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Flavonoids are well known for the coloration of plant organs to protect UV and ROS and
to attract pollinators as well. Flavonoids also play roles in many aspects of physiological
processes including pathogen resistance. However, the molecular mechanism to explain
how flavonoids play roles in pathogen resistance was not extensively studied. In this
study, we investigated how naringenin, the first intermediate molecule of the flavonoid
biosynthesis, functions as an activator of pathogen resistances. The transcript levels of
two pathogenesis-related (PR) genes were increased by the treatment with naringenin
in Arabidopsis. Interestingly, we found that naringenin triggers the monomerization
and nuclear translocation of non-expressor of pathogenesis-related genes 1 (NPR1)
that is a transcriptional coactivator of PR gene expression. Naringenin can induce
the accumulation of salicylic acid (SA) that is required for the monomerization of
NPR1. Furthermore, naringenin activates MPK6 and MPK3 in ROS-dependent, but SA-
independent manners. By using a MEK inhibitor, we showed that the activation of a
MAPK cascade by naringenin is also required for the monomerization of NPR1. These
results suggest that the pathogen resistance by naringenin is mediated by the MAPK-
and SA-dependent activation of NPR1 in Arabidopsis.

Keywords: flavonoid, MAPK, naringenin, NPR1, pathogen resistance, PR1, SA

INTRODUCTION

Flavonoids are secondary metabolites widely distributed in plants. Flavonoids can be divided into
several subgroups by the diversity of chemical groups. Flavonoids have roles in many facets of
plant physiology (Buer et al., 2010). Major roles of flavonoids are UV protectants (Shirley, 1996),
antioxidants and scavengers of reactive oxygen species (Rice-Evans, 2001). The other roles of
flavonoids include pollinator attractants (Mol et al., 1998), root nodulation (Mandal et al., 2017),
allelopathy (Hassan and Mathesius, 2012) and auxin transport inhibitor (Peer and Murphy, 2007).
The previous study revealed that flavonoids also act in resistance against pathogens and herbivores
(Treutter, 2005). Naringenin is one of the major flavonoids which was broadly distributed in
citrus fruits and vegetables such as grapefruit, lemon, oranges and tomatoes (Manchope et al.,
2017). Naringenin is accumulated by infected biotrophic pathogen Plasmodiophora brassicae and
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Pseudomonas siringae pv. pisi (Päsold et al., 2010; Makarova et al.,
2016). Furthermore, naringenin is reported to confer not only
anti-inflammatory and antiviral activities (Hartogh and Tsiani,
2019) but also resistance against Fusarium (Skadhauge et al.,
1997) and Pyricularia oryzae (Padmavati et al., 1997). However,
the pathway to explain how naringenin activates pathogen
resistance has not been investigated.

Salicylic acid (SA) mediates plant defense against biotrophic
and hemibiotrophic pathogens. SA is accumulated in both
infected and distal leaves in response to pathogen attack (van
Butselaar and Van den Ackerveken, 2020). In Arabidopsis, SA
biosynthesis is produced primarily through the isochorismate
pathway and the phenylalanine ammonia-lyase pathways (Ding
and Ding, 2020). SA-mediated immune responses are essential
parts of both PTI and ETI (Tsuda et al., 2009). SA is required
for the expression of pathogenesis-related genes and the synthesis
of defensive compounds associated with both local and systemic
acquired resistance in plants (An and Mou, 2011). In Arabidopsis,
the exogenous application of SA suffices to establish SAR that
evokes enhanced basic resistance to a variety of pathogens
(Klessig et al., 2018).

The NPR1, NPR3 and NPR4 bind to SA and function as
SA receptors. NPR1 functions as a transcriptional coactivator to
induce PR gene expression, whereas NPR3 and NPR4 function
as transcriptional co-repressors to repress PR gene expression
(Fu et al., 2012; Ding et al., 2018). By the binding of SA,
NPR1 is activated, whereas NPR3 and NPR4 are inactivated.
NPR1 activated by SA plays a critical role in resistance against
biotrophic pathogen challenge (Cao et al., 1997). In the absence
of SA, NPR1 is found as oligomer forms in the cytoplasm. By the
accumulation of SA, changes in cellular redox potential lead to
the reduction of NPR1 through the activity of thioredoxins. This
reduction of NPR1 contributes to the monomerization of NPR1
(Mou et al., 2003; Tada et al., 2008). The monomerized NPR1
is translocated from the cytosol into the nucleus via a bipartite
nuclear localization signal (Kinkema et al., 2000; Maier et al.,
2011). The nuclear-localized monomeric NPR1 interacts with
TGA transcription factor to induce PR gene expression (Zhang
et al., 1999; Kim and Delaney, 2002).

