
ORIGINAL RESEARCH
published: 28 May 2021

doi: 10.3389/fpls.2021.675075

Frontiers in Plant Science | www.frontiersin.org 1 May 2021 | Volume 12 | Article 675075

Edited by:

Guohua Chai,

Qingdao Agricultural University, China

Reviewed by:

Jing Zhang,

University of Helsinki, Finland

Xianhai Zhao,

Brookhaven National Laboratory,

United States

Xiaolan Rao,

Hubei University, China

*Correspondence:

Laigeng Li

lgli@cemps.ac.cn

Specialty section:

This article was submitted to

Plant Biotechnology,

a section of the journal

Frontiers in Plant Science

Received: 02 March 2021

Accepted: 07 April 2021

Published: 28 May 2021

Citation:

Luo L, Zhu Y, Gui J, Yin T, Luo W, Liu J

and Li L (2021) A Comparative

Analysis of Transcription Networks

Active in Juvenile and Mature Wood in

Populus. Front. Plant Sci. 12:675075.

doi: 10.3389/fpls.2021.675075

A Comparative Analysis of
Transcription Networks Active in
Juvenile and Mature Wood in Populus

Laifu Luo 1,2, Yingying Zhu 1, Jinshan Gui 2, Tongmin Yin 3, Wenchun Luo 1, Jianquan Liu 1

and Laigeng Li 2*

1 State Key Laboratory of Grassland Agro-Ecosystem, School of Life Sciences, Lanzhou University, Lanzhou, China,
2National Key Laboratory of Plant Molecular Genetics, CAS Center for Excellence in Molecular Plant Sciences, Institute of

Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai, China, 3College of Forestry, Nanjing Forestry

University, Nanjing, China

Juvenile wood (JW) and mature wood (MW) have distinct physical and chemical

characters, resulting from wood formation at different development phases over

tree lifespan. However, the regulatory mechanisms that distinguish or modulate the

characteristics of JW and MW in relation to each other have not been mapped. In this

study, by employing the Populus trees with an identical genetic background, we carried

out RNA sequencing (RNA-seq) and whole genome bisulfite sequencing (WGBS) in JW

and MW forming tissue and analyzed the transcriptional programs in association with

the wood formation in different phrases. JW and MW of Populus displayed different

wood properties, including higher content of cellulose and hemicelluloses, less lignin,

and longer and larger fiber cells and vessel elements in MW as compared with JW.

Significant differences in transcriptional programs and patterns of DNA methylation were

detected between JW and MW. The differences were concentrated in gene networks

involved in regulating hormonal signaling pathways responsible for auxin distribution

and brassinosteroids biosynthesis as well as genes active in regulating cell expansion

and secondary cell wall biosynthesis. An observed correlation between gene expression

profiling and DNA methylation indicated that DNA methylation affected expression

of the genes related to auxin distribution and brassinosteroids signal transduction,

cell expansion in JW, and MW formation. The results suggest that auxin distribution,

brassinosteroids biosynthesis, and signaling be the critical molecular modules in

formation of JW and MW. DNA methylation plays a role in formatting the molecular

modules which contribute to the transcriptional programs of wood formation in different

development phases. The study sheds light into better understanding of the molecular

networks underlying regulation of wood properties which would be informative for genetic

manipulation for improvement of wood formation.
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INTRODUCTION

Perennial woody plants are characterized by large size and a
long lifespan, in which a long non-flowering period of juvenile
phase can last years to decades, for example, 3–5 years in
Populus and 10–15 years in Pinus (Braatne et al., 1996; Owens,
2006). Wood produced during juvenile phase is called juvenile
wood (JW) which is followed by a mature phase during which
trees start flowering and producing mature wood (MW) outside
of JW (Basheer-Salimia, 2007). Compared with JW, MW is
characterized with longer xylem cells, thicker secondary cell
walls, lower density of vessels, higher crystallinity of cellulose
in fibers, and smaller microfibril angles (Barrios et al., 2017).

Thus, MW is more desirable from a processing and utilization
perspective for construction wood, wood pulping, and fiber
material production. As a matter of fact, to meet the increasing
demand for raw wood material, artificial forest plantation aims
to reduce the rotation length and enhance productivity, which
makes JW with lower wood quality as a major source for wood
industry (Moore and Cown, 2017). This seriously affects the
utilization and processing of wood. How tomake wood tomature
quickly and the proportion of JW to be reduced has become an
important aspect of improving wood properties.

