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Identification of peanut cultivars for distinct phenotypic or genotypic traits whether using
visual characterization or laboratory analysis requires substantial expertise, time, and
resources. A less subjective and more precise method is needed for identification
of peanut germplasm throughout the value chain. In this proof-of-principle study, the
accuracy of Raman spectroscopy (RS), a non-invasive, non-destructive technique, in
peanut phenotyping and identification is explored. We show that RS can be used
for highly accurate peanut phenotyping via surface scans of peanut leaves and the
resulting chemometric analysis: On average 94% accuracy in identification of peanut
cultivars and breeding lines was achieved. Our results also suggest that RS can be
used for highly accurate determination of nematode resistance and susceptibility of
those breeding lines and cultivars. Specifically, nematode-resistant peanut cultivars can
be identified with 92% accuracy, whereas susceptible breeding lines were identified with
81% accuracy. Finally, RS revealed substantial differences in biochemical composition
between resistant and susceptible peanut cultivars. We found that resistant cultivars
exhibit substantially higher carotenoid content compared to the susceptible breeding
lines. The results of this study show that RS can be used for quick, accurate, and
non-invasive identification of genotype, nematode resistance, and nutrient content.
Armed with this knowledge, the peanut industry can utilize Raman spectroscopy for
expedited breeding to increase yields, nutrition, and maintaining purity levels of cultivars
following release.

Keywords: peanut varieties, Raman spectroscopy, phenotyping, identification, genotyping, nematode resistance

HIGHLIGHTS

- We show that Raman spectroscopy can be used for highly accurate identification of nematode
resistance and susceptibility in peanuts. This allows for the use of Raman in digital selection
of plant species.
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INTRODUCTION

The population of the world is increasing at an alarming
rate. As population increases, the production of food must
increase in order to match demand. It is predicted that
we will need to produce 70% more food by 2050 to
sustain our population (Food and Agriculture Organization
of the United Nations, 2009). As population increases, the
expansion of agricultural territory is limited due to urbanization,
cost of production, and other contributing factors. The
continued loss of agricultural lands has led agricultural
leaders to focus on increasing yields on existing croplands
through the innovation of digital farming. Digital farming,
also referred to as precision agriculture, seeks to maximize
crop yield by maximizing plant production and minimizing
the environmental impact with the use of technologies such as
Raman spectroscopy (Farber et al., 2019a, 2020b; Sanchez et al.,
2019a,b, 2020b).

Although many practices in modern agriculture have reached
a significant degree of mechanization, genotyping and taxonomic
identification for the purpose of plant breeding is not one
of them. Identity preservation and seed purity is a growing
problem as more and more value-added traits are incorporated
into new varieties. Similar issues are faced by plant breeders as
well as seedsmen and processors. Historically, plant descriptors
and a “trained eye” have been used to identify cultivars and
maintain seed purity. More recently, genotyping techniques,
whether it be marker-assisted selection (MAS) (Chu et al.,
2011; Burow et al., 2013, 2019) to select for specific traits of
interest, or genomic selection (GS) (Hayes et al., 2009; Heffner
et al., 2009; Ravelombola et al., 2019, 2020), which can be
used to identify elite breeding materials, have been used to
develop cultivars with beneficial traits and move them into
production. A trained eye requires an expert with substantial
taxonomic knowledge and many years of experience. Even
with an expert as described, visual inspection is subjective
and often difficult even for those with bountiful experience.
Genotyping, whether by sequencing or other methods, is more
accurate than visual inspection. However, genotyping has its
drawbacks. In the early stages of cultivar development, seed
can be very limited in a crop such as peanut. In these
early generations, everything must be handled by hand which
is time-consuming and labor-intensive but makes genotyping
feasible. However, as one move into larger and larger lots,
genotyping becomes impractical on a large scale where
profit margins are small. Anything that can lessen these
burdens during the development process would represent a
significant improvement.