Mitogen-activated protein kinases (MAP kinase) are highly
conserved serine/threonine-specific protein kinases that respond
to various extra- and intracellular signals in all eukaryotes
(Meng and Zhang, 2013). A basic MAPK cascade consists of
three distinct kinases. MAP kinase kinase kinases (MAPKKK)
receive signals from upstream receptors and activate downstream
MAP kinase kinases (MAPKK) via phosphorylation, which in
turn phosphorylates and activates MAPK (Zhang et al., 2018).
MAPK cascades play important roles in the earliest signaling
events upon a perception of PAMPs, DAMPs or effectors (Bartels
et al., 2013; Thulasi Devendrakumar et al., 2018). In response
to pathogens, MPK3 and MPK6 positively contribute to innate
immune responses in plants via phosphorylation of downstream
substrates in a partially redundant manner in Arabidopsis
(Beckers et al., 2009; Meng and Zhang, 2013; Xu et al., 2016).
For example, MPK6 phosphorylates ACS6, an enzyme of ethylene
biosynthesis, which increases ethylene production (Han et al.,
2010). MPK3 phosphorylates and activates the transcription

factor VIP1 and ERF6, which activates defense-related genes
(Bethke et al., 2009). The transcription factor WRKY33 is directly
phosphorylated by MPK3 and MPK6. WRKY33 is required
for MPK3 and MPK6-mediated production of camalexin and
pipecolic acid (Mao et al., 2011; Wang et al., 2018).

In this study, we investigated the molecular mechanism
to explain how naringenin induces pathogen resistance. We
showed that naringenin induces the monomerization and nuclear
translocation of NPR1 that is triggered by both the accumulation
of SA and the activation of MAPK cascade.

MATERIALS AND METHODS

Plant Materials and Growth Conditions
The Arabidopsis thaliana ecotype Columbia-0 (Col-0) plants,
mapk3-2 (SALK_151594), mapk6-3 (SALK_127507), sid2
mutants, NahG and 35S:NPR1-GFP in npr1-2 were used. Seeds
were surface sterilized with 70% EtOH and with 1/10-diluted
commercial bleach (0.4% NaOCl) and washes with distilled water.
Surface-sterilized seeds germinated on agar plates containing
Murashige-Skoog (MS) salts and vitamins (Murashige and
Skoog, 1962), 2.0% sucrose and 0.8% agar. The MS plates were
kept for 3 d at 4◦C in the dark, and then at 22◦C in a growth
chamber under a 16 h light/8 h dark photoperiod with a light
intensity of ∼120 µmol m−2 s−1. For bacterial growth curve
assays, 14-day-old seedlings were transplanted into soil and
then grown under at 24◦C in a growth chamber under an 8 h
light/16 h dark photoperiod with 70% relative humidity and with
a light intensity of∼120 µmol m− 2 s−1 for 14 days.

Antimicrobial Activity
Pseudomonas syringae pv. tomato DC3000 (Pst DC3000) was
incubated on Pseudomonas agar F (BD DIFCO, United States)
with 30 mg/L rifampicin at 28◦C for 48 h. Cells were resuspended
in 10 mM MgCl2 to form a gradient concentration of 107, 108

and 109 CFU ml−1. The bacterial suspensions were dropped and
incubated on King’s B (KB) medium sprayed with 0, 0.5, 1, 2, and
4 mM naringenin and were incubated at 28◦C for 24 h.

Bacterial Growth Curve Assays
Growth curve assays with the virulent Pst DC3000 were
performed as described previously (Gassmann, 2005). In brief,
pre-sprayed leaves of four-week-old plants with 100 µM
naringenin were sprayed with 2 × 108 cfu/ml bacterial
suspensions in 10 mM MgCl2 and 0.01% of Silwet L-77. At
indicated time points, leaf discs (total area 1 cm2) were harvested
from the infected tissues. The samples were ground in 10 mM
MgCl2 and were plated in serial dilutions on selective plates.
A two-tailed Student’s t-test was used for statistical analysis of
bacterial growth in different plant lines.

Total RNA Extraction and Quantitative
PCR
Total RNA was isolated from 2-week-old plants infiltrated
with 0.5 µM flg22 or 100 µM naringenin for 24 h using an

Frontiers in Plant Science | www.frontiersin.org 2 May 2021 | Volume 12 | Article 672552

https://www.frontiersin.org/journals/plant-science
https://www.frontiersin.org/
https://www.frontiersin.org/journals/plant-science#articles


fpls-12-672552 May 14, 2021 Time: 17:55 # 3

An et al. Naringenin Induces Pathogen Resistance

RNA purification kit (Macherey-Nagel, Germany). RNA (5 µg)
was reverse transcribed using SuperScript II RNase-Reverse
Transcriptase (Invitrogen, United States). Quantitative PCR
(qPCR) was performed in a 10 µl reaction volume containing
1 µl RT products, 10 pmol of gene-specific primers and 5 µl
SsoFast EvaGreen Supermix (Bio-Rad, United States) using
the CFX384 Real-Time System (Bio-Rad, United States). The
reaction conditions included an initial 5 min pre-incubation
at 94◦C, 45 cycles of 94◦C for 30 s, 55◦C for 30 s and 72◦C
for 40 s, followed by melting curve analysis via 90 cycles at
55◦C, increasing by 0.5◦C/cycle and a final cooling step for
10 min at 72◦C. The primers used for qPCR are shown in
Supplementary Table 1.