Wood formation starts with cell divisions at vascular cambium
and subsequent differentiation into secondary xylem through
cell expansion, secondary cell wall thickening, and programmed
cell death (Fromm, 2013). Plant hormones, such as auxin,
brassinosteroids, and gibberellin, participate in regulation of
wood formation (Israelsson et al., 2005; Demura and Fukuda,

2007; Choi et al., 2017). The size of wood cells depend on cell
expansion process while mechanical and chemical properties of
wood are largely determined by secondary cell wall thickening
(Cosgrove, 2018). Cell expansion is controlled by extension of
the primary cell wall, which is composed of 20–30% cellulose,
30–50% pectins, 20–25% hemicelluloses, and 10% glycoproteins
(Mcneil et al., 1984). Following cell expansion, wall thickening
is initiated with transcriptional programs for secondary cell
wall biosynthesis (Plomion et al., 2001). Secondary cell walls
are composed of 40–80% cellulose, 10–40% hemicellulose, 5–
25% lignin, and glycoproteins (Kumar et al., 2016). As JW and
MW display distinct wood properties, likely the secondary cell
formation in JW and MW is differentially regulated.

DNA methylation, a critical epigenetic mechanism among
eukaryotes, affects many biological processes. In plant, most
of DNA methylation occurs at the fifth carbon of cytosine
(including three cytosine contexts, CG, CHG, and CHH, where
H represents A, C, or T) to form 5-methylcytosine by DNA
methyltransferase (Goll and Bestor, 2005; Law and Jacobsen,
2010; He et al., 2011). Evidence indicates that DNA methylation
can regulate gene expression in numerous biological processes
including response to abiotic stresses (Wang et al., 2011; Dowen
et al., 2012; Ci et al., 2015; Su et al., 2018; Liang et al., 2019), plant
development and morphogenesis (Lafon-Placette et al., 2013),
and wood formation (Wang et al., 2016). The degree of DNA
methylation is also related to plant development phases. The
degree of DNA methylation at mature phase was significantly
higher than that at juvenile phase in Pinus radiate (Fraga et al.,

2002a). DNA methylation increases along with the age extension
in some species (Fraga et al., 2002b). It is unclear how DNA
methylation is involved in regulation of JW and MW formation.

Despite studies which have shown physicochemical difference
of wood properties between JW and MW, the molecular
regulatory networks underlying formation of the different wood
properties is not fully elucidated. In this study, by employing
Populus trees with an identical genetic background, we analyzed
different physical and chemical characters in association with
the transcriptomic profiles and DNA methylation during the
formation of JW and MW. Correlation analysis revealed the
transcriptional networks and DNAmethylation that are involved
in regulation of wood formation with different wood properties.
This study provides an array of mechanistic information for
understanding of JW and MW formation, as well as new clues
for genetic manipulation for improvement of wood properties.

MATERIALS AND METHODS

Tissue Sampling
Populus trees propagated from the same clone (Populus
deltoides×P. euramericana cv. “Nanlin895”) were grown in the
same plantation located at Siyang, Suqian, Jiangsu, China (33◦

47′ N, 118◦ 22′ E). Wood-forming tissues were sampled from
1-m trunk above the breast height (1.3m from ground) from 2-
year-old (formation of JW) and 8-year-old trees (formation of
MW) at fast growing time (May 2017). After bark was removed,
wood-forming tissue (developing secondary xylem) was collected
directly into liquid nitrogen and stored at−80◦C freezer for later
analysis (Song et al., 2011). Three trees as biological replicates
were sampled (Supplementary Figure 1), respectively.

Analysis of Wood Properties
After developing xylem was collected, the tree trunk was used
for wood analysis. JW and MW were sampled as illustrated in
Supplementary Figure 1. Wood tissue was sectioned into 20µm
in thickness and stained with 0.5% phloroglucinol in 12% HCl.
Cross sections were observed under a microscope (Olympus,
BX53). The number of fibers and vessels and their cross area were
counted using Image J. Meanwhile, the wood cells were separated
after treatment using acetic acid/hydrogen peroxide (1:1, v/v)
solution at 80◦C for 6 h. The separated wood cells were then
stained with safranine (1% in water), and the length of fiber cells
and vessels was measured under a microscope (Olympus, BX53)
using Image J.