Raman spectroscopy (RS) is a label-free, non-invasive,
and non-destructive analytical technique that can be used to
examine the chemical composition of samples (Farber et al.,
2019a, 2020c). The Kurouski group recently demonstrated
that RS can be used to detect both biotic and abiotic
stress on plants. Using a hand-held Raman spectrometer,
the Kurouski group showed one can diagnose fungal disease
in corn, wheat, or sorghum with great accuracy (Egging
et al., 2018; Farber and Kurouski, 2018). Another study

done by the Kurouski lab showed that RS could be used
to identify potato variety, origin of cultivation, and starch
content (Morey et al., 2020). These studies demonstrate RS’s
usefulness in detecting changes in plants and the potential to
revolutionize agriculture.

Peanut (Arachis hypogaea L.) is an allotetraploid (2n = 4x = 40)
that has been cultivated for thousands of years (Singh and
Simpson, 1994). Today, peanut is grown throughout the
temperate and tropical parts of the world (Kochert et al.,
1991; Krapovickas and Gregory, 1994, 2007). In the U.S.,
approximately 556,000 ha of peanuts were harvested in 2018,
with an average yield of 4,484 kg/ha (USDA-NASS, 2019).
The estimated farm value of U.S. production in 2019 was
approximately $1.2 billion, resulting in peanut being the third
most valuable cash crop based on net revenue (USDA-NASS,
2019). Peanuts are used in many popular food products in
the U.S. which results in Americans consuming, on average,
more than 6 pounds of peanut products a year and spending
over 2 billion dollars on peanut products at the retail level
(NPB, 2020).

A major pest associated with peanut production is the
root-knot nematode [Meloidogyne arenaria (Neal)]. Root-knot
nematodes are found throughout the peanut production regions
in the U.S. from Georgia to Texas. The peanut root-knot
nematode can cause significant yield losses (Tirumalaraja et al.,
2011). It has been estimated that yield losses of 3–15%
are common (Dong et al., 2007) and heavily infested fields
can see losses of 75% or more (Rich and Tillman, 2009).
Peanut suffers from a narrow genetic base (Kochert et al.,
1991) and no longer has access to many genes contained in
related wild relatives. However, many genes associated with
both biotic and abiotic stressors have been identified (Cason
et al., 2020), and gene introgression has successfully been
used to move alleles into cultivated peanut and is still one
of the best options available to peanut breeders (Cason et al.,
2020). An excellent example of this is the resistance to root
knot transferred from Arachis cardenasii (Burow et al., 1996;
Simpson et al., 2003). The resulting introgression resulted
in almost total immunity to root-knot nematode (Simpson
and Starr, 2001; Simpson et al., 2003, 2013). While not fully
understood, it is believed the resistance is associated with
a failure by juveniles to establish a feeding site that causes
root-knot nematode resistance (Timper et al., 2000). This has
resulted in the release of the resistant cultivars: COAN (Simpson
and Starr, 2001), NemaTAM (Simpson et al., 2003), Webb
(Simpson et al., 2013), Georgia 14N (Branch and Brenneman,
2014), Tifquard (Holbrook et al., 2008), and TifNV High O/L
(Holbrook et al., 2017).

In this proof-of-principle study, we demonstrate that RS
can be used for highly accurate identification of peanut
genotypes based on spectroscopic analysis of their leaves.
We also show that RS can further be used to screen
these peanut leaves for the identification of specific traits
in germplasm, such as nematode resistance, based on the
direct analysis of biochemical profile of the leaves which
identify molecular species that are unique to nematode-
resistant germplasm.
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TABLE 1 | A complete list of varieties and breeding lines (genotypes) in the 2020 Advance Line Trial from Erath Co., Texas.

Entry Genotype Entry Genotype Entry Genotype Entry Genotype

1 Tx121082 6 Tx200606-2-11 11 TP200610-1-14 16 TP200610-4-8

2 Tx144342 7 TxL100212-03-03 12 TxL100212-05-09 17 Webb

3 Tx144370 8 TP200606-3-3 13 TxL100212-07-07 18 Tamrun OL11

4 Tx144485 9 TP200609-1-5 14 TP200610-2-9 19 Georgia 09B

5 TxL100212-02-05 10 TxL100225-03-13 15 TP200610-3-7 20 Georgia 14N
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FIGURE 1 | Raman spectra collected from leaves of five representatives of peanut genotypes. In total, 19 peanut genotypes were analyzed.