Protein Extraction and Nuclear
Fractionation
Total proteins were extracted from two-week-old plant infiltrated
with 0.5 µM flg22 or 100 µM naringenin in the absence or
presence of 50 µM PD98059 (Sigma-Aldrich, United States)
by grinding in liquid nitrogen and resuspending powder in
protein extraction buffer (50 mM HEPES, pH 7.5, 5 mM
EDTA, 5 mM EGTA, 1 mM Na3VO4, 25 mM NaF, 50 mM-
glycerophosphate, 2 mM DTT, 2 mM PMSF, 5% glycerol, 1%
Triton X-100 and protease inhibitor). After two rounds of
centrifugation at 12,000 × g for 15 min, the supernatants were
transferred to tubes and stored at −80◦C until use. Protein
concentrations of supernatant were determined using a Bio-Rad
Protein Assay kit (Bio-Rad, United States). Nuclear fractionation
was performed based on the previously described (Kinkema et al.,
2000). Briefly, nuclear proteins were extracted from 2-week-
old plants infiltrated with 0.5 µM flg22 or 100 µM naringenin
for 3 h using CELLYTPN1 CelLytic PN Isolation/Extraction Kit
(Sigma-Aldrich, United States).

Immunoblot Analysis
For detection of NPR1 proteins, samples of total protein
(30 µg) were resolved on 8% SDS-PAGE and transferred to
a PVDF membrane (Bio-Rad, United States). Primary and
secondary antibodies were used rabbit anti-NPR1 (1:5,000;
Abiocode, United States) antibodies and horseradish peroxidase-
conjugated anti-rabbit antibodies (1:10,000), respectively. Signals
were visualized using an ECL kit (Bio-Rad, United States).

For detection of MPK activities, total protein (30 µg)
were resolved on 10% SDS-PAGE and transferred to a
PVDF membrane (Bio-Rad, United States). Primary and
secondary antibodies were used rabbit anti-phospho-p42/44
MAPK (1:2,000, Cell Signaling Technology, United States)
antibodies and horseradish peroxidase-conjugated anti-rabbit
antibodies (1:10,000), respectively. Signals were visualized
using an ECL kit.

For detection of nuclear and cytosol proteins, nuclear and
cytosolic fractions were resolved by 10% SDS-PAGE. The
proteins were detected with rabbit anti-NPR1 (1:5,000; Abiocode,
United States), anti-H3 (1:5,000, Abcam, United Kingdom) and
anti-PEPC (1:10,000, Abcam, United Kingdom) antibodies as

primary antibodies and horseradish peroxidase-conjugated anti-
rabbit (1:10,000) antibodies as secondary antibodies. Signals were
visualized using an ECL kit.

Confocal Microscopy
Arabidopsis leaf tissues were mounted in water and viewed
with a confocal laser-scanning microscope (Olympus FV1000).
GFP was visualized using an excitation wavelength of 488 nm
nanometer beam splitter.

Determination of Salicylic Acid
Two-week-old plants were infiltrated with naringenin and
incubated for 24 h. Free SA was isolated and quantified as
described previously (Pan et al., 2010). Ground tissue (50 mg) was
used for free SA measurement. The ground sample was extracted
with 500 µl of extraction solvent 2-propanol/H2O/concentrated
HCl (2:1:0.002, v/v/v) containing d6-SA an internal standard
for SA, respectively for 24 h at 4◦C. Dichloromethane (1 mL)
was added to the supernatant and then centrifuged at 13,000 g
for 5 min at 4◦C. The lower phase, which was taken into
a clean screw-cap glass vial, was dried under nitrogen and
resolved in pure methanol. Complete dissolved extract ensured
by vortexing and sonicating was transferred to a reduced volume
liquid chromatography vial. SA was analyzed by a reverse-
phase C18 Gemini high-performance liquid chromatography
(HPLC) column for HPLC electrospray ionization tandem mass
spectrometry (HPLC–ESI–MS/MS) analysis. These experiments
were repeated three times with similar results.

DAB and NBT Staining
Two-week-old seedlings were infiltrated with 0.2 mM SA and
100 µM naringenin and were incubated for 24 h. To detect
hydrogen peroxide, seedlings were submerged into 1 mg/ml DAB
(Sigma, United States) solution for 6 h. The stained seedlings
were transferred to EtOH and incubated at 70◦C for 10 min
to remove chlorophyll. To detect superoxide anion, seedlings
were submerged into 1 mM NBT (Sigma, United States) with
10 mM sodium azide in 50 mM sodium phosphate buffer (pH
7.4) for 24 h. The stained seedlings were transferred to EtOH and
incubated to remove chlorophyll. All materials were visualized
using a light microscope.