Cell Wall Composition Determination
Air-dried wood sample was ground into powder and filtered
through 60-mesh sieve. According to our previous established
protocol (Yu et al., 2014), alcohol-insoluble residues (AIR)
were firstly obtained by extracting the wood powder with 70%
ethanol, chloroform/methanol (1:1, v/v), and acetone. Amylase
and pullulanase in 0.1M sodium acetate buffer (pH 5.0) were
used to treat the extracted AIR overnight. For analysis of the
sugar in hemicelluloses, AIR was treated with 2M trifluoroacetic
acid (TFA) at 121◦C for 90min. The supernatant was evaporated
and incubated in 20 mg/ml fresh sodium borohydride solution
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at 40◦ for 90min. The product was then neutralized with acetic
acid and mixed with 1-methylimidazole and acetic anhydride for
acetylation. After extraction with dichloromethane, the product
was mixed with ethyl acetate for GC-MS (6890N GC system
and 5975 Mass detector, Agilent Technologies, equipped with
a SP-2380 capillary column, Supelco, Sigma-Aldrich) analysis.
Meanwhile, standard sugars were used to calibrate sugar content
determined in samples. The insoluble precipitate from the
AIR treated with TFA was collected for crystalline cellulose
content determination. The Updegraff reagent (acetic acid:nitric
acid:water, 8:1:2, v/v) was added to the precipitate and incubated
at 100◦C for 30min. After washing with H2O and acetone,
the precipitate was incubated with 72% sulfuric acid at room
temperature for 1 h. The content of crystalline cellulose was
determined by anthrone assay (Foster et al., 2010b). For lignin
measurement, AIR was incubated with freshly prepared acetyl
bromide (25%, acetyl bromide in acetic acid) at 50◦C for 3 h.
After cooling, the AIR was mixed with 2M NaOH, 0.5M fresh
hydroxylamine hydrochloride, and acetic acid. Lignin content
was determined using a microplate reader (Varioskan Flash,
Thermo) (Foster et al., 2010a).

RNA Isolation and RNA Sequencing
Total RNA was extracted from wood-forming tissues using a
mirVana miRNA Isolation Kit (Ambion-1561) following the
manufacturer’s instruction. After being treated by RNase-free
DNase I (Sigma, 4716728001), the quality of total RNA was
assessed on NanoDrop spectrophotometer (NanoDrop 2000,
Thermo Scientific) and on agarose gel electrophoresis. For
RNA sequencing (RNA-seq), cDNA library was generated from
5 µg of total RNA with TruSeq Stranded mRNA LTSample
Prep Kit (Illumina, RS-122-2101) and Agencourt AMPure XP
(BECKMAN COULTER, A63881). cDNA library was qualified
through length distribution of fragments using Agilent 2100
(Bioanalyzer). The 150-bp paired-end sequencing was performed
using platform of Illumina HiSeq X10. About five million reads
per samples were generated.

DNA Isolation and Bisulfite Sequencing
Genomic DNA was extracted from wood-forming tissues
using QIAamp DNA Mini kit (Cat.51306, Qiagen). DNA
quantification and integrity were determined by a Nanodrop
spectrophotometer (Thermo Fisher Scientific, Inc., Wilmington,
DE) and 1% agarose electrophoresis, respectively. Before
bisulfite treatment, lambda DNA was added to the purified
DNA, which was used as an internal reference to calculate
the conversion rate. The mixed DNA was then bisulfite
treated using a Zymo Research EZ DNA methylaiton-Glod
Kit (Zymo, D05005). Bisulfite sequencing (BS-seq) libraries
were constructed by TruSeq R© DNA Methylation Kit (Illumina,
EGMK91396) following the manufacturer’s instruction. After
libraries were qualified, sequencing was performed on the
Illumina HiSeq X Ten platform and 150 bp paired-end reads
were generated.

Analysis of Transcriptome Sequencing
Data
Raw reads of sequencing were processed using NGS QC Toolkit
to remove low-quality reads (Patel and Jain, 2012). The cleaned
reads were mapped to Populus trichocarpa’s genome (http://
phytozome.jgi.doe.gov/) using hisat2 with default parameters
(Kim et al., 2015). Gene expression level was measured as
fragments per kilobase per million reads (FPKM) using cufflinks
(Trapnell et al., 2010; Roberts et al., 2011). Read counts for
each gene in each sample were obtained using htseq-count and
standardized by rlog (Anders et al., 2015). Principle component
analysis (PCA) was performed by plotPCA of DEseq2 R package
with default parameters. Differential expression genes (DEGs)
were identified using the DESeq R package by estimation of Size
Factors and nbinomTest. Analysis of DEGs with gene ontology
(GO) enrichment and the Kyoto Encyclopedia of Genes and
Genomes (KEGG) (Kanehisa et al., 2008) pathway enrichment
was performed using R based on the hypergeometric distribution.

Analysis of Genome Bisulfite Sequencing
The raw reads of BS-seq were cleaned using Fastp (Chen
et al., 2018) by removing adapters, ploy-N, and low-quality
reads. The remaining high-quality clean reads were mapped
to the Populus trichocarpa’s genome (http://phytozome.jgi.
doe.gov/) using Bismark software with default parameters
(Krueger and Andrews, 2011). Methylcytosine (mC) sites
were identified using MethylKit (Akalin et al., 2012). With
default parameters, MethylKit was applied for PCA analysis.
Differentially methylated regions (DMRs) were identified using
MethylKit software with a Q value (p-value corrected by FDR
method) threshold of 0.05 and an absolute delta cutoff of 10%
between the two groups. Analysis of DMGs with GO enrichment
and KEGG pathway enrichment was performed according to the
same method used for DEGs analysis.