MATERIALS AND METHODS

Peanut Germplasm
Approximately 30 leaves from 20 different genotypes of peanut
(see Table 1) were provided by the Texas A&M AgriLife Research
and Extension Center at Stephenville. The plants were grown
as part of the Texas A&M Peanut Breeding Programs Statewide
Advanced Line Breeding Yield Trial in Erath Co., Texas. The
trial was planted on May 7, 2020 and managed according
to recommended production practices. The trial was designed
with a randomized complete block design (RCBD) containing
16 breeding lines and 4 commercially available checks. Each
experimental unit was 3 × 3 m in two row plots replicated three
times. For this project, plots were sampled on September 17,
2020. Individual leaves were sampled randomly from the lateral
branches within each plot and bulked by plot. These peanut leaves
were scanned approximately twice per leaf depending on the
size of the leaf.

Raman Spectroscopy
Acquisition
A portable, hand-held Agilent Resolve spectrometer with an
830 nm laser equipped was used to collect all spectra. The
experimental parameters used for the collected spectra were: 1 s
acquisition time, 495 mW power, and surface scan mode. Leaves
were gently pressed against the nose cone for proper focus during

scans. Not all leaves that were provided resulted in usable scans,
so in some cases samples were bulked to allow for a number
of scans that was consistent. In total, we collected over 1,200
spectra from leaves of both nematode-resistant peanut plants and
non-nematode-resistant peanut plants.

Processing
Spectra were automatically baseline-corrected and background
subtracted by the onboard software of the instrument. Data
from the instrument were exported as comma separated value
(CSV) files using provided software from the company. These
CSV’s were imported into MATLAB for preprocessing. Statistical
analysis of spectra was than conducted using PLS_Toolbox, an
add-on of MATLAB.

Statistical Analysis
Partial Least Squares Discriminant Analysis
Spectra were imported into MATLAB for multivariate statistical
analysis. Partial least squares discriminant analysis (PLS-DA)
was used to build classification models. PLS-DA, an extension
of ordinary PLS, uses dummy Y-variables to indicate discrete
classes/categories of data which the model then proceeds to
predict (Eriksson et al., 2013). PLS-DA is a type of supervised
learning model and the user must provide categories during
training for each data point. After the model finishes training, it
then cross-validates. This means part of the dataset is excluded
while the rest is used to train the model. The model tries to predict
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TABLE 2 | Vibrational bands and their assignments for spectra collected
from peanut leaves.

Band Vibrational mode Assignment

513 ν(C-O-C) in plane, symmetric Cellulose, lignin (Edwards et al.,
1997)

747 γ(C–O-H) of COOH Pectin (Synytsya et al., 2003)

854 ν(C-O-C) in plane, symmetric Cellulose, lignin (Edwards et al.,
1997)

915 ν(C-O-C) in plane, symmetric Cellulose, lignin (Edwards et al.,
1997)

1000 ν3 (C-CH3 stretching) and
phenylalanine

Carotenoids (Tschirner et al.,
2009; Kurouski et al., 2015)

1047 ν(C-O) + ν(C-C) + δ(C-O-H) Cellulose (Almeida et al., 2010)

1115 COH bending Carotenoids (Adar, 2017; Devitt
et al., 2018)

1155 Asym ν(C-C) ring breathing Carotenoids (Adar, 2017; Devitt
et al., 2018)

1184 ν(C-O-H) next to aromatic
ring + σ(CH)

Carotenoids (Adar, 2017; Devitt
et al., 2018)

1218 δ(C-C-H) Carotenoids (Adar, 2017; Devitt
et al., 2018)

1288 δ(C-C-H) Aliphatic (Yu et al., 2007)

1326 δCH2 bending vibration Cellulose, lignin (Edwards et al.,
1997)

1382 δCH2 bending vibration Aliphatic (Yu et al., 2007)

1440–1555 δ(CH2) + δ(CH3) Aliphatic (Yu et al., 2007)

1488 δ(CH2) + δ(CH3) Aliphatic (Yu et al., 2007)

1525 -C = C- (in plane) Carotenoids (Adar, 2017; Devitt
et al., 2018)

1601–1630 ν(C-C) aromatic ring + σ(CH) Phenylpropanoids (Agarwal,
2006; Kang et al., 2016)

the class membership of the excluded data points. This process
repeats until all data points have been included. In this study,
cross-validation results are reported and are suggestive of the
model’s ability to classify unseen data. Differentiation of peanut
varieties using leaf spectra were conducted in the MATLAB add-
on PLS_Toolbox using PLS-DA. The selected preprocessing used
for modeling included: SNV, 1st derivative, smoothing, PQN,
normalize, and mean center.