Plasmid Construction and Expression of
Recombinant Proteins
Plasmid construction was performed as previously described with
minor modification (Kim et al., 2017). For the construction
of the GST-SnRK2.8, the SnRK2.8 was amplified by PCR with
gene-specific primers (Supplementary Table 2). The cDNA PCR
fragment was cloned into the T-blunt vectors (Solgent, Korea)
and their accuracy was verified by sequencing. To create in-frame
N-terminal GST fusions, the inserts were excised with BamHI
and XhoI and cloned into the pGEX 4T-1 vector (Amersham
Biosciences, United States). The GST-fusion constructs were
transformed into BL21 (DE3) E. coli and GST fusion proteins
were expressed and purified using glutathione Sepharose-
4B beads according to the manufacturer’s instructions (GE
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FIGURE 1 | Basal resistance to Pst DC3000 infection of Col-0 plants is enhanced in the presence of naringenin. The growth of Pst DC3000 in control (mock) or in
naringenin-pretreated Col-0 plants. Col-0 plants were sprayed with 1 mM naringenin one day before being challenged with DC3000. (A) Disease symptoms of Col-0
plants infected by Pst DC3000 in the absence and presence of naringenin. Photos were taken at three days. (B) Bacterial numbers were quantified three days later.
Bars represent mean values (SD) of colony-forming units (cfu) per square centimeter from biological replicate samples derived from different plants. Each biological
replicate consists of three leaf disks harvested from different leaves of one plant. Number signs denote statistically significant differences from the Col-0 value
(*P < 0.05; two-tailed t-test). Scale bar represents 0.5 cm. The expressions of PR genes are induced by naringenin. Total RNA was extracted from Col-0 plants
treated with 0.5 µM flg22 or 100 µM naringenin. Samples were collected 24 h post-treatment. Transcript levels of PR gene are increased in Col-0 plants. PR1 (C)
and PR2 (D) transcript levels were measured by qPCR using specific primers. Tubulin was used as an internal control. Error bars indicate SD. Different letters above
bars indicate statistically significant differences between samples, according to Tukey’s honestly significant difference test (P < 0.05). The experiment was repeated
three times with similar results.

Healthcare, United States). For the construction of His-MAPKs,
full-length MPK3, MPK4 or MPK6 were amplified by PCR with
gene-specific primers (Supplementary Table 2). The cDNA PCR
fragment was cloned into the T-blunt vectors and their accuracy
was verified by sequencing. To create in-frame His fusion, the
inserts were excised with BamHI and SalI, and subcloned into
pQE30 or pGEX 4T-1 vector. The His-fusion constructs were
transformed into E. coli (M15) and His-tag fusion proteins were
expressed and purified using Ni-NTA agarose beads according to
the manufacturer’s instructions (Qiagen, Germany).

In vitro Kinase Assays
In vitro kinase reactions were performed as previously described
with minor modification (Liu and Zhang, 2004). In brief,
recombinant kinases and substrates proteins were mixed in
kinase reaction buffer (25 mM Tris-HCl [pH 7.5], 1 mM DTT,
20 mM MgCl2, 2 mM MnCl2, and 50 µM [γ-32P] ATP). His-
MAPKs (1 µg) were used as kinases. GST (1 µg; negative control),

myelin basic protein (MBP, 0.5 µg; positive control), and GST-
SnRK2.8 variants (2 µg) were used as substrates. The reactions
were begun using 1 µCi [γ -32P] ATP at 30◦C for 30 min.
The kinase reactions were stopped by adding SDS sample buffer
and boiling for 5 min. Reaction products were resolved by 10%
SDS-PAGE. The gels were autoradiographed and stained with
Coomassie Brilliant Blue (CBB) R-250, using pre-stained markers
to estimate protein size.

RESULTS

Naringenin Enhances the Resistance to
Pst DC3000
Flavonoids play roles in plant resistance against pathogenic
bacteria and fungi through the induction of PR genes (Mierziak
et al., 2014). For example, quercetin and its derivatives are known
to induce fungal pathogen resistance (Parvez et al., 2004) and
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also induce bacterial pathogen resistance (Jia et al., 2010; Yang
et al., 2016). To investigate whether naringenin has antimicrobial
activity against Pst DC3000, we performed the pathogen growth
assay on solid medium sprayed with different concentrations
of naringenin. However, we could not find the antimicrobial
activity of naringenin at all tested concentration (Supplementary
Figure 1). Therefore, we hypothesized that naringenin could also
induce pathogen resistance in plants. To test this hypothesis,
we investigated the effects of naringenin on defense response
against Pst DC3000. After inoculation with Pst DC3000, chlorotic
symptoms were observed on the leaves without pretreated with
naringenin at 3 dpi. However, attenuated disease symptoms
were observed in leaves pretreated with naringenin. In addition,
bacterial growth was reduced in leaves, which were pretreated
with naringenin (Figures 1A,B). These results suggest that
naringenin also induces pathogen resistance.

To examine whether naringenin induces basal pathogen
resistance, the expression of PR1 and PR2 genes were analyzed
after the treatment with naringenin by qPCR. As a positive
control, a representative PAMP molecule, flg22 was treated.
The expression levels of PR1 and PR2 genes by the treatment
of flg22 were approximately 73.8-fold and 17.9-fold higher
than the control, respectively. As expected, we also found that
the expressions of PR1 and PR2 genes by the treatment with
naringenin were approximately 46.1-fold and 9.5-fold higher
than the control, respectively (Figures 1C,D). These results
suggest that naringenin strongly induces the expression of
PR genes.