Quantitative Real-Time PCR
The first-strand cDNA was synthesized from 2 µg of total RNA
using a cDNA Synthesis SuperMix (TransGen Biotech, AT311-
03). Using cDNA as template, quantitative real-time PCR (qRT-
PCR) was performed using PerfectstartTM Green qPCR SuperMix
(TransGen, AQ601) and a QuantstudioTM 3 Real-Time PCR
Detection System (Thermo). The primers used for selected genes
are listed in Supplementary Table 13, and TUB9 was used as an
internal control to normalize gene expression.

RESULTS

Properties of JW and MW in Populus
To examine the properties of the JW and MW produced
in Populus, plantation-grown trees that were propagated
from a single clone were sampled. Three trees at 2 and
8 years old were collected with trunk at breast height,
respectively (Supplementary Figure 1). In wood anatomical
section, difference in the ratio of fiber cell/vessel, the length and
size of fibers and vessels was observed between JW and MW
(Figures 1A–D). MW contained higher ratio of fiber cell/vessel,
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FIGURE 1 | Properties of the wood produced in juvenile phase (JP) and mature phase (MP). (A,B) Wood sections stained with phloroglucinol in different

magnifications from juvenile wood (JW) (A) and mature wood (MW) (B). Bars = 50µm. (C,D) Fibers and vessels from JW (C) and MW (D). Bars = 200µm. (E) Ratio

of numbers of fiber cells/vessels. (F) Density of vessels. (G,H) Length and cross area of vessels. The values were means ± SE of 500 and 800 independent vessels

from JW and MW, respectively. (I,J) Length and cross area of fiber cells. The values were means ± SE of 1,000 independent fibers from JW and MW, respectively.

Significance was determined by Student’s t-test (*p < 0.05 and **p < 0.01). f, fiber cell; v, vessel.

lower density of vessel cell in wood section, and longer and
larger fiber cell and vessel than those in JW (Figures 1E–J).
Chemical analysis indicated that MW contained higher content
of crystalline cellulose and lower content of lignin compared
with JW (Table 1). Sugar composition in hemicelluloses also
showed difference between JW and MW. MW contained higher
xylose, mannose, glucose, and arabinose but lower galactose
compared with JW (Table 1). These results indicated that JW
and MW in Populus displayed different cellular structures and
chemical compositions.

Transcriptional Profiles in Formation of JW
and MW
To dissect the gene expression involved in Populus wood
formation, transcripts were profiled in the wood-forming tissues
undergoing formation of JW and MW via high-throughput
RNA-seq. Assessment of the RNA-seq data and biological repeats
validated the high quality of the sequence data generated from
the wood-forming tissues (Supplementary Table 1, The raw
data in Sequence Read Archive (SRA), ID: PRJNA705066).
A total of 300.5 million raw reads were obtained from six
samples, and about 284.8 million high-quality reads (more
than 94% of raw reads) were obtained after filtering and
removal of low-quality reads. More than 86% of the high-
quality reads per sample were mapped to the reference genome,

TABLE 1 | Chemical composition in JW and MW of Populus.

Chemical composition (µg/mg AIR) JW MW

Cellulose 400.3 ± 24.4 432.4 ± 27.0*

Lignin 223.1 ± 9.7 206.7 ± 18.9*

Hemicellulose

Xylose 145.9 ± 14.8 192.4 ± 18.1**

Mannose 27.2 ± 4.7 36.8 ± 4.2**

Galactose 2.7 ± 0.5 1.8 ± 0.33*

Glucose 62.4 ± 6.5 69.8 ± 6.0*

Arabinose 2.5 ± 0.2 3.6 ± 0.3**

Sugar content in hemicelluloses is calculated on the basis of standard sugar calibration.

Significance was determined by Student’s t-test (*p < 0.05 and **p < 0.01).

corresponding to expression of ∼20,000 genes out of 41,335
predicted genes in each sample. Meanwhile, PCA indicated that
the transcript profiles showed a clear separation between JW
and MW (Supplementary Figure 2A), suggesting the different
transcription activities in formation of JW and MW.

A group of 3,992 genes were identified (FPKM ≥3, fold
change >2, and p value FDR <0.05) for their differential
expression in JW and MW (Supplementary Figure 2B;
Supplementary Table 2). The DEGs included 2,110 higher
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FIGURE 2 | (A) The functional of the differentially expressed genes (DEGs). (B) The heat map of genes related to plant hormones. (C) The results of quantitative

real-time PCR of selected genes related to plant hormones in JW and MW. Significance was determined by Student’s t-test (*p < 0.05 and **p < 0.01).

expression in JW and 1,882 higher expression in MW. As
indicated by GO and KEGG enrichment analysis, the DEGs
were primarily associated with plant hormones signaling and
response, cell wall formation and modification, microtubule, cell
organization and biogenesis, transcription, and other biological
processes (Figure 2A; Supplementary Tables 3, 4).

