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Napier grass is the most important perennial tropical grass native to Sub-Saharan Africa
and widely grown in tropical and subtropical regions around the world, primarily as
a forage crop for animal feed, but with potential as an energy crop and in a wide
range of other areas. Genomic resources have recently been developed for Napier
grass that need to be deployed for genetic improvement and molecular dissection of
important agro-morphological and feed quality traits. From a diverse set of Napier grass
genotypes assembled from two independent collections, a subset of 84 genotypes
(although a small population size, the genotypes were selected to best represent the
genetic diversity of the collections) were selected and evaluated for 2 years in dry (DS)
and wet (WS) seasons under three soil moisture conditions: moderate water stress in DS
(DS-MWS); severe water stress in DS (DS-SWS) and, under rainfed (RF) conditions in
WS (WS-RF). Data for agro-morphological and feed quality traits, adjusted for the spatial
heterogeneity in the experimental blocks, were collected over a 2-year period from 2018
to 2020. A total of 135,706 molecular markers were filtered, after removing markers with
missing values >10% and a minor allele frequency (MAF) <5%, from the high-density
genome-wide markers generated previously using the genotyping by sequencing (GBS)
method of the DArTseq platform. A genome-wide association study (GWAS), using two
different mixed linear model algorithms implemented in the GAPIT R package, identified
more than 35 QTL regions and markers associated with agronomic, morphological,
and water-use efficiency traits. QTL regions governing purple pigmentation and feed
quality traits were also identified. The identified markers will be useful in the genetic
improvement of Napier grass through the application of marker-assisted selection and
for further characterization and map-based cloning of the QTLs.
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INTRODUCTION

Improving livestock feeds and forages will play a key role in
global food and nutrition security and have the potential to
contribute to the strategy of achieving climate-smart agriculture,
restoring degraded lands and decreasing greenhouse gas emission
intensities (Bryan et al., 2013; Peters et al., 2013; Belay, 2019; Paul
et al., 2020). The availability of adequate, high-quality feeds and
forages has been a major challenge faced by the livestock sector,
especially during the dry season when pasture and crop residues
are scarce (Mtengeti et al., 2008; Maleko et al., 2018). To cope with
the shortage of feeds during the dry season, many farmers in sub-
Saharan Africa (SSA) rely mainly on drought-tolerant perennial
grasses, such as Napier grass, that can produce a reasonable
amount of feed under limited water availability (Lukuyu et al.,
2012; Kabirizi et al., 2015).

Napier grass (Cenchrus purpureus (Schumach.) Morrone syn.
Pennisetum purpureum Schumach.), also called elephant grass,
belonging to the poaceae family, is one of the most important
perennial tropical C4 grasses (Robert et al., 2010). Napier grass
is native to SSA from where it has been distributed to other
tropical and subtropical regions around the world, adapting to a
wide range of soil and agro-ecological conditions (Negawo et al.,
2017). Napier grass has been adapted to areas of North and South
America, tropical parts of Asia, Australia, the Middle East, and,
the Pacific (Anderson et al., 2008; Negawo et al., 2017). Napier
grass is cultivated primarily as a forage crop for animal feed in
cut-and-carry feeding systems, it is particularly well-known by
smallholder farmers in Eastern and Central Africa (Lukuyu et al.,
2012; Kabirizi et al., 2015). Napier grass is known for its high
biomass production (up to 78 tons of dry matter per hectare
annually), year-round availability under limited irrigation, ability
to withstand repeated cuttings when harvested multiple times,
resistance to most pests and diseases, ease of establishment and
rapid propagation and, fast regrowth capacity (Anderson et al.,
2008; Lukuyu et al., 2012; Kabirizi et al., 2015). Napier grass is
also used in the push-pull integrated pest management strategy
(Khan et al., 2011; Van den Berg and Van Hamburg, 2015),
is commonly grown around many crops as a wind and fire
break and, is planted in marginal lands and slopes to increase
soil fertility and to reduce soil erosion (Kabirizi et al., 2015;
Negawo et al., 2017). Recently, reports have shown the potential
of Napier grass for biofuel, bioremediation and paper production
(Madakadze et al., 2010; Rengsirikul et al., 2013; Tsai and Tsai,
2016; Rocha-Meneses et al., 2020).

Napier grass is an allotetraploid (2n = 4x = 28) with a
complex genome (A′A′BB genomes, with A′ genome showing
a high degree of homology with the pearl millet A genome)
and high genetic diversity, which is mainly attributed to the
wide parental diversity and its out-crossing nature (Robert
et al., 2010; Dos Reis et al., 2014). Despite its multipurpose
use, enormous potential in a wide range of areas and its high
genetic diversity, there have been limited efforts to develop
varieties with high forage value through breeding and genetic
studies. Most of the genetic studies conducted so far were
limited to characterizing its genetic diversity using low-density
molecular markers (Babu et al., 2009; Azevedo et al., 2012;

Wanjala et al., 2013; Kandel et al., 2016; Negawo et al., 2018) that
provide a poor representation of the whole-genome information.
The generation of high-density genome-wide markers using
the genotyping by sequencing (GBS) method permitted the
construction of the first high-density genetic map (Paudel et al.,
2018) and the first detailed genetic diversity and population
structure analysis (Muktar et al., 2019) in Napier grass. The
latter study (Muktar et al., 2019) provided a useful insight
into the genetic diversity and genome-wide patterns of linkage
disequilibrium (LD) in two Napier grass collections, both the
material maintained in the International Livestock Research
Institute (ILRI) forage genebank and a collection acquired from
the Brazilian Agricultural Research Corporation (EMBRAPA)
and demonstrated the potential of the collections for further
genetic and marker-trait association studies. The most important
breakthrough was the recent reports of the first high-quality
chromosome scale genome sequences of Napier grass (Zhang
et al., 2020; Yan et al., 2021), in which a 1.97 to 2.07
Gb genome was assembled. This chromosome scale genome
sequence offers significant opportunities for the dissection of the
genetic architectures of complex traits and the development of
improved Napier grass varieties.

Molecular tools need to be deployed for Napier grass
improvement and the dissection of important agronomic
and feed quality traits, for example, by linking sequence
polymorphisms with traits using genome-wide association
studies (GWAS) and/or linkage mapping. The GWAS technique,
which is based on LD, is well established and a potential approach
for genetic dissection of complex traits and the identification
of quantitative trait loci (QTLs) (Flint-Garcia et al., 2003;
Huang and Han, 2014). DNA markers identified by GWAS
for agronomic traits have been successfully exploited in several
crop plants, for marker-assisted selection (MAS), gene cloning,
trait improvement and designing an effective breeding strategy
(Burridge et al., 2017; Guo et al., 2018; Sanchez et al., 2018;
Jaiswal et al., 2019a). Unlike classical linkage mapping that uses
a population of the progeny of a biparental cross, GWAS is
performed on a diverse collection of unrelated genotypes (Flint-
Garcia et al., 2003; Huang and Han, 2014) and hence this
technique is ideally suited to the study of genebank collections
(McCouch et al., 2012). To date, only two GWAS studies on
Napier grass have been reported (Rocha et al., 2019; Habte et al.,
2020), in which markers associated with high biomass yield,
metabolizable energy and biomass digestibility were detected.
However, these studies had a limitation on either marker density
(a total of 111 alleles from 18 SSR markers on 90 Napier
grass genotypes were used for GWAS in Rocha et al., 2019) or
population size (a total of 45 Napier grass genotypes were used in
Habte et al., 2020).

Here, we report on the first marker-trait association and QTL
identification in Napier grass in a controlled and replicated field
trial, with repeated trait measurements, high-density genome-
wide markers and different statistical approaches. Selected Napier
grass genotypes have been evaluated in a field in dry (DS) and wet
(WS) season conditions. Morphological, agronomic, water-use
efficiency and feed quality traits were collected over 2 years from
2018 to 2020, the trait values were subjected to a spatial analysis
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(Rodríguez-Álvarez et al., 2018) and adjusted for the spatial
heterogeneity of the experimental blocks. GWAS was employed
using the adjusted phenotypic data and high-density genome-
wide markers generated previously (Muktar et al., 2019), with
the objective of dissecting the genetic architecture of complex
traits in Napier grass and identifying markers and QTL regions
associated with forage-biomass yield, water-use efficiency and
feed quality traits.

MATERIALS AND METHODS

Selection of High-Density Genome-Wide
Markers
The Napier grass collections have been genotyped by the
Diversity Array Technology1 using the DArTseq platform as
described previously (Muktar et al., 2019). High density genome-
wide SilicoDArT (presence/absence), and SNP markers were
called following the DArTseq protocol (Kilian et al., 2012).

From the high-density genome-wide markers generated, a
total of 135,706 markers (90,498 silicoDArTs and 45,208 SNPs)
were filtered after removing markers with missing values > 10%
and a minor allele frequency (MAF) < 5%. The markers with
10% missing values were imputed using the missForest R package
(Stekhoven and Bühlmann, 2012), with maxiter set to 5 and
ntree to 100 and all other parameters set to default values. The
imputation was run on one assembled chromosome (AC) at a
time as the run time of the software could not accommodate
taking the entire genome at once. The short sequence reads
corresponding to the markers were aligned to the recently
reported Napier grass genome (Yan et al., 2021) using the bwa
mem sequence aligner v0.7.17 (Li and Durbin, 2009) and the
marker density and distribution across the fourteen ACs of
the Napier grass genome was visualized using the synbreed
R-package (Wimmer et al., 2012). The sequences were annotated
using the genomic information resources of Cenchrus americanus
and Setaria italica in the GenBank NCBI blastx tool2 by the
technique of reciprocal blastx, as described previously (Muktar
et al., 2019). The BLAST results (C. americanus to S. italica
and S. italica to C. americanus) with best scores (a BLASTP
Expect value of less than 10) were joined using the “subject”
and “query” fields and reciprocal blast best hits were produced.
The annotation information for S. italica and P. glaucum was
extracted using UniProt (free-text gene function and Gene
Ontology annotations) and merged with the reciprocal blast best
hits, which was in turn matched with the markers based on their
genomic position.