Naringenin Induces Resistance Through
the Monomerization of NPR1
The biological activity of NPR1 is enforced through a
conformational change that rely on direct interaction with SA
(Wu et al., 2012). The monomerization of NPR1 is required
for the transcriptional activation of PR genes (Mou et al.,
2003). Therefore, we hypothesized that naringenin induces
conformational changes of NPR1. To test this hypothesis, a time-
course experiment was performed to investigate the kinetics of
NPR1 monomerization by naringenin. The monomerized NPR1
was detected under non-reducing conditions by Western blot.
As reported, most of NPR1 was existed in oligomer forms not
only in the absence but also in the presence of naringenin.
Surprisingly, the monomer form of NPR1 was increased by the
treatment with naringenin and peaks at 4 h after treatment
(Figure 2A). This result suggests that naringenin induces the
monomerization of NPR1.

It was well known that the nuclear translocation of NPR1
after monomerization is required for the induction of PR gene
expressions (Kinkema et al., 2000; Maier et al., 2011). To
investigate whether naringenin induces the nuclear localization
of NPR1, we examined subcellular fluorescence of GFP tagged
NPR1 in stomatal guard cells of NPR1-GFP/npr1-2 plants after
the treatment with naringenin. As a result, almost NPR1-
GFP was detected in the cytoplasm of guard cells before
the treatment. However, NPR1-GFP was strongly detected in
the nucleus of guard cells at 3 h after naringenin treatment

FIGURE 2 | Naringenin induces the monomerization and nuclear translocation
of NPR1. (A) The monomerization of NPR1 by naringenin. 35S::NPR1-GFP
transgenic plants (in npr1-2) were treated with 100 µM naringenin. Plants
were collected at the indicated time points after naringenin treatment. Total
protein (30 µg) was extracted and subjected to SDS-PAGE with or without
DTT in the sample buffer (62.5 mM Tris-HCl pH 6.8, 10% glycerol, 1% lithium
dodecyl sulfate (LDS), and 0.005% Bromophenol Blue) and analyzed using
immunoblot using polyclonal anti-NPR1 antibodies. Both oligomeric (O) and
monomeric (M) forms of NPR1 were detected. (B) Subcellular localization of
NPR1-GFP by naringenin. Confocal microscope images of NPR1-GFP
fluorescence in representative guard cells. Leaf tissues from the
35S::NPR1-GFP treated with or without 100 µM naringenin for 3 h viewed

(Continued)
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FIGURE 2 | with a fluorescence microscope. Scale bar represents 20 µm.
The experiment was repeated three times with similar results. (C) Western blot
analyses of NPR1 in nuclear and cytoplasmic fractions. Nuclear and
cytoplasmic proteins were fractionated from total extracts from leaves of
NPR1-GFP/npr1-2 after treatment with or without 100 µM of naringenin for
3 h. The blots were probed with an anti-NPR1 antibody. To determine the
purity of fractions, anti-PEPC and Histone H3 antibodies were used for the
Western blots of cytoplasmic and nuclear fractions, respectively.

(Figure 2B). This result strongly suggests that naringenin induces
the nuclear translocation of NPR1. To verify that naringenin
induces the nuclear translocation of NPR1, we performed
nuclear fractionation in NPR1-GFP/npr1-2 after treatment with
naringenin. As a result, we found that the nuclear translocation
of NPR1 was obviously increased by the treatment with
naringenin or SA (Figure 2C). Taken together, these data indicate
that naringenin increases the nuclear translocation of NPR1
through monomerization.

To explore whether NPR1 plays a crucial role in naringenin-
induced resistance, we investigated the effects of naringenin on
pathogen resistance against Pst DC3000 in npr1-1 plant. As a
result, naringenin significantly reduced bacterial growth in Col-
0 but not in npr1-1 (Supplementary Figure 2). Consistently,
the induction of PR1 gene expression by naringenin was also
impaired in npr1-1 (Supplementary Figure 3). These data
indicate that NPR1 is required for the naringenin-induced
pathogen resistance.

Naringenin Induces SA
Biosynthesis-Related Genes and SA
Accumulation
SA accumulation is closely associated with resistance against
biotrophic and hemibiotrophic bacterial pathogens (van
Butselaar and Van den Ackerveken, 2020). Previously, it was
reported that other flavonoids-mediated pathogen resistance
was activated by the SA-dependent pathway (Jia et al., 2010;

Yang et al., 2016). To test whether SA biosynthesis-related
genes could be induced by naringenin, the expressions of
representative SA biosynthesis-related genes, EDS1, ICS1 and
PAL1 were measured by using qPCR. The expressions of EDS1
and ICS1 genes were increased approximately 2.2-fold and 3.5-
fold by the treatment with naringenin (Figure 3), whereas PAL1
gene was not (Supplementary Figure 4). This result suggests
that naringenin increases SA biosynthesis by isochorismate
dependent pathway. The increased SA biosynthesis-related genes
by naringenin prompted us to examine whether naringenin
increases the level of SA. Therefore, we measured free SA amount
in plant after the treatment with naringenin. Interestingly, the
levels of free SA were 2-fold increased by naringenin (Figure 4).
This result indicates that naringenin induces the accumulation
of SA in plants.