RESULTS AND DISCUSSION

Differentiation of Genotype
Raman spectra were collected from 19 different genotypes of
peanuts (Figure 1). The spectra exhibited similar profiles with
vibrational bands at 480 and 917 cm−1, which can be assigned to
carbohydrates: 520, 1,048, and 1,115 cm−1 to cellulose; 747 and
853 cm−1 to pectin; 1,000, 1,155, and 1,526 cm−1 to carotenoids;
1,185, 1,606, and 1,632 cm−1 to phenylpropanoids (including
lignin); 1,660 cm−1 to proteins; and 1,682 cm−1 to carboxylic
acids (Table 2). We also observed vibrational bands at 964, 1,286,
1,327, 1,387, and 1,443 cm−1, which can be assigned to aliphatic
groups (CH2/CH3 vibrations) (Farber et al., 2020c).

We used partial least squares discriminant analysis (PLS-DA)
to determine the accuracy of RS in quantitative identification

of peanut genotypes based on the spectroscopic signatures
collected from their leaflets. As a proof-of-concept study, a
subset of six genotypes was chosen that did not contain the
same exact maternal and paternal parentage because many of
the provided genotypes were closely related sister lines. For
example, Tx144370, Tx144485, and Tx144342 are all progeny
from the same parents. Because of this, only Tx144342 was
selected for modeling since it had the most scans of the three
breeding lines and could be more easily used to refine our
model. The other five genotypes selected for modeling were
TxL100212-02-05, Georgia 09B, Georgia 14N, TP200610-4-8,
and Webb. These six genotypes provided the most variety
without having breeding lines that were directly related. The
results of the model created using these six genotypes indicated
that RS averaged about 94% accuracy and ranged from 62%
accuracy in some accessions to 100% accuracy in others (see
Table 3).

It was interpreted from the results that the accuracy
was correlated with the number of scans suggesting that a
relatively higher number of scans such as ∼50 per sample
ensures close to 100% accuracy in genotype identification.
Expanding upon these results, we created another PLS-DA
model except this time only using genotypes with a higher
number of scans. The three genotypes chosen were TxL100212-
02-05, Georgia 14N, and TP200610-4-8. The results of the
model created using these three genotypes and 50 scans
per accession sample indicated that RS averaged close to
100% accuracy (99.2%) in genotype identification from peanut
leaf scans (see Table 4). These results show that RS can
identify peanut plant genotypes from leaf surface scans with
very high accuracy.

Nematode-Resistant vs.
Non-nematode-Resistant Genotypes
Of the genotypes provided, both Webb and Georgia 14N
were nematode-resistant. The genotypes that are not nematode-
resistant were: Tamrun OL11, Georgia 09B, TxL100212-07-07,
TxL100212-02-05, TxL100212-05-09, Tx121082, TxL100212-03-
13, and TP200606-2-11. These two groups, even though very
similar in average spectroscopic signatures (Figure 2), were
found to be identified with about 83% (see Table 5) accuracy
with PLS-DA modeling. These results show that RS can identify
valuable traits such as nematode resistance from leaf surface scans
with high accuracy.

One may wonder about the robustness and reliability of the
discussed spectroscopic approach. To answer this question, we
excluded nematode-susceptible genotypes from the model and
then used that model to verify the accuracy of the prediction
of the “left over” genotype (Tables 6, 7). For instance, we built
the model using susceptible (Georgia 09B, TxL100212-07-07,
TxL100212-02-05, TxL100212-05-09, Tx121082, TxL100212-03-
13, and TP200606-2-11) and resistant (Webb and Georgia 14N)
peanut varieties with the left over Tarun OL11 variety (Table 6).
Next, we used this model to predict the accuracy of identification
of Tarun OL11 (Table 7). Our results show that Tamrun OL11
was predicted as susceptible with 84.8% accuracy.
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TABLE 3 | PLS-DA cross-validation confusion matrix of Raman spectra collected from leaves of six different genotypes of peanuts. Results were determined using 50
scans per member sample.