Marker Data Analysis, Linkage
Disequilibrium and LD-Decay Analysis
The missing percentage data, minor allele frequency (MAF) per
marker and per genotype, and the polymorphic information
content (PIC) were calculated in R statistical software3 as

1http://www.diversityarrays.com/
2https://blast.ncbi.nlm.nih.gov/Blast.cgi
3https://www.r-project.org/

described previously (Muktar et al., 2019). Pair-wise linkage
disequilibrium (LD) between pairs of SilicoDArT markers
(SilicoDArTs were selected as the DArTseq technology produces
more precise genomic position information for this marker
than for SNPs) with a known genomic location on the
Napier grass genome (Yan et al., 2021) was estimated based
on the correlation coefficient (r2) calculated using PLINK
v1.09 (Purcell et al., 2007). The LD was estimated only
for markers located on the same chromosome, then the
r2 values from all chromosomes were pooled and plotted
against the physical distance between markers to estimate
the average rate of LD decay across the whole genome, as
described in Muktar et al. (2019).

Field Planting, Drought Stress
Application and Trait Measurements
A total of 84 genetically diverse genotypes (the origin and
diversity of the genotypes were well documented in Muktar
et al., 2019) were planted in June 2017 during the main rainy
season (mid-June to mid-September) at the Bishoftu field site,
Ethiopia, which is located at 008_4702000 N and 038_5901500
E, at an altitude of 1890 m above sea level, about 48 km
southeast of Addis Ababa, and has an Alfisol type of soil.
The genotypes were arranged in a partially replicated (p-rep)
design in four blocks where a selected 12 genotypes (14% of
the population) were duplicated in each block as checks to
control for soil heterogeneity as described previously (Muktar
et al., 2019). Six plants per accession were planted in a single
row, with 750 mm spacing between plants and between rows.
A border plant (acc. ILRI_14984) was planted around each
block to reduce border effects. A trench, approximately 1m
deep, was dug between blocks to avoid seepage of water
from one block to another. During the dry season (DS), two
blocks were irrigated to a volumetric soil water content (VWC)
of approximately 20% (now onwards called moderate water
stress, MWS) and the other two blocks were irrigated with
a reduced amount of water, which corresponds to a VWC
of about 10% (now onwards called severe water stress, SWS)
(Supplementary Figure 1). There was no irrigation in the
wet season (WS) as all plants were maintained under rainfed
(RF) conditions (approximately 30% VWC) (Supplementary
Figures 1, 2). Approximately 3 months after establishment,
the plants were clean cut to a standard height of 50 mm
above ground, subsequently, harvesting and data collections
were conducted following every 8 weeks of regrowth. The
first four harvests were considered as an establishment period
and data from the fifth harvest onwards were used in the
data analysis. Six harvests per year, 12 harvests overall, were
conducted across a 2 years period. Data of morphological,
agronomic, and feed quality traits were collected from three
randomly selected plants per row in each of the three soil
moisture conditions, as described in Habte et al. (2020). The
agro-morphological traits collected were plant height (PH) in
centimeter (cm), leaf length (LL) in cm, leaf width (LW) in
millimeter (mm), stem thickness (ST) in mm, tiller number (TN)
count, internode length (IL) in cm, total fresh weight (TFW)
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in t/ha, total dry weight (TDW) t/ha, leaf-stem-ratio (LSR),
and water use efficiency (WUE) in g/l (Dry matter produced
per liter of water). For the feed quality traits, Acid detergent
fiber (ADF) in %, acid detergent lignin (ADL) in %, crude
protein (CP) in %, dry matter (DM), in vitro organic matter
digestibility (IVOMD), metabolizable energy (Me) in J/KgDM,
neutral detergent fiber (NDF) in %, organic matter (OM) in
%, were collected.

Phenotypic Data Analysis and Correction
for Spatial Variation
The phenotypic value of each trait was adjusted according
to the spatial variation across the experimental field using
the SpATS R-package (Rodríguez-Álvarez et al., 2018) in R
(R Core Team, 2021) statistical software. The analysis was
performed individually for each of the three soil moisture
conditions. In this study, plots were laid out in 24 row
by 4 column grids in each block, thus rows and columns
were used as random factors. In addition, the multi-harvests,
soil moisture data and soil nutrient parameters (Acid = soil
acidity, AvaP = available phosphorus, K = available potassium,
OM = organic matter, and CEC = cation exchange capacity)
were included in the mixed model as fixed covariates. Thus,
the following SpATS mixed model for each treatment condition
was fitted;

y = Xβ+ f (u, v)+ ZrCr + ZcCc +↋ (1)

where y is phenotypic observation; β is a vector of random
genetic (genotype) effects, with X as the corresponding design
matrix; f (u,v) are vectors of row and column random effects;
Zr and Zc are vectors of fixed effects of replications, multi-
harvests, soil-moisture, and soil-nutrient parameters, with Cr
and Cc as the corresponding random effect coefficients for the
rows and columns, respectively; ε is the random residual error
(Rodríguez-Álvarez et al., 2018).

The pairwise correlation between all possible trait-pairs
was assessed using the R function “cor_pmat” in the package
ggcorrplot in R (R Core Team, 2021) and visualization of
the correlation matrices was undertaken using the “ggcorrplot”
function. Effective dimension (ED), which is a measure of
the complexity of the model components, and broad-sense
heritability based on the adjusted data were generated by
the R functions “summary” and “getHeritability,” respectively,
in the SpATS R-package (Rodríguez-Álvarez et al., 2018).
For comparison purposes, broad-sense heritabilities were also
analyzed for the unadjusted data using the “mmer” function
in the sommer R package (Covarrubias-Pazaran, 2016), using
the formula;

H2
=

σ2
g

σ2
g +

σ2
gh
n +

σ2
gr
r +

σ2
e
nr

(2)

Where H2 is broad-sense heritability; σ2
g is the genotype

variance; σ2
gh is the variance due to genotype by harvest

interaction; σ2
gr is the variance due to genotype by block

interaction; n is the number of harvests; r is the number of blocks
(replications) per season (equal to two for dry and four for wet
seasons); and σ2

e is the error variance.
The normality of the data for each trait was tested by drawing

normal plots in a histogram by using the “hist” function in R (R
Core Team, 2021).

Marker Trait Association Analysis
Marker-trait association analysis was carried out using 83 Napier
grass genotypes (one genotype was excluded because of high
missing values for the marker data) that had been genotyped and
phenotyped (adjusted for spatial variation as described above).

For the agro-morphological and feed quality quantitative
traits, the analysis was performed using the Bayesian-
information and Linkage-disequilibrium Iteratively Nested
Keyway (BLINK.R) (Huang et al., 2018) and multiple-locus
mixed linear model (MLMM) (Segura et al., 2012) algorithms
implemented in Genomic Association and Prediction Integrated
Tool version 3 (GAPIT3) (Wang and Zhang, 2021). The
BLINK.R model is based on linkage disequilibrium (LD)
and eliminates confounding issues arising due to population
structure, kinship, multiple testing correction, etc. The first three
to five components identified through principal component
analysis (PCA) using the Adegenet R package (Jombart, 2008)
were included as covariates in the model. The number of
components increased from three to five until the quantile-
quantile (Q-Q) plot shows a similar distribution between
observed and expected P-values along a solid diagonal line
except for a sharp curve of the observed P-value at the end of
the line, which represents a true association. The MLMM model
was based on a PC+K that represent population structure and
relatedness, respectively. This model uses stepwise regression
to introduce significant markers as cofactors in each step of the
model, thereby excluding collinear markers in strong LD with
the same locus (Segura et al., 2012). To control for type I errors
due to multiple testing, the p-values were adjusted following a
false discovery rate (FDR) correction procedure (Benjamini and
Hochberg, 1995). Markers detected by both models were claimed
to be associated.

In addition, marker-trait association analysis was carried out
for the qualitative trait, purple pigmentation, by computing the
non-parametric univariate Fisher’s exact test (Warner, 2013)
using the Adegenet R package (Jombart, 2008). Out of the
diverse set of Napier grass genotypes acquired from EMBRAPA
(Negawo et al., 2018; Muktar et al., 2019), seven had purple-
colored leaves, midribs, petioles and stems (Supplementary
Figure 3). The plant colors were qualitatively scored with a
“1” for the seven purple-colored genotypes and “0” for 98
green-colored genotypes (additional genotypes that were not
phenotyped in the field were included in this case, assuming that
will increase the power of the QTL identification). A threshold
level at P-value < 1.00E-07 (> the −log10 of 7) was used to
claim an association.

The genomic map position of associated markers and their co-
localization was estimated based on the sequence length of each
of the 14-assembled chromosomes (AC) (Yan et al., 2021) and a
physical map was constructed at a 1Mbp scale.
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FIGURE 1 | Graphical representations of the raw data, fitted spatial trend, fitted data, and residuals for the biomass trait (total fresh weight, TFW) of the wet season
under rainfed (WS-RF) (A), under moderate water stress in dry season (DS-MWS) (B), and severe water stress in dry season (DS-SWS) (C) conditions.

RESULTS

Spatially Corrected Phenotype Data,
Distribution, and Correlation of Traits
The phenotypic measurements of the agronomic, morphological,
and feed quality traits were collected on a genetically diverse
set of 84 Napier grass genotypes evaluated over a 2-year period
under three soil moisture conditions in the wet (WS) and dry
(DS) seasons. The average soil volumetric water content (VWC)
of each of six harvests under the three soil moisture conditions
(WS-RF, DS-MWS, and DS-SWS) is shown in Supplementary
Figure 1. The phenotypic values were corrected for spatial
heterogeneity across rows and columns of the experimental
blocks, as well as for the heterogeneity in soil moisture
content (SM) and soil nutrient parameters. The depicted spatial
trend representing the estimated heterogeneity across rows and
columns of the experimental blocks for each treatment is shown
in Figure 1.

The model captured more spatial heterogeneity toward the
columns than the rows as suggested by effective dimension (ED)
(Table 1), which is a measure of the complexity of the SpATS
model (Rodríguez-Álvarez et al., 2018). This column-wise spatial
heterogeneity was more pronounced in the WS (four blocks) than
in the DS (two blocks in each treatment). As shown by the spatial

trend (Figures 1A,C), plants grown in the middle part of block
4 performed worse compared to the plants in the other blocks
which was consistent with visual observations. In the DS, of the
two blocks under MWS conditions, plants in block 3 performed
better than in block 1 (Figure 1B).