Naringenin Induces the Accumulation of
ROS
The infections of most pathogens show oxidative burst, which
constitutes the production of ROS, including superoxide anion
(O2
−) and hydrogen peroxide (H2O2). The increased H2O2

level contributes to the upregulation of genes associated with
defense responses in plants (Apel and Hirt, 2004). Flavonoids
are known to function as antioxidant agents by scavenging
reactive oxygen species (Treml and Šmejkal, 2016). However,
a previous study reported that quercetin activated defensive
responses via H2O2 burst in Pst DC3000-challenged Arabidopsis
(Jia et al., 2010). In order to test whether ROS is accumulated
by the treatment with naringenin, we performed histochemical
staining with 3, 3′-diaminobenzidine (DAB) and nitro blue
tetrazolium (NBT) to monitor the production of H2O2 and O2

−,
respectively. As expected, the accumulation of H2O2 and O2

−

were clearly detected by treatment with flg22. The accumulation
of H2O2 and O2

− were also detected by the treatment with
naringenin (Figure 5), indicating that naringenin induces ROS
burst in plants.

FIGURE 3 | Naringenin increases expression of SA biosynthesis-related genes. Expression of SA biosynthesis-related genes by naringenin. Total RNA was extracted
from Col-0 plants treated 0.5 µM flg22 or 100 µM naringenin. Samples were collected 24 h post-treatment. Transcript levels of SA biosynthesis-related genes are
increased in Col-0 plants. ICS1 (A) and EDS1 (B) transcript levels were measured by qPCR using specific primers. Tubulin was used as an internal control. Error bars
indicate SD. Different letters above bars indicate statistically significant differences between samples, according to Tukey’s honestly significant difference test
(P < 0.05). The experiment was repeated three times with similar results.
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FIGURE 4 | Naringenin induces the accumulation of SA. Accumulation of SA
by naringenin. SA was extracted from Col-0 plants treated with Pst DC3000
avrRpt2 or 100 µM naringenin. The leaves were sampled 24 h after treatment.
Accumulation of SA was measured by HPLC-MS/MS. Data represent the
mean SD of at least three biological replicate leaf samples from different
plants. Each biological replicate consists of three leaves from three plants.

FIGURE 5 | ROS is accumulated by naringenin. H2O2 and O2
- accumulation

was visualized in Col-0 leaves after 0.5 µM flg22 or 100 µM naringenin
treatment. The leaves were sampled at 24 h after treatments and stained with
DAB and NBT. Scale bar represents 1 mm. The experiment was repeated
three times with similar results.

MPK3 and MPK6 Are Required for
Naringenin-Induced Resistance
The activation of MAPK cascades is one of the well-known
earliest defense signaling against pathogen attack (Meng and
Zhang, 2013). To monitor whether MAPKs were activated by
naringenin, we measured the MAPK activity by immunoblotting
using dual TEY phosphorylation antibodies, that recognize active
forms of MAPKs (Beckers et al., 2009; Wang et al., 2018). Protein
was extracted from two-week-old plants at 0, 5 and 15 min
following naringenin treatment. As a result, both MPK3 and
MPK6 were activated by naringenin in Col-0 plants. In mpk3 and
mpk6 mutant plants, naringenin could not activate the missing
kinase and confirm the identity of the bands detected with
dual TEY phosphorylation antibodies. The MAPK activity was
strongest at the 15 min time point after treatment (Figure 6A).
Therefore, we concluded that naringenin activates MPK3 and
MPK6 in Arabidopsis.

MAPKs were believed to function downstream of early ROS
burst in plant immunity. ROS are known to be associated with
the activation of defense-related MAPK in Arabidopsis (Meng
and Zhang, 2013). To determine whether ROS also plays a
role in naringenin-induced MPK3 and MPK6 activation, we
examined the activation of MAPK by naringenin after pretreated
with or without glutathione (GSH). GSH is widely used as a
general ROS scavenger to reduce the level of ROS (Liu et al.,
2010; Ramírez et al., 2013). The activation of MPK3 and MPK6
by naringenin was significantly decreased by the pre-treatment
with GSH (Figure 6B), suggests that naringenin activates MPK3
and MPK6 through the accumulation of ROS. To test whether
SA is associated with naringenin-induced MPK3 and MPK6
activation, we measured activation of MAPK by naringenin in
sid2 mutant, SA deficient mutant and NahG transgenic plants,
SA non-accumulation plant. The naringenin-induced activations
of MPK3 and MPK6 were also similarly observed in sid2 and
NahG (Figure 6C), suggests that naringenin SA-independently
activates MPK3 and MPK6.

To test whether MAPKs are involved in naringenin-induced
pathogen resistance, we investigated the effects of naringenin
on bacterial resistance in mpk3 and mpk6 plants. As a result,
naringenin induced pathogen resistance in Col-0 but not in mpk3
and mpk6 (Figure 7). These results indicate that MPK3 and
MPK6 are required for naringenin-induced pathogen resistance.