Expression of Hormone-Related Genes in
Wood Formation at Different Phases
Among the detected DEGs were included ample hormone-
related genes. Particularly, genes of auxin transportation,
brassinosteroids (BR) biosynthesis, and signaling were identified
for their remarkable difference of expression in JW and
MW (Figure 2B). The homologs of AUX1, LAX3, PILS2, and

ABCB19 which are related to auxin transport (Enders and
Strader, 2015) had high expression level in JW and MW
(FPKM >100). Intriguingly, the homolog (Potri.016G113600)
of AUX1 which facilitates auxin influx was expressed in JW
higher than in MW, while the homolog (Potri.017G081100)
of ABCB19 which facilitates the efflux of auxin was expressed
in MW higher than in JW. Furthermore, four homologs
of PIN1, PIN3, and PIN6, encoded the auxin transporters
that mediate that auxin efflux (Liu et al., 2014; Enders and
Strader, 2015), were identified in DEGs, and their expression
in MW was much higher than in JW (Figure 2B). In addition,
the PIN-LIKES (PILS), which are thought to be located on
the endoplasmic reticulum (ER), may transport auxin from
the cytoplasm into the ER (Enders and Strader, 2015). One

Frontiers in Plant Science | www.frontiersin.org 5 May 2021 | Volume 12 | Article 675075

https://www.frontiersin.org/journals/plant-science
https://www.frontiersin.org
https://www.frontiersin.org/journals/plant-science#articles


Luo et al. Transcription Networks in Juvenile and Mature Wood

PILS2 homolog (Potri.004G093200) was expressed in MW
13 times higher than in JW (Figure 2B). The differential
expression of the auxin-related genes was verified by qRT-PCR
determination (Figure 2C). These data indicate that the genes
involved in IAA transport were differentially expressed in MW
and JW.

Genes involved in BR biosynthesis and signaling were
readily noticed among DEGs. The homolog (Potri.008G084800)
of DIM/DWF1 which is a key gene for BR biosynthesis
in Arabidopsis (Klahre et al., 1998; Youn et al., 2018) was
expressed in MW 5.6 times higher than in JW (Figure 2B).
Additionally, several genes involved in BR signaling were

differentially expressed between JW and MW (Figure 2B).
The homolog of BRI1-associated receptor kinase (BAK1)
(Potri.001G206700), brassinosteroid signaling positive regulator
(BZR1) (Potri.005G126400), and BR signaling kinase 1 (BSK1)
(Potri.002G011800) were downregulated in MW compared
with JW. qRT-PCR determination confirmed the differential
expression (Figure 2C). On the other hand, although the genes
involved in other hormones signaling such as gibberellins (GAs)
were detected to be differentially expressed between JW andMW
(Figure 2B), their expression profiles were unable to be verified.
Together, the results suggest that auxin and BR may be involved
in the regulation of JW and MW formation.

FIGURE 3 | Transcriptional factors in DEGs. (A) Number of TF genes in detected DEGs. (B) Functions of the TFs among DEGs. (C) The results of quantitative

real-time PCR of selected TFs in JW and MW. Significance was determined by Student’s t-test (*p < 0.05 and **p < 0.01).
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Expression of Transcriptional Factor Genes
in the Formation of JW and MW
The identified 3,992 DEGs included 305 transcription factor
(TF) genes, 7.6% of all DEGs, which is higher than 6% of TF
genes in Populus genome (PlantTFDB, http://planttfdb.cbi.pku.
edu.cn) (Jin et al., 2014) (Figure 3A; Supplementary Table 5),
implying that expression of transcription factor genes is altered
in higher proportion. Among the TF genes, 105 TF genes were
upregulated in MW, and the rest were downregulated in MW.
GO annotation analysis indicated that the TFs in the DEGs were
primarily associated with hormone biosynthesis and responses,
plant growth and development, cell fate, cell wall formation, and
response to abiotic and biotic stimuli (Figure 3B).

Several TF genes that are involved in auxin
signaling were differentially expressed in JW and MW
(Supplementary Table 5). The DEGs contained nine auxin
response factor (ARF) genes with four upregulated and five
downregulated in JW. In addition, three homologs of SHI-
RELATED SEQUENCEs (SRSs) that play a role in activation of

auxin biosynthesis (Eklund et al., 2010) were upregulated in
MW. One homolog of AINTEGUMENTA-LIKE 6 (AIL6) that
is involved in regulation of auxin biosynthesis (Pinon et al.,

2013) displayed higher expression in MW. The differential
expression determined by RNA-seq and qRT-PCR analyses was

well-correlated (Figure 3C; Supplementary Figure 3).