Correcting the phenotypic values according to the spatial
heterogeneity improved the precision of the heritability estimates
and mostly increased the heritability value of the traits (Table 1),
indicating the importance of the spatial analysis to determine the
genetic and environmental effects on the phenotypic response
and to reduce the environmental effects and errors. The
heritability of traits ranged from 0.12 to 0.91 in the WS, 0.57 to
0.89 in the DS under MWS and 0.39 to 0.82 in the DS under SWS
conditions. Traits LW, LL, PH, TN, ash, TFW, OM, and ADF had
the highest heritability followed by NDF, ADL, TDW, and WUE,
while ST, Me, and IL had low to medium heritabilities. LSR had
the lowest heritability, which indicates that the variation in the
trait was mainly due to environmental factors. Therefore, the LSR
trait was excluded from the GWAS analysis. With LSR excluded,
heritability generally decreased in the DS, particularly under the
SWS condition (Table 1).

In the correlation analysis, TFW, TDW, and WUE showed
a strong positive correlation (>0.97), while LSR was strongly
negatively correlated with all the traits except with IL. TN had
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TABLE 1 | Estimated effective dimension (ED) associated with the spatial trend of the row (R), column (C), and genetic (G) random factors for each trait.

Trait WS-RF DS-MWS DS-SWS

ED (C) ED (R) ED (G) H2
g H2

gf ED (C) ED (R) ED (G) H2
g H2

gf ED (C) ED (R) ED (G) H2
g H2

gf

PH 10.5 0.0 73.9 0.80 0.89 0.8 1.3 71.1 0.59 0.86 0.0 0.0 61.5 0.31 0.74

LL 10.1 0.0 74.9 0.85 0.90 NA NA NA NA NA 2.6 0.0 57.1 0.41 0.69

LW 8.7 5.6 75.5 0.82 0.91 1.1 2.3 73.6 0.60 0.89 0.0 0.0 61.1 0.36 0.74

ST 4.3 0.0 24.7 0.19 0.30 1.9 0.0 46.9 0.49 0.57 2.5 0.0 45.6 0.40 0.56

TN 0.0 6.9 71.7 0.79 0.86 0.0 8.4 71.1 0.89 0.86 0.0 0.8 67.7 0.81 0.82

IL 8.1 0.1 51.5 0.29 0.62 NA NA NA NA NA NA NA NA NA NA

LSR 0.2 0.1 10.4 0.06 0.12 NA NA NA NA NA NA NA NA NA NA

TFW 5.0 0.1 69.2 0.78 0.83 1.8 0.2 68.2 0.78 0.82 1.0 0.0 58.7 0.66 0.71

TDW 0.1 0.0 58.4 0.51 0.70 2.5 0.0 66.2 0.72 0.80 0.4 0.0 58.9 0.69 0.71

WUE NA NA NA NA NA 2.7 0.0 65.2 0.63 0.79 2.5 0.0 58.6 0.63 0.71

ADF 11.3 0.0 66.1 0.52 0.70 0.0 0.9 59.4 0.49 0.62 0.0 8.1 51.0 0.38 0.51

ADL 9.1 0.0 60.1 0.40 0.62 0.0 0.1 72.1 0.66 0.77 0.0 6.2 59.8 0.49 0.62

CP 7.4 1.0 44.0 0.23 0.43 2.1 0.0 61.0 0.59 0.64 0.0 3.9 53.7 0.29 0.55

ash 7.0 0.1 69.4 0.63 0.74 2.7 3.9 68.6 0.73 0.73 4.0 6.4 48.9 0.53 0.59

DM 8.2 0.0 48.8 0.28 0.49 2.0 2.1 70.9 0.70 0.75 0.0 0.0 62.1 0.48 0.65

IVOMD 8.2 0.0 48.5 0.27 0.48 1.1 0.0 58.3 0.52 0.60 0.0 2.0 47.9 0.23 0.48

Me 10.9 0.0 38.9 0.22 0.37 0.3 0.6 53.1 0.51 0.47 0.1 6.0 32.5 0.24 0.39

NDF 4.5 0.0 62.2 0.40 0.65 0.0 0.1 69.5 0.70 0.74 2.7 0.0 63.7 0.59 0.67

OM 6.5 0.0 67.2 0.60 0.71 2.7 3.9 68.6 0.73 0.73 4.0 0.0 52.6 0.50 0.53

Broad-sense heritability for unfitted (H2g) and fitted (H2gf) data for the wet season under rainfed (WS-RF), dry-season under moderate water stress (DS-MWS), and dry season under severe water stress (DS-SWS)
conditions are shown. PH, plant height; LL, leaf length; LW, leaf width; ST, stem thickness; TN, tiller number; IL, internode length; LSR, leaf stem ratio; TFW, total fresh weight; TDW, total dry weight; WUE, water-use
efficiency; ADF, acid detergent fiber; ADL, acid detergent lignin; CP, crude protein; DM, dry matter; IVOMD, in vitro organic matter digestibility; Me, metabolizable energy; NDF, neutral detergent fiber; OM, organic matter.
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a weak negative correlation with IL and LW, while IL showed
a weak to moderate negative correlation with LW, TN, PH,
TFW, and TDW (Supplementary Figure 4). The phenotypic
values of all the traits followed a normal distribution, only the
distribution of LL under the WS-RF and DS-SWS conditions
and ST and LW in the WS-RF were slightly skewed to the left
(Supplementary Figure 5).

From the feed quality traits, IVOMD and Me and IVOMD and
CP showed a strong positive correlation (>0.90) followed by a
strong correlation between Me and CP, ADL and ADF and NDF
and OM. Conversely, OM and ash showed a very strong negative
correlation (>−0.97), followed by a strong negative correlation
between IVOMD and ADF, Me and ADF, NDF and ash, and, ADF
and CP (Supplementary Figure 6). The values of all the traits
showed a normal distribution (Supplementary Figure 7).

There were no strong positive/negative correlations between
traits from the agro-morphological and feed quality traits.
However, most of the agro-morphological traits, except TN,
were reasonably positively correlated (0.30 to 0.60) with the
traits linked with fiber components (ADF and NDF) and
negatively with traits positively affecting the feed nutritional
quality (CP, IVOMD, and Me).

Genome-Wide Distribution and Density
of Markers on the Napier Grass Genome
Out of more than 200,000 high density genome-wide SilicoDArT
and SNP markers (Muktar et al., 2019) generated on the Napier
grass collections, a total of 135,706 (90,498 silicoDArTs and
45,208 SNPs) markers were mapped on to the Napier grass
genome (Yan et al., 2021) and their distribution across the
fourteen assembled chromosomes (AC) is shown in Figure 2.
Approximately 80% of the markers were mapped on the genome.
The highest number of markers mapped onto A01 and B01,
while the lowest number mapped onto B07 (Figure 2), with
a strong correlation (>0.94) between number of markers and
chromosome size (Table 2). Polymorphic information content
(PIC) values of the markers ranged from 0.08 to 0.38 with an
average of 0.27 and more than 63% of the markers had a PIC
value above 0.25.

Estimated Linkage Disequilibrium and
LD-Decay on the Napier Grass Genome
A total of 65,982 genome-wide silicoDArT markers, filtered based
on missing values (<10%), MAF (>5%) and known genomic
position, were used to estimate linkage disequilibrium (LD) and
LD-decay across the Napier grass genome. LD was analyzed
between pairs of SilicoDArT markers from the same AC as
described previously (Muktar et al., 2019). The magnitude of r2

(square of the correlation coefficient between two markers)
decreased rapidly with an increase in physical genomic distance
between markers and reached a value of 0.2 at 3.48 kbp (Figure 3),
which is similar to the previous estimation (2.54 kbp) that was
based on the pearl millet genome (Muktar et al., 2019). The LD-
decay distance varied across ACs and the slowest LD-decay was
observed for A01 (7.58 kbp), while the LD decayed rapidly in B05
(1.77 kbp) and B07 (1.60 kbp). LD and LD-decay distance, and the

number and density of markers used in the analysis for each AC
is shown in Table 2. The proportion of pairwise r2 values ≥ 0.2
(markers in LD) and≥ 0.7 (markers in strong LD) per AC ranged
from 12.04% in B05 to 15.98% in A01 and 1.37% in B05 to 2.58%
in A01, respectively. The LD r2

≥ 0.7 was the default value used to
determine LD blocks by the model implemented in the BLINK.R
package in GWAS analysis (Huang et al., 2018).

Markers Associated With Quantitative
Trait Loci Governing Agro-Morphological
Traits
A genome-wide association study (GWAS) was employed using
two different mixed linear models implemented in the R package
GAPIT3 (Wang and Zhang, 2021). The spatially corrected
phenotype values of the agronomic and morphological traits
measured in the 83 Napier grass genotypes and the highly
polymorphic genome-wide DArTseq markers were used. By
using the BLINK.R and MLMM models in GAPIT3, more than
35 markers associated with the agronomic and morphological
traits under the three-soil moisture conditions (WS-RF, DS-
MWS, and DS-SWS) were identified (Table 3, Figure 4; and
Supplementary Figure 8). Markers associated per trait represent
different QTLs as the markers are not in LD and therefore are
independent of each other.

Wet Season-Rainfed
A total of 11 markers associated with TFW, PH, LL, LW, TN,
ST, and IL were identified under the WS-RF condition (Table 3
and Supplementary Figure 8A). The 11 markers were distributed
across the seven ACs, A01, B01, B02, A05, B03, B05, and B06.
Three markers on B02 and B06 were associated with TFW,
two SNP markers at the bottom of B02 showed the strongest
association (P < 1.25E-12). For PH, one marker on B01 showed
a strong association (P < 8.29E-20). Similarly, one marker
(IG100007430) on B03 was associated with both LL and LW
traits. The marker was also strongly associated (P < 5.38E-30)
with ST. Another marker (IG100222553| F| 0-48:C > T-48:C > T)
on B02 was associated with ST. For TN, two markers on A01 and
A05 showed strong associations (P < 2.50E-13). One marker on
B05 showed a strong association with IL.

Dry Season-Moderate Water Stress
Seven markers showed an association under moderate water
stress conditions in the dry season (Table 3 and Supplementary
Figure 8B). The seven markers were associated with PH, LW and
TN and were distributed across A01, B01, B02, A04, and A07.
Three markers on A01 showed the strongest association with LW
(P < 9.52E-19) and TN (P < 5.15E-11).