Naringenin Induces the Monomerization
of NPR1 Through MAPK
MPK6 is known to be involved in the monomerization of
NPR1 in the process of SA-induced leaf senescence (Chai
et al., 2014). Therefore, we hypothesize that a MAPK cascade
is involved in naringenin-induced monomerization of NPR1.
To test this hypothesis, naringenin-induced monomerization of
NPR1 was examined after pre-treatment with PD98059, the
inhibitor of MAP kinase kinases. The monomer form of NPR1
was measured by Western blot using anti-NPR1 antibodies.
Expectedly, naringenin induces the increase of NPR1 monomer
in the absence of PD98059. However, the amount of NPR1
monomer induced by naringenin was significantly decreased in
the presence of PD98059 (Figure 8). These results indicated that
naringenin induces the monomerization of NPR1 through the
activation of MAPK.

SnRK2.8 Is Phosphorylated by MPK3
It was reported that the phosphorylation of NPR1 by SnRK2.8
partially contributes to the monomerization of NPR1 (Lee et al.,
2015). However, the upstream component in pathogen resistance
signaling pathway that regulates the activity of SnRK2.8 was
not identified yet. Here, we suspected that SnRK2.8 is a
target of MAPKs because it contains two conserved potential
phosphorylation sites of MAPKs. To test this possibility, we
performed in vitro kinase assays with His tagged MAPKs and
GST tagged SnRK2.8. As a result, we found that SnRK2.8
was phosphorylated by MPK3 but not by MPK4 and MPK6
(Supplementary Figure 5). This result suggests that SnRK2.8
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FIGURE 6 | Naringenin activates MPK3 and MPK6. (A) Activation of MAPK by naringenin. Two-week-old Col-0, mpk3 and mpk6 plants were treated with 100 µM
naringenin. Samples were collected at 0, 5, and 15 min after treatment. Total protein extracts were prepared from those treated plants. MAPK activation was
detected by immunoblotting with anti-p44/42 antibodies (Cell Signaling Technology, United States). Input was visualized by Rubisco. The experiment was performed
three times with similar results. (B) ROS-dependent activation of MAPK by naringenin. Two-week-old Col-0 plants were pretreated for 1 h with or without 200 µM
GSH and subsequently treated with 100 µM naringenin and then analyzed as detailed in above. (C) SA-independent activation of MAPK by naringenin.
Two-week-old Col-0, NahG and sid2 plants were treated with 100 µM naringenin and then analyzed as detailed in above. The experiment was repeated three times
with similar results.

FIGURE 7 | Pathogen resistance by naringenin is compromised in mpk3 and mpk6 mutants. (A) Disease symptoms of Pst DC3000-treated Col-0, mpk3 and mpk6
mutant in the absence and presence of naringenin. (B) The growth of Pst DC3000 in control or in naringenin-pretreated Col-0, mpk3 and mpk6 mutant plants.
Details as described in Figure 1. Scale bar represents 0.5 cm.
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FIGURE 8 | The monomerization of NPR1 by naringenin requires MAPK
activity. 35S:NPR1-GFP transgenic plants (in npr1-2) were pretreated with or
without PD98059 (50 µM) and then subsequently treated with 200 µM SA or
100 µM naringenin. Plants were collected at 4 h after treatment. Conformation
of NPR1 after naringenin induction was detected by immunoblot under
non-reducing conditions. Total protein (30 µg) was extracted and subjected to
SDS-PAGE with or without DTT in the sample buffer (62.5 mM Tris-HCl pH
6.8, 10% glycerol, 1% LDS, and 0.005% Bromophenol Blue) and analyzed
using immunoblot using polyclonal anti-NPR1 antibodies. Both oligomeric (O)
and monomeric (M) forms of NPR1-GFP were detected. The experiment was
repeated three times with similar results.

may be involved in the monomerization of NPR1 by naringenin-
activated MPKs.

DISCUSSION

Naringenin Is a Flavonoid That Induces
Pathogen Resistance
As a flavonoid, naringenin is well known to have various
biological functions such as UV protectants, ROS scavengers,
anti-inflammatory agents and anti-cancer agents like other
flavonoids (Brunetti et al., 2013; Venkateswara Rao et al.,
2017; Henry-Kirk et al., 2018). Previously, flavonoids including
naringenin are accumulated after infection with biotrophic
pathogen Plasmodiophora brassicae, Pseudomonas siringae pv.
Pisi and X. campestris pv. Malvacearum (Beckman, 2000;
Kangatharalingam et al., 2002; Päsold et al., 2010; Makarova
et al., 2016). Furthermore, we found that naringenin induces
pathogen resistance to Pst DC3000 (Figures 1A,B), suggesting
that accumulated naringenin by pathogen leads to pathogen
resistance (Jia et al., 2010; Yang et al., 2016). However, the
molecular mechanism of how naringenin induces pathogen
resistance is unknown. In this study, we also found that
H2O2 level and PRs transcripts were increased by treatment
with naringenin (Figures 1C,D, 5). Similarly, SA, azelaic
acid, pipecolic acid, thiamine and riboflavin confer pathogen
resistance through ROS accumulation and increased expression
of PR genes (Ahn et al., 2005; Jung et al., 2009; Zhang et al., 2009;

FIGURE 9 | Working model explaining how naringenin induces pathogen
resistance. Naringenin activates the production of ROS in plants. In
SA-dependent pathway, naringenin activates the monomerization and nuclear
translocation of NPR1 by the accumulation of SA. In SA-independent
pathway, naringenin activates MPKs, and the activated MPKs possibly
activate SnRK2.8 that promotes the monomerization and nuclear
translocation of NPR1.