The DEGs included a number of TFs related to regulation

of cell wall formation, such as the homologs of SND1, NST1

VND1, and VND4 (Supplementary Table 5), which were key
TFs for regulation of secondary cell wall biosynthesis (Zhong

et al., 2010; Hussey et al., 2013; Kumar et al., 2016). PtrMYB26,
PtrMYB90, and PtrMYB152 which were reported to directly
regulate lignin biosynthesis in Populus (Zhong et al., 2011; Wang
et al., 2014; Li et al., 2015) were expressed higher in JW than
in MW. This is in agreement with the higher lignin content in
JW. Furthermore, expression of PtrMYB170 and PtrMYB121,
which may play a role in resource acquisition and allocation
for xylem development (Romano et al., 2012), were upregulated
in MW. One homolog (Potri.006G241700) of MYB3R1, which

FIGURE 4 | Differentially expressed genes involved in cell wall formation in JW and MW. (A) The heat map of genes related to cell wall formation. (B) The results of

quantitative real-time PCR of selected genes related to cell wall formation in JW and MW. Significance was determined by Student’s t-test (*p < 0.05 and **p < 0.01).
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played a role in activating expression of the genes in cell cycle
(Haga et al., 2011), showed higher expression in MW. PtrERF118
(Potri.018G028000), which was identified as a TF-regulating
xylem cell expansion in Populus (Vahala et al., 2013; Seyfferth
et al., 2018), was upregulated in MW. These results suggest that
the transcriptional networks in relation to auxin biosynthesis
and signaling, secondary cell wall formation, and xylem cell
differentiation were differentially regulated in the formation
of JW and MW.

Expression of the Cell Wall Formation
Genes in JW and MW
The DEGs included a large number of genes responsible for
cell wall biosynthesis (Figure 4; Supplementary Table 6). It is
worth noting that among the DEGs, a large number of genes
related to turgor maintenance and cell expansion were identified,
of which the majority were upregulated in MW (Figure 4A;
Supplementary Table 6). Cell turgor pressure is closely related to
cell expansion, it can induce irreversible cell expansion (Genard
et al., 2001). Five TIPs and three PIPs which are related to
maintenance of turgor pressure were upregulated in MW. On
the other hand, nine EXPAs and four XTHs which were related
to cell wall loosening (Mcqueenmason et al., 1992; Van Sandt
et al., 2007; Nishikubo et al., 2011) were identified upregulated
in MW (Figure 4A). In addition, the homologs of FUC1, PAEs,
PMEs, and PMRs, which play a role in modifying cell wall for
cell wall loosening (Gou et al., 2012; Kato et al., 2018), were
also upregulated in MW. Meanwhile, the homolog of HA11 (a
PMH+-ATPase) were upregulated in MW. The PMH+-ATPase
can reduce the pH in the apoplast space to activate expansins
and other cell wall loosening proteins as well as promote the
absorption of water to provide turgor pressure for cell expansion
(Spartz et al., 2014). These changes of the gene expression were
confirmed by qRT-PCR (Figure 4B). These results support the
observation that MW is formed with larger and longer fibers and
vessel elements.

Expression of the genes for monolignol biosynthesis was
consistently lower in MW, including five PAL homologs, C4H1
and C4H2, 4CL1 and 4CL5, HCT1, C3H3, CSE2, CCoAOMT1
and CCoAOMT2, CCR2, F5H1 and F5H2, COMT1, and CAD
(Figure 4A). This may reflect less lignin biosynthesis in MW.
After biosynthesis, monolignols are polymerized by laccases
or peroxidases. Among detected, 11 laccase (LAC) genes
including homologs of LAC2, LAC10, LAC11, and LAC17 were
downregulated in MW. Interestingly, among the 10 detected
peroxidase genes, two peroxidases were expressed higher in
JW and the other eight were expressed higher in MW. It is
worthy of further investigating whether the different members
of LAC or PRX act in different phases of wood formation.
Cellulose is synthesized by cellulose synthase complex (CSC) of
synthases (CesAs) (Song et al., 2010; McFarlane et al., 2014). It
is interesting to notice that the homologs of CesA4, CesA7, and
CesA8, which form CSCs for cell wall thickening (Song et al.,
2010; Watanabe et al., 2015; Xi et al., 2017), were downregulated
in MW (Figures 4A,B). As cellulose synthesis is affected by CesA
modifications at protein level (Polko and Kieber, 2019), it is

unclear whether modification of CesAs are involved in regulating
cellulose synthesis in JW and MW.