Dry Season-Severe Water Stress
Under severe water stress conditions in the dry season, a total
of 17 markers showed an association with TFW, TDW, WUE,
PH, LW and TN. The markers were distributed across ACs,
except for B01, B04 and B07. Two markers on B02 and B06
showed an association with the two most important agronomic
traits, TDW and WUE. The strongest association with WUE
was observed for two markers on B02 (P < 4.15E-14) and
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FIGURE 2 | Distribution and density of silicoDArTs (A) and SNPs (B) on the fourteen assembled chromosomes (AC) of the Napier grass genome. The number of
markers mapped per AC is shown on the x-axis. The markers that were not mapped are indicated by a UM and those markers that were mapped onto different
scaffolds are indicated by Scaffold.

TABLE 2 | Density and distribution of markers, proportion of pairwise marker in linkage disequilibrium (LD) and the average LD-decay distance in each of the 14
assembled chromosomes (AC).

AC AC-sizei (Mbp) Number of
markers

markers density
(per Mbp)

Proportion of marker-pairs
in LD (r2 ≥ 0.2)

Proportion of marker-pairs
in LD (r2 ≥ 0.7)ii

LD-decay
distance (kbp)

A01 199.06 6928 34.80 15.98 2.58 7.58

B01 196.76 6162 31.32 13.61 1.78 4.61

B02 177.74 5899 33.19 13.01 1.58 2.68

A02 158.81 5431 34.20 14.45 2.37 5.47

A03 155.16 5520 35.58 14.38 2.37 5.79

A04 150.59 5408 35.91 13.43 1.73 3.85

A05 137.44 5352 38.94 13.19 1.78 2.31

B03 125.68 3819 30.39 13.89 1.68 3.75

B04 113.33 3644 32.15 12.35 1.48 2.48

A06 108.24 4036 37.29 13.45 1.60 2.23

B05 106.42 3340 31.39 12.04 1.37 1.77

B06 106.01 3373 31.82 12.45 1.80 2.14

A07 99.75 4433 44.44 12.39 1.51 1.95

B07 66.05 2637 39.93 12.46 1.80 1.60

iYan et al. (2021); r2 = 0.7 is the default value to determine LD block by the BLINK.R package (Huang et al., 2018).

B06 (P < 4.44E-16). Another marker on B02 showed the
strongest association (P < 9.46E-19) with TFW (Table 3 and
Supplementary Figure 8C).

A total of eight markers showed an association with the
morphological traits (PH, LW, and TN), of which the strongest
association was observed for one marker on A07 with PH, one
marker on B06 with LW and another three markers on A01, A02,
and A06 with TN (Table 3).

Consistency of Marker Associations Across the Two
Years
The consistency of the associated markers was tested by separate
analysis for each of the 2018 and 2019 data. A total of 10 markers
associated with TFW (3), LL (1), LW (1), TN (3), TDW (1),
WUE (1) were also identified to be associated with the trait in

an individual year. One marker (IG100292170| F| 0-44:C > T-
44:C > T) on B06 was consistently associated with TFW,
TDW and WUE traits in both years. The strongest consistency,
however, was observed for the association of TN at the top of
A01 (Figure 4 and Table 3). Some more markers that showed
consistent associations with traits across the three soil moisture
conditions (WS-RF, DS-MWS, and DS-SWS) based on the MLM
model in GWASpoly package (Rosyara et al., 2016) are shown in
Supplementary Table 3.

Markers Associated With Quantitative
Trait Loci Governing Purple Pigmentation
A total of 125 markers (23 SNPs + 102 SilicoDArTs) showed an
association (Figure 5A, Table 4; and Supplementary Table 1)
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FIGURE 3 | Genome-wide linkage disequilibrium (LD) decay plots. In (A), the average genome-wide LD-decay against the genomic distance (kbp). In (B), the
LD-decay per assembled chromosome (AC).

with the purple-color pigmentation (Supplementary Figure 3)
by a marker-trait association analysis using the non-parametric
univariate Fisher’s exact test (Warner, 2013). Of the 125
markers, 112 markers (97 SilicoDArTs and 15 SNPs) perfectly
discriminated/diagnosed the seven purple genotypes. Of these
markers, eight were on B01 and 19 on A03 (Table 4), while
70 were mapped only on contigs (Supplementary Table 1).
However, there was no genomic position information for the
remaining 15 markers (Supplementary Table 1).

All the 97 SilicoDArT markers were present in the genotypes
with purple color and absent in the green genotypes. Three
out of the 15 SNP markers were in a heterozygous form (for
the allele associated with purple color) in all the seven purple
genotypes and were in a homozygous form (for the alternative
allele) in the green genotypes. Twelve SNP markers were also
in the heterozygous form (for the allele associated with purple
color) in six of the purple genotypes, however, they were in the
homozygous form in one purple genotype (CNPGL_92-133-3).
The markers were in very strong LD representing large haplotype
blocks on B01 and A03 (Figure 5B), which were the two ACs with
high synteny potentially representing the B and A′ genomes of
Napier grass (Yan et al., 2021).

Markers Associated With Quantitative
Trait Loci Governing Feed Quality Traits
A total of 39 associated markers, one to eight markers per
trait, were detected for each of the eight feed quality traits
under the three-soil moisture conditions (Table 5, Figure 5; and
Supplementary Figure 9). However, no associated marker was
detected for CP in any of the three-soil moisture conditions.

Under the WS-RF condition, 17 markers associated with
ADF, ADL, ash, DM, IVOMD, NDF, and OM were detected
(Table 5 and Supplementary Figure 9A). The distribution of
markers was proportional between the A′ and B genomes. Two
markers on chromosome A02 and A07 were strongly associated
(P < 6.26E-13) with ADF. The marker on chromosome A02
was also strongly associated with IVOMD. ADF and IVOMD

were strongly negatively correlated (>−0.90) and hence the allele
positively affecting ADF will affect IVOMD negatively and vice
versa. Only one marker on chromosome B02 was associated with
ADL, while three markers on chromosome A01, B02, and A03
were associated with ash.

A total of ten markers associated with ADL, ash, DM, Me,
NDF, and OM were detected under the DS-MWS condition
(Table 5 and Supplementary Figure 9B). No association was
detected for CP, ADF, and IVOMD. One marker on chromosome
B04 was associated with ash, NDF and OM, in which ash was
strongly negatively correlated with NDF and OM. Similarly, one
marker on chromosome B07 was associated with both ash and
OM. Seven out of the ten markers were from the B genome.

Under the DS-SWS condition, twelve markers were associated
with ADF, ADL, ash, DM, and OM, but no association
was detected for CP, Me, NDF, and IVOMD (Table 5 and
Supplementary Figure 9C). Seven out of the twelve markers were
from the B genome.

In a separate analysis for the individual years data, 10 markers
associated with DM (2), OM (2), Me (1), ADF (1), ADL (3), and
NDF (1) were consistent, showing an association in both years.
Among these, the marker at approximately 190Mbp at the bottom
of chromosome A01 and associated with the DM was the most
consistent (Table 5). The markers that showed more consistent
associations across the 2 years are shown in Figure 6.

Co-localization and Functional
Description of Sequences Associated
With the Significant Markers
Overlapping genomic positions of associated markers and co-
localization with known QTLs can be used as an additional
criterion to determine genomic regions controlling the traits
and for the identification of candidate genes. Out of the six
markers associated with TFW, three markers that showed strong
associations were on B02. Two of these markers were detected
under WS-RF and were located at the bottom of B02, while
the third marker, located at the top of B02, was detected in
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TABLE 3 | Markers significantly associated with agro-morphological traits, their genomic positions, contrasting alleles, and minor allele frequency.

Soil moisture condition Trait Marker AC Pos allele MAF BLINK-model P-value MLMM-model P-value