Bernsdorff et al., 2016). These results suggest that naringenin
induces plant pathogen resistance by similar mechanisms with
other resistance inducing molecules.

Naringenin May Act as a Prooxidant in
Pathogen Resistance
Flavonoids are well known as potent antioxidants and ROS
scavengers in vitro (Rice-Evans, 2001). In addition, flavonoids
are reported to decrease ROS levels by inhibiting prooxidant
enzymes, cyclooxygenase and lipoxygenase (Glazebrook et al.,
1996). However, flavonoids and carotenoids can also act as a
prooxidant at physiological pH just likely that polyphenol, an
antioxidant, can act as a prooxidant in the presence of metal
ions (Guardado et al., 2012; Eghbaliferiz and Iranshahi, 2016). In
this study, we showed that naringenin induces the accumulation
of ROS (Figure 5), which suggests that naringenin can act as a
prooxidant. Consistently, naringenin has prooxidant activity in
human lymphocytes (Yen et al., 2003), and naringenin does not
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show antioxidant activity even naringenin is highly accumulated
in roots (Päsold et al., 2010). In addition, quercetin, a different
flavonoid, also induces H2O2 to result in pathogen resistance (Jia
et al., 2010). Although quercetin is proposed to induce oxidative
stress indirectly through inhibition of nitric oxide dioxygenase
in tumor cells (Scheit and Bauer, 2015), it is still unknown
how flavonoids act as prooxidants. Further studies are required
for the detailed molecular mechanisms by which flavonoids
increase ROS production.

MPK3 and MPK6 Are Required for the
Naringenin-Induced Pathogen
Resistance
MPK3 and MPK6 are the representative positive regulator
of immune responses including defense gene activation, ROS
generation, hypersensitive response, biosynthesis of camalexin
and biosynthesis of ethylene (Meng and Zhang, 2013; Zhang
et al., 2018). In this study, we showed that naringenin increased
not only the activity of MPK3 and MPK6 (Figure 6) but also the
monomerization of NPR1 through activated MAPK (Figure 8).
In contrast, the induction of pathogen resistance by naringenin
was not shown in mpk3 and mpk6 (Figure 7). This observation is
similar to a previous report that BTH, riboflavin and pipecolic
acid induce pathogen resistance by increasing the activity of
MPK3 and MPK6 (Nie and Xu, 2016; Wang et al., 2018). These
results suggest that naringenin also induces pathogen resistance
through the activation of MAPK pathways. Since the levels of
ROS and SA were increased by treatment with naringenin in
plants, we speculate that naringenin activates MAPK by the
increase of ROS and SA.

Naringenin Induces Pathogen
Resistance by the Activation of NPR1
Plant pathogen resistance is obtained by the rapid induction
of immune responses by SA (Ding and Ding, 2020). SA-
mediated immune responses are reported to be activated by the
coordination of different NPR proteins (Backer et al., 2019). It
has been reported that pathogen resistance inducing molecules
confer pathogen resistance in NPR1 dependent manner (Nie
and Xu, 2016; Yang et al., 2016). In this study, we showed
that naringenin not only increased SA level by induction of
SA biosynthetic gene (Figures 3, 4) but also induced nuclear
translocation of NPR1 (Figure 2). In addition, naringenin-
induced pathogen resistance was abolished in npr1-1 mutant
(Supplementary Figure 2). These results suggest that naringenin
induces pathogen resistance through the activation of NPR1. The
molecular mechanism to explain how naringenin activates NPR1
should be elucidated in further study.

Based on this study, we proposed the working model
explaining how naringenin induces pathogen resistance
(Figure 9). In this model, both the SA-dependent and the SA-
independent pathways in the activation of NPR1 by naringenin
were suggested. In the SA-dependent pathway, naringenin
activates the nuclear translocation and monomerization of
NPR1 by the accumulation of SA that induces a thioredoxin-
mediated reduction of NPR1. In the SA-independent pathway,
naringenin activates MPKs, and then the activated MPKs
possibly activate SnRK2.8 which promotes the phosphorylation
and monomerization of NPR1 (Chai et al., 2014; Lee et al.,
2015). In this study, we have shown that MPK3 phosphorylates
SnRK2.8 (Supplementary Figure 5). However, we have detected
the phosphorylation of NPR1 by neither unphosphorylated
nor phosphorylated SnRK2.8 by MPKs at our experimental
condition. The further study identifying how the SA-independent
pathway contributes to naringenin-mediated activation of NPR1
should be done in the future.
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