A number of genes for biosynthesis of hemicelluloses were
differentially expressed in JW and MW (Figure 4A). UDP-
glucuronic acid decarboxylase (UXS) catalyzes UDP-glucuronic
acid (UDP-GlcA) to biosynthesis of UDP-Xyl (Kuang et al.,
2016), which is a donor for biosynthesis of xylan, a major
secondary cell wall hemicellulose. Cellulose synthase-like D
(CSLD) involved xylan synthesis (Bernal et al., 2007). Cellulose
synthase-like A (CSLA) encodesmannan synthase (Liepman et al.,
2005; Suzuki et al., 2006; Verhertbruggen et al., 2011). Homologs
of UXS, CSLC, CSLD, and CLSA showed higher expression in
MW. The results support a higher content of xylan and mannan
deposited in MW than in JW (Table 1).

DNA Methylation in Formation of JW and
MW
The differential gene expression in different growth phases
prompted us to examine the whole genome bisulfite
sequencing (WGBS). The bisulfite sequencing showed that
87.6–91.9% of the reads was qualified for methylation assay
against the Populus genome (http://phytozome.jgi.doe.gov/)
(Supplementary Table 7, The raw data in Sequence Read
Archive (SRA), ID: PRJNA705570). Overall, the methylation
level was different within cytosine methylation contexts (CG,
CHG, and CHH). The context of CG had higher methylation
level, while CHG and CHH had lower (Supplementary Table 8).
The DNA methylation context patterns displayed a similarity
with those previously observed in Populus (Vining et al., 2012;
Su et al., 2018). PCA showed that JW and MW had distinct DNA
methylation (Figure 5A). Comparison of the DNA methylation
in JW and MW revealed 12,176 differentially methylated
regions (DMRs) (with methylation difference ≥10, Q-value
<0.05). Majority of DMRs were in the contexts of CG sites
(10,303) and CHG sites (1,663) (Supplementary Figure 4A;
Supplementary Table 9), Among them, 10,237 DMRs were
located in gene body and/or flanking regions (±2 kb), named
differentially methylated genes (DMGs). In MW, 5,414 DMGs
showed higher methylation while JW contained 4,849 DMGs
with higher methylation (Figure 5B; Supplementary Table 10),
suggesting that different DNA methylations occurred in
the formation of JW and MW. Analysis of the correlation
between DMGs and DEGs indicated that DMRs in gene
promoter region were more likely to affect gene expression
(Supplementary Figure 4B). About 20% DEGs (802) displayed
different methylation (Supplementary Table 11). These DEGs
were closely related to plant hormone signaling and response,
cell wall formation and modification, metabolic process,
transcription and translation, etc. (Supplementary Figure 4C;
Supplementary Table 12). For example, the homologs of ARFs,
BAK1, BSK1, and BZR1, which are involved in auxin and BR
signaling, were differential methylated in their different gene
regions in JW and MW (Figure 5C; Supplementary Table 11).
Furthermore, several genes related to cell wall formation such as
XTH30, PAEs, WND1B, CESA4, CESA7, and CESA8 (Figure 5C;
Supplementary Table 11) showed differential methylation in JW
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FIGURE 5 | The methylation profile of JW and MW. (A) Principal component analysis (PCA) of DNA methylation in each sample. (B) The number of higher methylation

genes in DMGs. (C) Methylation and expression of genes related to wood formation.

and MW. In addition, several DMRs in intergenic region were
neighbored to the homologs of PILS2, AUX1, PIN7, WND2A,
MYBs, and PAL1, which are involved in auxin distribution
and cell wall biosynthesis (Supplementary Table 11). In
summary, the results revealed that DNA methylation displayed
a clear difference in the formation of JW and MW, which
may play a role in regulating gene expression in different
growth phases, particularly for the genes involved in hormone
signal transduction, cell division, and cell wall biosynthesis in
wood formation.

DISCUSSION

At a given point of tree development, wood can be differentiated
into juvenile wood and mature wood which have distinct
properties (Basheer-Salimia, 2007; Barrios et al., 2017). In
the present study, we profiled the transcriptome and DNA
methylation patterns in JW and MW derived from an identical
genetic background in order to uncover the paths involved in

wood formation at different developmental phases. Different
transcription profiles and DNA methylation were identified in
the formation of JW and MW. Differences in gene expression
were primarily associated with plant hormones including auxin
and BR signaling and response, cell wall formation and
modification, cell organization and biogenesis, and transcription
regulation processes. Different patterns of DNA methylation
were also detected in genes involved in auxin transport, BR
signaling, and cell expansion which suggest a role for the
epigenetic regulation of JW and MW formation.