2018 2019 Combined 2018 2019 Combined

WS-RF TFW IG100206033| F| 0-67:A > G-67:A > G B02 138389691 A/G 0.46 5.65E-09 8.15E-10 3.65E-12 1.23E-05 NA 8.20E-06

IG8170757| F| 0-17:C > G-17:C > G B02 176171258 C/G 0.30 NA 3.63E-12 1.25E-14 NA NA 1.71E-05

IG100292170| F| 0-44:C > T-44:C > T B06 99625821 C/T 0.12 4.63E-10 1.74E-07 6.67E-07 1.07E-05 NA 5.04E-05

PH IG100028603 B01 173322345 0/1 0.43 1.75E-05 NA 8.29E-20 9.31E-09 NA 2.25E-26

LL IG100007430 B03 27169784 0/1 0.10 1.60E-08 1.94E-12 5.36E-14 2.89E-11 1.27E-23 2.89E-30

LW IG100007430 B03 27169784 0/1 0.10 2.46E-14 NA 5.17E-10 5.31E-13 NA 2.21E-19

TN IG100292280| F| 0-64:T > G-64:T > G A01 58504312 T/G 0.06 4.77E-11 2.50E-13 5.38E-09 2.27E-14 1.58E-10 9.48E-12

IG100028141 A05 28279352 0/1 0.30 NA 5.03E-17 2.27E-09 NA 1.07E-08 3.02E-12

IL IG100339862 B05 9736642 0/1 0.24 NA NA 1.32E-10 NA NA 6.24E-08

ST IG100222553| F| 0-48:C > T-48:C > T B02 17106838 C/T 0.18 NA NA 7.66E-10 NA NA 7.23E-24

IG100007430 B03 27169784 0/1 0.10 NA NA 5.38E-30 NA 5.05E-17 1.08E-31

DS-MWS PH D23576564 B01 179072922 0/1 0.11 6.71E-05 NA 2.22E-09 5.87E-07 NA 2.39E-06

IG100244029 A07 42941985 0/1 0.24 NA NA 7.80E-07 NA NA 2.69E-09

LW IG100337563 A01 179359778 0/1 0.35 NA NA 9.52E-19 NA NA 2.21E-20

IG100202450 B02 80180478 0/1 0.12 NA NA 6.63E-07 NA NA 9.23E-09

TN IG100008828 A01 67451249 0/1 0.18 1.91E-14 1.15E-07 4.37E-12 3.26E-09 1.15E-07 2.32E-20

IG100252208 A01 78125692 0/1 0.07 1.70E-10 NA 5.15E-11 8.15E-06 NA NA

D23632684 A04 55594226 0/1 0.24 4.12E-08 NA 3.17E-08 4.12E-08 NA 6.90E-17

DS-SWS TFW IG100011654 B02 97600432 0/1 0.17 2.20E-09 NA 9.46E-19 7.03E-05 NA 5.61E-11

D23612801 A02 132204639 0/1 0.29 4.56E-07 NA 2.28E-10 6.39E-05 NA 2.26E-07

IG100331826 B03 10779294 0/1 0.30 7.76E-17 9.24E-19 2.19E-07 3.18E-07 4.42E-14 1.65E-11

TDW IG100288904| F| 0-22:C > G-22:C > G B02 72599462 C/G 0.20 NA 1.56E-03 2.37E-06 NA 8.52E-09 1.10E-11

IG100292170| F| 0-44:C > T-44:C > T B06 99625821 C/T 0.12 5.97E-09 2.04E-10 3.46E-06 NA 1.32E-05 5.48E-05

IG100044163 A05 80439022 0/1 0.34 3.84E-14 NA NA NA 1.11E-10 NA

WUE IG100288904| F| 0-22:C > G-22:C > G B02 72599462 C/G 0.20 NA 2.99E-03 4.15E-14 NA NA 4.56E-09

IG100044163 A05 80439022 0/1 0.34 1.95E-13 NA NA 3.76E-11 NA 1.37E-07

IG100292170| F| 0-44:C > T-44:C > T B06 99625821 C/T 0.12 2.02E-08 1.05E-10 4.44E-16 NA 1.88E-05 2.53E-13

PH IG100218301 A02 46585403 0/1 0.22 NA NA 2.02E-08 NA NA 1.64E-14

IG100109748| F| 0-53:C > T-53:C > T B03 81852583 C/T 0.13 NA NA 8.36E-08 NA NA 3.29E-12

D23600991| F| 0-6:G > A-6:G > A B05 34869947 G/A 0.28 1.73E-12 NA 1.51E-06 7.70E-05 NA NA

IG18095269| F| 0-20:C > T-20:C > T A07 89214569 C/T 0.28 3.02E-08 NA 2.11E-14 NA NA 8.61E-14

LW IG100023744 B06 71606589 0/1 0.45 7.97E-09 1.36E-08 1.20E-16 NA 3.52E-08 NA

TN IG100012299 A01 34375581 0/1 0.49 2.21E-09 7.62E-26 3.45E-08 8.18E-08 NA 1.53E-18

IG100359692 A02 123198708 0/1 0.16 1.05E-03 NA 1.32E-16 NA 7.24E-08 3.45E-10

IG100278405 A06 59780114 0/1 0.13 1.33E-07 NA 6.75E-14 NA 3.71E-23 NA

Markers crossed the threshold levels of both the BLINK (P < 1.00E-05, combined) and Multiple Loci Mixed linear Model MLMM (P < 0.01) are reported. AC, assembled chromosome; Pos., position in a chromosome;
WS-RF, wet season under rainfed condition; DS-MWS, dry season under moderate water stress condition; DS-SWS, dry season under severe water stress condition.
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FIGURE 4 | Manhattan and quantile-quantile (Q-Q) plots of markers that showed overlapping associations in 2 years data of the agronomic and morphological traits
in wet season under rainfed (WS-RF) (A), dry season under moderate water stress (DS-MWS) (B), and dry season under severe water stress (DS-SWS) (C)
conditions. Markers are on the x-axis per the 14-assembled chromosomes (AC). The –log10 of P values are plotted on the y-axis. The traits are shown at the left,
total fresh weight (TFW), total dry weight (TDW), water-use efficiency (WUE), leaf length (LL), leaf width (LW), and tiller number (TN).

the DS-SWS condition. These marker/trait associations indicated
that genomic positions from 138 to 176 mbp at the bottom of
B02 and at around 7 mbp at the top of B02 might harbor QTLs

controlling TFW under wet and dry conditions, respectively.
The two markers at the bottom of B02 were associated with
genes encoding a scavenger receptor class F member 2-like and
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FIGURE 5 | Manhattan plot showing the association of markers with purple color (A). Markers are on the x-axis for each of the 14-assembled chromosomes (AC).
The –log10 of P values are plotted on the y-axis. The threshold level was set at P-value> the –log10 value of 7. In (B), the LD heatmap for the pairwise LD of the
markers associated with purple color. As indicated by the color key, decreasing and increasing LD is indicated by yellow and red colors, respectively.

TABLE 4 | Diagnostic markers for purple color.

Marker AC Pos allele P-value Status1 Protein name

9994171 B01 190390682 C/A 4.39E-11 CA probable serine/threonine protein kinase

30282538 B01 181775730 C/A 4.71E-11 CA/AA NA

23641768 B01 185828246 C/G 5.05E-11 CG glucan endo-1,3-beta-glucosidase 3

23640854 B01 195134132 C/G 8.39E-11 CG/GG sucrose transport protein

10000565 B01 189376936 G/A 1.62E-10 GA/AA NA

100013546 B01 194658440 0/1 6.59E-10 present bifunctional epoxide hydrolase 2-like

100254243 B01 184648641 0/1 4.90E-09 present NA

100013603 B01 186485183 0/1 1.14E-08 present cysteine-rich receptor-like protein kinase 6

100205233 A03 2091285 0/1 4.39E-11 present F-box/kelch-repeat protein

100013579 A03 3641263 0/1 4.39E-11 present nuclear transcription factor Y subunit A-10

100013690 A03 4065302 0/1 4.39E-11 present glycine-rich protein DOT1-like

100248653 A03 4447543 0/1 4.39E-11 present glucan endo-1,3-beta-glucosidase 3

30291207 A03 5016898 G/A 4.39E-11 GA/AA Remorin family protein

100013697 A03 5042774 0/1 4.39E-11 present E3 ubiquitin-protein ligase

100013640 A03 5137129 0/1 4.39E-11 present diphosphomevalonate decarboxylase MVD2, peroxisomal-like

100013671 A03 5189436 0/1 4.39E-11 present hypothetical protein SEVIR_3G4NA32NANAv2

9897756 A03 6133035 T/C 4.39E-11 TC/CC NA

23641769 A03 4445594 T/C 4.71E-11 TC/CC glucan endo-1,3-beta-glucosidase 3

23636057 A03 5305525 A/C 4.71E-11 AC/CC NA

30279984 A03 3860473 A/G 5.05E-11 AG/GG NA

100238305 A03 5456675 T/C 5.05E-11 TC CASP-like protein 1B1

23618539 A03 2845425 C/T 5.42E-11 CT/TT NA

30291523 A03 4425113 C/T 7.78E-11 CT/TT Cysteine-rich receptor-like protein kinase

100084872 A03 2094328 0/1 6.59E-10 present protein NUCLEAR FUSION DEFECTIVE 4

100013725 A03 5362130 0/1 6.59E-10 present pyridine nucleotide-disulfide oxidoreductase domain-containing protein

23619969 A03 2925440 C/G 1.23E-09 CG/GG NA

100175270 A03 5573326 T/C 5.87E-09 TC/CC NA

Markers genomic position, P-value, marker status, and protein associated with the marker sequences are shown. Additional diagnostic markers, but without genomic
position information, are found in Supplementary Table 1. 1Status = homozygous/heterozygous in the case of SNPs or present/absent in the case of SilicoDArTs, on
purple genotypes; AC, assembled chromosome; Pos, position on AC; NA, protein name information is not available.

a putative box C/D snoRNA protein. The one at the top of B02
was associated with a gene encoding GDSL esterase/lipase protein
(Supplementary Table 2).

The regions on B02 also contained markers associated with
TDW and WUE, which were highly correlated with TFW. Two

markers on B02 and B06 showed an association with both TDW
and WUE. However, both these traits were strongly associated
with markers at the bottom of B06 (at around 100Mbp) and a
second stronger association at the top of A05, at about 10 Mbp
(Figure 7). A high level of synteny between B02 and A07, and,
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TABLE 5 | Markers significantly associated with the feed quality traits, their genomic positions, contrasting alleles, and minor allele frequency (MAF).

Soil moisture condition Trait Marker AC Pos allele MAF BLINK-model P-value MLMM-model P-value

