept study demonstrated that the plant-produced SARS-CoV-
2 proteins could possibly be further developed as candidate
vaccines for early stage clinical development.
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