Different expressions of auxin transport genes were observed
in JW and MW. Relative to JW, we observed that the genes
related to auxin influx (homolog of AUX1) (Enders and Strader,
2015) were downregulated in MW, while the genes related to
auxin efflux (homologs of PINs, PILSs, ABCB19) (Liu et al., 2014;
Enders and Strader, 2015) were upregulated in MW. Meanwhile,
the different members of the AUX1/LAX3 family were that
expressed in JW andMW imply a possibility that formation of JW
andMW involves distinct auxin molecule formats, as AUX1/LAX
members correspond with different auxin formats (Enders and
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Strader, 2015). Further characterization of PIN, ABCB, AUX1,
and LAX3 proteins in association with auxin in the JW-/MW-
forming tissues would be able to provide mechanistic evidence
for verification of the findings. However, current results indicate
that auxin transport plays a role in regulating the formation of
JW and MW.

Furthermore, we also found that homolog of DIM which is a
key gene for BR biosynthesis (Klahre et al., 1998) was upregulated
in MW, while homologs of BAK1, BSK1, and BZR1 which are
marker genes for BR signaling (Li et al., 2002; Nam and Li,
2002; Wang et al., 2002; Tang et al., 2008) showed downregulated
expression in MW, suggesting that BR signaling plays a role in
regulating MW formation. Studies have shown that BR promotes
wood formation (Du et al., 2020). It is worthy of studying whether
BR manipulates wood properties in wood formation because the
properties of JW and MW are different.

DNAmethylation acts as an epigenetic mechanism to regulate
gene expression in plants (Fraga et al., 2002a; Vining et al., 2012;
Matzke and Mosher, 2014; Liang et al., 2019). In this study, we
found that the methylation level of the auxin transport genes
PILS2, AUX1, and PIN7 was different between JW and MW. In
addition, the different degrees of DNA methylation were also
detected in the BR signaling genes BAK1, BSK1, and BZR1. It
is likely that the different expressions of these genes in JW and
MW may be related to their DNA methylation changes over
the developmental process. Further investigation of the DNA
methylation effect on the transcription activities of the auxin and
BR genes would help in the revelation of the molecular pathways
underlying the alternation of the hormone signaling during
different development phases in perennial trees. In summary, the
present results suggest that auxin distribution and transportation,
BR biosynthesis, and signaling are involved in regulating the
wood formation at juvenile and mature phase. DNA methylation
plays an important role in regulating the expression of the auxin
and BR genes at different development phases.

In consistent with the hormone signaling changes, the
downstream biological processes in response to auxin and BR
also showed alternation in JW andMW. For instance, TFs such as
ARFs, SRSs, AP2, and MYB3R1 and genes related to cell loosing
and cell expansion such as HA11, XTHs, FUC1, PAEs, PMEs,
PMRs, PIPs, and TIPs, of which the expression is responding to
auxin signaling (Guilfoyle and Hagen, 2007; Spartz et al., 2014),
showed differential expression in formation of JW and MW.
These transcription regulations are in agreement with the MW
properties that have significantly longer and larger fiber cells
and vessels.

Cell wall composition (including lignin, cellulose, and
hemicellulose) which is closely related to wood properties is
rather different in JW and MW (Table 1). Expressions of the
genes related to lignin biosynthesis were downregulated, and
the genes for hemicelluloses biosynthesis were upregulated in
MW, consistent with the result of less lignin content and higher
hemicellulose content in MW. Interestingly, expression of the
cellulose biosynthesis genes (such as CesA4, CesA7, and CesA8)
was downregulated in MW compared with JW. However, the
cellulose content was higher in MW. As this discrepancy requires
further verification, regulation of the CesA activity at protein

FIGURE 6 | Outline of the DAN methylation and transcription regulation in

formation of JW and MW.

level may be considered. It is known that protein phosphorylation
plays a crucial role in regulating CesA catalytic activity and
motility (Chen et al., 2010; Speicher et al., 2018; Polko and Kieber,
2019).More evidence is needed for the elucidation of the different
cellulose accumulations in JW and MW.

CONCLUSIONS

In this study, we analyzed transcription profiles and genome-
wide DNA methylation in association with the wood properties
of JW and MW by employing Populus trees with an identical
genetic background. Results suggest that auxin distribution and
BR signaling may act as major mechanisms to modulate the
wood formation in different development phases. In response to
the hormone signaling alteration, the transcription activities are
modulated, leading to the formation of different wood properties
in JW and MW. Furthermore, results also indicate that the
transcription modulation of the hormone-related genes may be
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regulated throughDNAmethylation. The study outlines a picture
of the main transcription networks related to wood formation in
JW and MW and a possible role of DNA methylation in tuning
the transcriptional network (Figure 6). These findings shed light
toward a better mechanistic understanding of wood formation
in different development phases and new evidence to inform the
engineering of wood properties.
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