2018 2019 Combined 2018 2019 Combined

WS-RF ADF IG100036297 A02 144684441 0/1 0.42 0.00029 NA 5.74E-19 NA 7.87E-10 1.44E-06

IG100007552 A07 95734609 0/1 0,47 NA NA 6.26E-13 NA NA 1.17E-15

ADL IG100310013| F| 0-11:G > A-11:G > A B02 169022485 G/A 0.28 NA 2.68E-12 1.70E-14 NA NA 3.17E-22

M48572_D23546094 A04 122999396 0/1 0.17 2.07E-13 NA NA 1.71E-16 NA NA

ash D23592459 A01 157193247 0/1 0.10 4.30E-05 NA 5.19E-09 4.06E-10 NA 1.59E-08

IG100039072 B02 2111554 0/1 0.34 NA 1.11E-09 2.71E-10 NA 4.56E-07 NA

IG100033583 A03 6483230 0/1 0,46 1.89E-05 NA 5.58E-08 NA 8.03E-05 NA

DM IG100294731| F| 0-41:G > T-41:G > T A01 189704019 G/T 0.42 1.51E-09 NA 1.68E-12 2.28E-10 NA NA

IG100107307| F| 0-32:C > T-32:C > T B05 89635856 C/T 0.16 1.02E-08 NA 3.47E-11 3.36E-09 NA NA

IVOMD IG100036297 A02 144684441 0/1 0.42 NA NA 1.24E-19 NA 1.91E-05 NA

D30280676| F| 0-37:G > A-37:G > A A04 77484986 G/A 0.20 NA NA 2.47E-07 5.32E-05 NA 4.65E-05

IG100097764| F| 0-22:A > T-22:A > T B03 112819745 A/T 0.12 NA NA 3.09E-09 NA 6.14E-05 6.12E-12

NDF D23601192 B03 27798065 0/1 0.20 NA 0.0026 2.33E-08 NA 6.06E-07 1.78E-16

IG100092231 B04 17161059 0/1 0.26 NA 4.63E-08 4.20E-07 2.72E-05 NA NA

IG100315926| F| 0-19:A > C-19:A > C B05 19403458 0/1 0.21 NA 2.93E-08 1.21E-07 NA NA 3.00E-07

OM D23572727 B01 160393045 0/1 0.16 NA 0.00014 5.06E-11 NA 2.25E-04 NA

D23634207| F| 0-40:T > G-40:T > G B02 11864366 T/G 0.41 9.23E-08 NA 9.75E-09 NA 2.96E-16 1.56E-08

DS-MWS ADL D23637168 A04 15533217 0/1 0.45 1.34E-08 0.0061 4.51E-10 5.76E-09 NA 1.12E-08

IG100219228 B04 88853282 0/1 0.12 NA 0.00025 4.38E-08 NA NA 3.87E-05

IG100118601 B03 121019509 0/1 0.38 4.08E-08 3.63E-08 1.14E-08 7.70E-10 8.43E-10 1.15E-18

ash IG100261206 B04 9826505 0/1 0.23 NA 4.62E-05 2.89E-07 NA 8.80E-17 5.91E-10

IG100356234 B07 393133 0/1 0.06 NA 0.0038 1.11E-12 NA 3.01E-10 1.87E-05

DM IG100186011 A01 189725890 0/1 0.37 1.18E-09 5.05E-09 7.59E-11 3.25E-05 NA 2.31E-30

Me D23602964 A01 168319043 0/1 0.36 0.0042 3.94E-07 5.92E-11 NA 2.47E-07 NA

NDF IG100261206 B04 9826505 0/1 0.23 4.89E-08 3.54E-12 3.41E-17 NA 3.31E-19 3.16E-15

OM IG100261206 B04 9826505 0/1 0.23 0.00071 0.00011 2.87E-07 NA 8.80E-17 7.02E-13

IG100356234 B07 393133 0/1 0.06 0.0049 NA 1.09E-12 NA 9.42E-15 NA

DS-SWS ADF IG100200286| F| 0-55:G > A-55:G > A A02 142268235 G/A 0.34 0.0095 NA 1.86E-08 NA NA 1.81E-08

IG100189631 B04 93330229 0/1 0.27 6.14E-05 6.68E-05 4.39E-10 NA NA 1.65E-12

ADL IG100267383| F| 0-46:T > C-46:T > C A04 32856195 T/C 0.28 1.94E-09 0.0022 7.09E-14 3.04E-14 NA 1.88E-12

ash IG100261206 B04 9826505 0/1 0.23 0.00022 NA 1.27E-13 NA NA 4.78E-05

D23549966 B05 13742398 0/1 0.30 NA 8.92E-07 1.13E-09 NA NA 2.37E-15

DM IG100186011 A01 189725890 0/1 0.43 1.59E-11 1.14E-12 1.84E-23 1.59E-07 6.70E-18 1.42E-17

IG100107707| F| 0-30:A > G-30:A > G B02 26851818 A/G 0.07 NA NA 2.26E-10 NA NA 5.28E-07
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Frontiers
in

P
lantS

cience
|w

w
w

.frontiersin.org
13

January
2022

|Volum
e

12
|A

rticle
678862

https://www.frontiersin.org/journals/plant-science
https://www.frontiersin.org/
https://www.frontiersin.org/journals/plant-science#articles


fpls-12-678862 January 3, 2022 Time: 12:38 # 14

Muktar et al. QTL Regions in Napier Grass Genome

TA
B

LE
5

|(
C

on
tin

ue
d)

S
o

il
m

o
is

tu
re

co
nd

it
io

n
Tr

ai
t

M
ar

ke
r

A
C

P
o

s
al

le
le

M
A

F
B

LI
N

K
-m

o
d

el
P

-v
al

ue
M

LM
M

-m
o

d
el

P
-v

al
ue

20
18

20
19

C
o

m
b

in
ed

20
18

20
19

C
o

m
b

in
ed

D
23

62
02

53
A

07
12

07
15

66
0/

1
0.

23
7.

28
E

-0
7

N
A

5.
57

E
-0

9
N

A
3.

17
E

-0
8

N
A

O
M

D
23

60
48

54
B

03
10

10
08

98
1

0/
1

0.
43

4.
78

E
-0

7
1.

33
E

-1
1

1.
12

E
-1

6
N

A
1.

27
E

-4
N

A

IG
10

00
37

68
5

B
06

78
31

73
87

0/
1

0.
07

N
A

N
A

4.
88

E
-1

4
1.

47
E

-0
6

N
A

N
A

D
30

28
09

49
B

07
40

26
88

43
0/

1
0.

07
N

A
N

A
1.

81
E

-1
0

1.
98

E
-0

6
N

A
N

A

IG
10

01
75

15
7

A
01

14
71

94
66

0
0/

1
0.

05
4.

42
E

-0
6

N
A

N
A

3.
76

E
-1

4
N

A
2.

15
E

-1
0

M
ar

ke
rs

cr
os

se
d

th
e

th
re

sh
ol

d
le

ve
ls

of
bo

th
th

e
B

LI
N

K
(P

<
1.

00
E-

05
,c

om
bi

ne
d)

an
d

M
ul

tip
le

Lo
ci

M
ix

ed
lin

ea
r

M
od

el
M

LM
M

(P
<

0.
01

)a
re

re
po

rt
ed

.A
C

,a
ss

em
bl

ed
ch

ro
m

os
om

e;
P

os
.,

po
si

tio
n

in
a

ch
ro

m
os

om
e;

W
S

-R
F,

w
et

se
as

on
un

de
r

ra
in

fe
d

co
nd

iti
on

;D
S

-M
W

S
,d

ry
se

as
on

un
de

r
m

od
er

at
e

st
re

ss
co

nd
iti

on
;D

S
-S

W
S

,d
ry

se
as

on
un

de
r

se
ve

re
w

at
er

st
re

ss
co

nd
iti

on
.

between A05 and B06 has been reported (Yan et al., 2021). A pearl
millet marker associated with total fresh weight (Varshney et al.,
2017) was mapped at the bottom of A07 (Figure 7). The marker
on B02 was associated with a gene encoding a 60 kDa jasmonate-
induced protein which is involved in abiotic stress responses
and defense against pathogens, while the marker on A05 was
associated with a gene encoding a prolyl 4-hydroxylase protein
(Supplementary Table 2).

Out of the 8 markers associated with TN under the three
soil moisture conditions, four were on A01. Of these, two
were detected by both the BLINK.R and MLMM models
across the 2 years and located at the top of A01 within the
genomic region between 59 to 67 mbp (Table 3), suggesting the
position of a major QTL controlling TN. Two out of the four
markers were associated with genes encoding a xylanase inhibitor
protein and protein DMP10 (Supplementary Table 2). DMP
proteins are plant specific membrane proteins which function
function in various physiological processes such as reproductive
development and senescence in plants (Zhu et al., 2021).

The analysis of marker-trait associations for the
morphological traits was more complex compared to the
agronomic traits. For PH, a greater number and stronger
association were detected on B01 and A07. Genomic regions
spanning approximately 29 mbp at the bottom of B01 and 46
mbp on A07 could be more important for the control of this
trait. Four of the markers were associated with genes encoding
a 23 kDa jasmonate-induced protein, protein SHORT-ROOT
1, F-box/FBD/LRR-repeat protein and an antifreeze protein
(Supplementary Table 2). The marker on A07 was co-localized
with a marker previously shown to be associated with PH
in Setaria italica (Jaiswal et al., 2019b). This region also harbors
two markers associated with LL. These two markers were
associated with genes encoding an ABC transporter B family
member and a disease resistance protein kinase. However, the
strongest association with LL was with a marker at the top of
B03 at around 27 Mbp, which was also associated with LW and
ST (Figure 7).

Genomic-position information was found for only 27 of the
markers associated with the purple genotypes and all of them
were mapped at the bottom of B01 and the top of A03, which
are ACs with high synteny (Yan et al., 2021). This indicates
that genomic regions spanning about 13 mbp at the bottom of
B01 and about 5 mbp at the top of A03 harbor QTLs which
govern the purple pigmentation in Napier grass. The two markers
on B01 were co-localized with the markers associated with PH
and another five markers on A03 were co-localized with TN
and LL (Figure 7). Thirty of the markers were associated with
genes encoding functional proteins (Table 4 and Supplementary
Table 1). One gene was annotated as an anthocyanin regulatory
R-S protein and the annotation of most other genes was related
to plant disease resistance.

A marker associated with ash at the top of B02 and another
marker associated with ADL at the bottom of B02 were co-
localized with QTL regions controlling TFW under dry and
wet conditions, respectively. Another marker associated with
ash at the top of A03 was co-localized with the QTL region
governing the purple pigmentation (Figure 7). The genomic

Frontiers in Plant Science | www.frontiersin.org 14 January 2022 | Volume 12 | Article 678862

https://www.frontiersin.org/journals/plant-science
https://www.frontiersin.org/
https://www.frontiersin.org/journals/plant-science#articles


fpls-12-678862 January 3, 2022 Time: 12:38 # 15

Muktar et al. QTL Regions in Napier Grass Genome

FIGURE 6 | Manhattan and quantile-quantile (Q-Q) plots of markers that showed overlapping associations for 2 years data of the nutritional quality traits in dry
season under moderate water stress (DS-MWS) (A), and dry season under severe water stress (DS-SWS) (B) conditions. Markers are on the x-axis per the
14-assembled chromosomes (AC). The –log10 of P values are plotted on the y-axis. The traits are shown at the left: acid detergent lignin (ADL), dry matter (DM),
neutral detergent fiber (NDF), and organic matter (OM).

region spanning about 22 kbp at the bottom of A01 harbors QTLs
controlling DM in all the three soil-moisture conditions. One of
the markers was associated with a gene encoding a MADS-box
transcription factor, which is a member of regulatory networks
and governs diverse developmental processes in plants, including
root development (Liu et al., 2020). A marker associated with
IVOMD on A04 was co-localized with M28_161, which is a
marker associated with high values of biomass digestibility in a
previous study (Rocha et al., 2019).

DISCUSSION

Genome-wide association study (GWAS) scans genetic variation
across the whole genome to find signals of associations with a
variation in phenotypic expression for various complex traits and
is an efficient approach as it does not need the development
of specific crosses, which is time consuming (Flint-Garcia
et al., 2003; Huang and Han, 2014). Instead, it uses existing
collections of genotypes that enables targeting a broader and

more relevant genetic spectrum for plant breeders (Huang and
Han, 2014). Hence, by linking markers to traits and traits to
genotypes, GWAS is well suited for the genetic characterization
and exploitation of genebank collections. However, for successful
application of GWAS, an accurate phenotyping of the population
and, as much as possible, estimating the accurate genetic value
of individual genotypes is mandatory. In addition, high-density
genome-wide markers and an appropriate model selection to
avoid false positives are also key requirements.

Prior and Post Phenotype Data
Corrections for Spatial Variations
Obtaining accurate estimates of the genetic value of an individual
genotype is central to the identification of markers associated
with QTLs. Within an experimental field, many factors combine
to generate microenvironments that vary from plot to plot and
across blocks (Rodríguez-Álvarez et al., 2018), affecting biomass
yield and other morphological and feed quality traits. Hence,
it is important to correct for those factors when estimating
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FIGURE 7 | Genomic map position of markers associated with QTLs governing the agronomic, morphological, and feed quality traits. Markers associated with the
agro-morphological traits are shown to the right of the assembled chromosome (AC), while markers associated with the feed quality traits are shown to the left of the
AC. Markers reported previously for Setaria italica (Jaiswal et al., 2019b; italicized) and pearl millet (Varshney et al., 2017; underlined) are also shown to the left of the
AC. Markers strongly associated with TFW (total fresh weight), TDW (total dry weight), WUE (water use efficiency), PH (plant height), TN (tiller number), and PP
(purple pigmentation) are shaded by green, light-blue, deep-blue, yellow, red, purple colors, respectively. Markers associated with traits that are affecting positively
the feed nutritional quality (IVOMD, Me, and ash) are shaded green, while markers associated with traits linked with fiber and lignin components (ADF, ADL, and NDF)
are shaded red. The markers associated with OM and DM are shaded blue.

genotypic effects. In this study, a priori and a posteriori spatial
variability control measures were employed. As an a priori
control measure, we used a subset of a diverse set of Napier
grass genotypes, a p-rep experimental design (Williams et al.,
2011) in four replications, randomization in each block, as well
as check genotypes that were duplicated per block. In addition,
border row plants surrounding each block were used to reduce
the border effects and trait measurements were averaged from
six harvests over a 2-year period. However, it has been reported
that these conventional control measures are not enough to
account for the fine-grained spatial variability within blocks, in
particular, the conventional control measures do not account for
dependency between neighboring blocks and plots within blocks,
which can affect the estimation of genetic values (Lado et al., 2013;
Velazco et al., 2017; Elias et al., 2018; Rodríguez-Álvarez et al.,
2018). Hence, as a post data correction measure, we used the
open-source model of Rodríguez-Álvarez et al. (2018) that uses

two-dimensional smooth surfaces along the rows and columns of
the experimental blocks to capture spatial variations. The model
also allowed us to correct the phenotypes for heterogeneity in soil
moisture content, soil nutrient parameters, and multi-harvests,
which were used as fixed covariates in the spatial analysis. The
model was able to show variation in phenotypic data due to
spatial variation within a block as well as across blocks and
accordingly allowed us to adjust the phenotype data, which
improved the quality of our data and increased the precision in
the estimation of trait heritability. A substantial improvement
in heritability estimation was observed for IL, IVOMD, CP, and
Me, with up to 114, 109, 90, and 68% improvement recorded,
respectively. Similar trends of an increase in heritability estimate
of traits through the application of a spatial analysis have been
reported in wheat (Lado et al., 2013), sorghum (Velazco et al.,
2017), and cassava (Elias et al., 2018). A greater heritability
implies that a greater proportion of the phenotypic variance in
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the experiment was due to genetic differences among genotypes
(Visscher et al., 2008), which is important for QTL identification
by GWAS and other genetic analysis approaches.

High-Density Genome-Wide Markers
Mapped Onto the Napier Grass Genome
Another important prerequisite of GWAS is the availability of
high-density genome-wide distributed markers, which has been a
challenge especially in orphan crops which include many tropical
forages. The genotyping by sequencing (GBS) method (Jaccoud,
2001; Kilian et al., 2012) applied in this study provided high
density genome-wide dominant (silicoDArT) and co-dominant
(SNP) markers and was found to be reliable, efficient and cost
effective. The detail of the marker’s polymorphism and other
related information was reported previously (Muktar et al., 2019).
However, until recently we have been using the pearl millet
(Cenchrus americanus) genome (Varshney et al., 2017) to identify
the genomic positions and genome-wide distribution of the
markers. Subsequently, only 17% of the silicoDArT markers and
33 to 39% of the SNP markers were able to be mapped on the
seven chromosomes of pearl millet (Paudel et al., 2018; Muktar
et al., 2019). Fortunately, a Napier grass reference genome was
made public recently (Yan et al., 2021) which enabled us to
generate much more information, including genomic position
and genome-wide distribution for most of the markers and an
enhanced estimation of LD and LD-decay in the Napier grass
genome. More than 90% of the SNP and 73% of the silicoDArT
markers were able to be mapped onto the fourteen assembled
chromosomes (AC) of the Napier grass genome. The markers
were evenly distributed across the genome with some gaps
around the middle part of each AC, which probably represents
the gene-poor regions of centromeres (Bennetzen et al., 2012;
Varshney et al., 2017). However, the density and distribution of
the markers was by no means comprehensive, and this resource
does not represent the extensive genome coverage required to
detect all the possible QTLs in the Napier grass genome. Rather
it represents about a quarter of the estimated marker-density
and QTL detection power in Napier grass, as estimated using
the average LD-decay across the genome previously (Muktar
et al., 2019) and in the present study. In this study, similar to
the previous report (Muktar et al., 2019), the LD decayed very
rapidly, on average at about 3.48 kbp, and varied across the
ACs. A long LD block was observed in A01, while the shortest
one was in B07. Interestingly, the number of markers in each
AC was proportional or positively correlated with the average
LD-decay distance per AC. Detailed information about LD and
LD-decay across the Napier grass genome and LD variation
between collections can be found in Muktar et al. (2019).

Association Analysis and Correction for
Population Structure and Cryptic
Relatedness
The third important concern in GWAS is the presence of
population structure and cryptic relatedness in the mapping
panel that could prevent the association analysis from correctly
identifying the true marker-trait association and could lead to

the identification of false-positive or spurious associations (Flint-
Garcia et al., 2003; Huang and Han, 2014). Therefore, it is
important to include population structure and pairwise kinship
matrix as covariates and to select the appropriate statistical
models that can sufficiently deal with those factors. The detail
of population structure and genetic diversity in our Napier
grass collections was reported previously (Muktar et al., 2019),
in which five to seven subpopulations were detected using
different genetic diversity study approaches. A similar population
stratification with three to six clusters was seen in the 84
genotypes used in this study (Supplementary Figure 10), in
which the pairwise Nei’s genetic distance ranged from 0.02 to 0.81
with an average value of 0.44.

Population size is another important factor in GWAS, and
a larger sample size increases the power of detecting QTLs
and the map resolution, particularly for the quantitative traits
(Korte and Farlow, 2013). However, in this study, we used a
total of 84 genetically diverse genotypes, focusing on genebank
material from the ILRI and EMBRAPA collections that have
no restriction on their future use in order to ensure maximum
accessibility and uptake of our outputs. Consequently, 84 was
the maximum number of genotypes that were available to
us for field phenotyping. We systematically selected the 84
accessions based on their genetic distance and tried to ensure
their representativeness of the genetic diversity. Although it is
considered that the larger the sample size, the better result, it
has been shown that some meaningful results can be obtained
with less than 100 accessions and QTLs can be detected that
are controlled by a few loci that explain a larger portion of the
phenotypic variance (Korte and Farlow, 2013).

For the morphological, agronomic, and feed quality
quantitative traits, we employed two different GWAS models
implemented in the Genomic Association and Prediction
Integrated Tool version 3 (GAPIT3) (Wang and Zhang,
2021). The BLINK.R (Bayesian-information and Linkage-
disequilibrium Iteratively Nested Keyway) (Huang et al., 2018)
model is based on linkage disequilibrium (LD) and controls
confounding issues arising due to cryptic relatedness and
multiple testing corrections by using all tested markers within an
LD block. Furthermore, the model takes population stratification
information as covariates and hence the first three to five PCs
from a PCA analysis were used in our analysis. The model
efficiency in controlling the above-described confounding factors
was demonstrated by the quantile-quantile (Q-Q) plots, which
showed a similar distribution of observed and expected p-values
along the diagonal line for most of the markers and a sharp
curve at the end of the line representing a few associated
markers. The multiple-locus mixed linear model (MLMM)
(Segura et al., 2012) takes into account both population structure
and pairwise kinship matrix to avoid false positives. The
two models were complementary to each other in that both
identified many common markers and a few different markers
associated with the traits. There were a few QTL regions detected
only by the BLINK.R but not by the MLMM, and vice versa,
which could be attributed to the differences in algorithms and
parameters used in the two models. However, we reported here
markers detected by both models to optimize the selection
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of QTL regions and candidate genes for further exploration.
Hence, more than 35 and 39 independent markers associated
with the agro-morphological and nutritional quality traits,
respectively, under the three different soil moisture conditions
were identified by both models.

Markers Associated With Forage
Biomass and Water-Use Efficiency Traits
Genome-wide association study identified six QTL regions
associated with TFW, which represents the above-ground fresh
biomass production. The QTLs at the bottom (about 138 mbp)
of B02, top of B03 (11 mbp), and bottom of B06 (100 mbp)
could be more interesting for breeding applications as they
showed a strong and consistent association in each year and
were detected by both the BLINK.R and the MLMM models.
The QTLs at the top of B02 were associated with increased
biomass yield under severe water stress conditions in the dry
season, while those at the bottom were associated with high
biomass production during the wet season. The QTLs at the
bottom of B02 were linked with genes encoding scavenger
receptor and box C/D snoRNA proteins, which are proteins
involved in immune response and rRNA modification (Streit
et al., 2020). In our previous marker-trait analysis (Habte et al.,
2020), we reported markers associated with annual dry weight
yield at the bottom of A03 (14 markers), B05 (14 markers), and
B02 (4 markers).

Three QTL regions around the middle of A05 (about 80
mbp), B02 (73 mbp) and bottom of B06 (100 mbp), showed an
association with TDW and, specifically, increased total dry matter
production under the SWS conditions in the dry season. These
three QTLs were also associated with improved WUE, which
is the most important factor in improving productivity under
limited water availability in the dry season and in addressing the
current challenges to forage production due to climate change.
The QTL at the bottom of B06 could be more interesting as it was
consistently identified across both years. High synteny and co-
linearity between B06 and A05 chromosomes has been reported
(Yan et al., 2021). Hence, we can speculate that these two ACs may
represent the A′ and B homeologous chromosomes of Napier
grass. Napier grass is an allotetraploid grass (2n = 4x = 28) with a
complex genome (A′A′BB), with the A′ genome showing a high
degree of homology with the pearl millet (2n = 2x = 14 with AA
genomes) A genome (Dos Reis et al., 2014). The QTL on B02 was
linked with a gene encoding a 60 kDa jasmonate-induced protein
which is involved in abiotic stress responses and defense against
pathogens (Rustgi et al., 2014), while the marker on A05 was
linked with a gene encoding a prolyl 4-hydroxylase protein, which
is involved in plant growth and development and in responses
to abiotic stresses (Vlad et al., 2007). The marker on A05 was
mapped on pearl millet linkage group 2, and co-localized with the
major drought-tolerant QTL (DT-QTL) reported in pearl millet
(Tharanya et al., 2018).

A QTL at the bottom of B06 was consistently and strongly
associated with the three most highly correlated traits (TFW,
TDW, and WUE) indicating the tight linkage between the
agronomic and water use efficiency traits. Co-mapping and tight

linkage of QTLs for agronomic and water use efficiency traits
were reported in pearl millet, in which close linkages between
QTLs controlling the traits in four genetic regions of linkage
group 2 were detected (Tharanya et al., 2018). The possibility
of a pleiotropic effect, in which the three traits are controlled
by a single QTL, was reported in Setaria italica (Feldman et al.,
2018). Co-localization of QTLs and the marker associated with
them can potentially be exploited in marker-assisted selection to
develop high biomass producing Napier grass varieties for dry
and water deficit areas.

Markers Associated With Morphological
Traits
In this study, a greater number of QTL regions associated with the
morphological traits (PH, LL, LW, ST, IL, and TN) were detected
by a total of 23 markers, which might suggest that the genetic
architecture is more complex when compared to the architecture
of the agronomic traits. Among these, the QTL region at the
top of A01 (at around 60 mbp) was strongly and consistently
associated with TN under the three soil moisture conditions in
both years, and hence is considered a major QTL. Higher tillering
ability is an important trait in establishment and regrowth in
grasses (Pereira et al., 2013) and was positively correlated with
the TFW, TDW, and WUE traits while showing no correlation
with traits linked with fiber and lignin (ADF, NDF and ADL),
indicating its importance in the high biomass production of
Napier grass without compromising the feed nutritional quality.

We also identified two QTL regions for PH at the bottom
of B01 and A07, one QTL region at the top of B03 controlling
LL, LW, and ST, and another QTL region for IL at the top of
B05. The markers associated with the QTLs will be useful in
a Napier grass improvement program through the application
of marker-assisted selection. The QTL region for PH on B01
is co-localized with the QTL region associated with purple
pigmentation. A similar result was reported in pearl millet
(Azhaguvel et al., 2003), in which loci controlling purple foliage
color, dwarf plant height, and resistance to downy mildew and
rust diseases were co-localized on pearl millet linkage group 4.
The QTL region associated with PH on A07 was co-localized
with a marker associated with PH in Setaria italica chromosome
5 (Jaiswal et al., 2019b), which shows a high degree of synteny
and co-linearity with the top part of the Napier grass A07
(Yan et al., 2021).

By using sequence tags corresponding to the associated
markers, we identified several candidate genes linked to the
QTL regions. Two markers in the QTL region associated with
TN were linked with genes encoding a xylanase inhibitor
protein and a protein DMP10. In the QTL region associated
with PH, four markers were linked with genes encoding a
23 kDa jasmonate-induced protein, protein SHORT-ROOT
1, F-box/FBD/LRR-repeat protein and an antifreeze protein.
These proteins are involved in abiotic stress responses and in
different developmental processes, for example, the SHORT-
ROOT protein has been reported to play a role in regulation
of primary, lateral, and adventitious root developments in
Arabidopsis (Lucas et al., 2011; Rustgi et al., 2014; An et al., 2019).
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The candidate genes will be useful for further characterization of
the QTL regions and potentially cloning of the QTLs using the
candidate gene association mapping approach.

Markers Associated With Purple
Pigmentation
For the qualitative purple pigmentation trait, QTL regions were
identified by the non-parametric univariate Fisher’s exact test
(Warner, 2013) that detected a greater number of significantly
associated markers around two genomic regions. Two QTL
regions toward the bottom of B01 (around 190 mbp) and the
top of A03 (around 2 to 3 mbp) were associated with purple
pigmentation in Napier grass. The two genomic regions show
a high synteny block (Yan et al., 2021) representing the B
and A′ homeologous chromosomes of Napier grass (Dos Reis
et al., 2014). Out of the different expanded genes involved
in anthocyanin biosynthesis in Napier grass, phenylalanine
ammonia lyase (PAL) and chalcone synthase (CHS) were detected
on B01 (Yan et al., 2021). One of the markers associated with
the QTLs was linked with a gene annotated as an anthocyanin
regulatory protein and the annotation of most other genes
within the QTL regions was related to plant disease resistance,
suggesting the co-localization of the two traits. Anthocyanins
are naturally occurring pigments belonging to the group of
flavonoids, a subclass of the polyphenol family (Martín et al.,
2017), and are involved in biotic and abiotic stress tolerance
(Naing et al., 2018). In addition, anthocyanin expression is
associated with the expression of stress response genes in plants,
such as genes involved in drought, water logging, cold tolerance
and disease resistance (Ren et al., 2019).

Our findings are in line with previous reports on pearl millet
(Azhaguvel et al., 2003; Varalakshmi et al., 2012), in which they
mapped the P foliage color locus to pearl millet linkage group
4. The pearl millet linkage group 4 shows strong synteny and
co-linearity with the Napier grass A03 and also some synteny
with B01 (Yan et al., 2021). In addition, downy mildew and rust
resistance genes have been identified in this genomic region of the
pearl millet genome (Azhaguvel et al., 2003; Varalakshmi et al.,
2012). According to Varalakshmi et al. (2012), the pearl millet
purple pigmentation of the leaf sheath, midrib and leaf margin
are co-inherited under the control of a single dominant locus (the
“midrib complex”) and are inseparably associated with the locus
governing the purple coloration of the internode.

The markers identified in this study can be used as tagging
markers for map-based cloning of the QTLs controlling purple
coloration (anthocyanin) and stress tolerance related genes,
which will be very important for the genetic improvement of
Napier grass. The markers might also be useful in marker-
assisted selection for disease resistance and stress tolerance
in Napier grass.

Markers Associated With Feed Quality
Traits
A total of eleven markers, representing different QTL regions
across the genome, were identified for IVOMD, Me and ash
under the three-soil moisture conditions. These traits were

strongly correlated and positively affect the feed nutritional
quality. No associated marker was identified for CP, however,
this trait was strongly correlated with IVOMD and Me, and
hence the markers identified for these two traits could be
used in marker-assisted selection for CP. Marker M28_161 that
was associated with high values of biomass digestibility in a
previous study (Rocha et al., 2019) was co-localized with the
marker (D30280676| F| 0-37:G > A-37:G > A) associated with
IVOMD on A04, in this study. A genomic region approximately
190Mbp at the bottom of chromosome A01 was consistently
and strongly associated with DM, indicating that the region
harbors a major QTL controlling the trait. Dry matter is the
non-moisture portion of a feed ingredient or diet and contains
the essential nutrients within a given forage. Similarly, fourteen
markers were detected for ADF, NDF and ADL, which are mainly
linked with the cell wall components of fiber and lignin that
negatively affect the feed nutritional quality. Genomic regions
at the bottom of B03 (approximately 121 mbp) and top of
B04 (9 mbp) showed consistent association with ADL and
NDF and could be interesting for further exploitation and in
improving feed quality in Napier grass through MAS. Improving
the digestibility of forages by reducing lignin and fiber is a
major goal in forage crop breeding programs (Rocha et al., 2019;
Habte et al., 2020).

CONCLUSION

1. In this study, we determined the true genetic response of
Napier grass genotypes to the morphological, agronomic
and feed quality traits by using different approaches that
reduced the environmental effects and errors as much as
possible. We also showed that the quality of the phenotype
data and precision in the estimation of trait heritability can
be improved using spatial analysis.

2. Most of the high-density genome-wide markers generated
in this study were mapped onto the recently assembled
Napier grass genome. Hence, genomic position
information was generated for more than 90% of the
SNP and 73% of the silicoDArT markers, which improved
the identification of genomic regions that harbor QTLs
for the important forage traits. The availability of the
genome sequence is an important asset and provides a lot
of opportunities for the characterization and cloning of
the QTLs and for the development of improved Napier
grass varieties.

3. Our study led to the identification of at least 35 novel
QTL regions and associated markers for morphological,
agronomic and water use efficiency traits, and more than
39 novel QTL regions for feed quality traits, and, provided
clearer insights into the genetic architecture of the traits
in Napier grass. The desirable alleles of the associated
markers identified in this study will be useful in Napier
grass improvement through marker-assisted breeding.
In addition, candidate genes linked with the associated
markers were identified and can be used for further
characterization and validation of the QTLs through
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candidate gene association mapping. Further validation of
the associated markers, QTLs and the candidate genes
identified here may lead to a better understanding of the
genetic/genomic bases for the trait’s genetic variation.

4. We also identified two major QTL regions associated with
the Napier grass purple color, which is associated with
anthocyanin pigmentation. The markers identified in this
study can be used as tags for map-based cloning of the
QTLs controlling purple pigmentation and stress tolerance
related genes, which will be very important for the genetic
improvement of Napier grass. Anthocyanin expression is
associated with the expression of stress-response genes, such
as genes involved in drought, cold and waterlogging tolerance,
and disease resistance.

5. The information gained from the present study will be useful
for the genetic improvement of Napier grass production
with enhanced water use efficiency while maintaining its
nutritional quality.
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