Predicted genotype

Genotype sampled Number of spectra collected per sample % correct Tx144342 TxL100212-02-05 Georgia 09B Georgia 14N TP200610-4-8 Webb

Tx144342 14 64% 9 0 0 0 0 0

TxL100212-02-05 43 100% 0 43 0 0 0 0

Georgia 09B 38 100% 5 0 38 0 0 0

Georgia 14N 38 97% 0 0 0 37 1 4

TP200610-4-8 49 98% 0 0 0 1 48 1

Webb 13 62% 0 0 0 0 0 8

Total 195 94%

TABLE 4 | PLS-DA cross-validation confusion matrix of Raman spectra collected from leaves of three different genotypes of peanuts.

Predicted genotype

Genotype tested Number of spectra collected per sample % correct TxL100212-02-05 Georgia 14N TP200610-4-8

TxL100212-02-05 43 100% 43 0 0

Georgia 14N 38 100% 0 38 1

TP200610-4-8 49 98% 0 0 48

Total 130 99%

Results were obtained using 50 scans per sample.
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FIGURE 2 | Averaged Raman spectra collected from the leaves of nematode-resistant (referred to as pure nematode-resistant) and susceptible (referred to as
non-nematode-resistant) peanut plants.

The same validation approach, however, cannot be utilized
to demonstrate the robustness of the prediction of nematode-
resistant varieties. In the current work, we analyzed only
two available-to-date nematode-resistant varieties. If one of
them was left out of the model we built and then used
for external validation of such a model, the results could
have dual interpretation. These results can (i) demonstrate
robustness of the spectroscopic approach for identification of
nematode resistance and (ii) demonstrate that RS can be used
for identification of plant varieties. We previously demonstrated
that RS is highly sensitive to plant biochemistry that is drastically

different in different peanut varieties (Farber et al., 2020c). This
allowed for demonstration of over 80% accurate prediction of
such varieties. To overcome this limitation and to demonstrate
robustness of the described methodology, we partitioned our data
as 60:40; 70:30, and 80:20, where 60, 70, and 80 of the initial data
were used to build the model and remaining 40, 30, and 20%
were used for external validation (Tables 8–10). All models used
the following data prepressing method: SNV, 1st derivative (Sav.
Gol), smoothing (Sav. Gol), PQN, normalize, and mean center.

Our results show that similar accuracy of prediction of both
susceptible and resistant varieties was obtained upon three
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TABLE 5 | PLS-DA cross-validation confusion matrix of Raman spectra collected
from leaves of nematode-resistant and susceptible peanut varieties.

Predicted genotype

Genotype tested Number of
spectra

collected per
sample

Correct Nematode
resistant

Nematode
susceptible

Nematode resistant 51 92% 47 60

Nematode
susceptible

326 81% 4 266

Total 377 83%

TABLE 6 | PLS-DA model that is based on susceptible (Georgia 09B,
TxL100212-07-07, TxL100212-02-05, TxL100212-05-09, Tx121082,
TxL100212-03-13, and TP200606-2-11), and resistant (Webb and Georgia 14N)
peanut varieties.

Predicted genotype

Genotype tested Number of
spectra

collected per
sample

Correct Nematode
resistant

Nematode
susceptible

Nematode resistant 51 94.1% 46 48

Nematode susceptible 265 84.5% 5 217

Total 316 89.3%

TABLE 7 | Prediction results of Tamrun OL11 using PLS-DA model from Table 6.

Predicted genotype

Genotype tested Number of
spectra

collected per
sample

Correct Nematode
resistant

Nematode
susceptible

Nematode resistant 0 0 5 0

Nematode susceptible 33 84.8% 28 0

TABLE 8 | 60:40 prediction and validation model.

Calibration

Predicted as
susceptible

Predicted as
resistant

Total number Prediction
accuracy,%

Susceptible 109 20 129 84.5

Resistant 3 20 23 87.0

Validation

Susceptible 24 145 169 85.8

Resistant 6 22 28 78.6

various data partitioning approaches. Nevertheless, it should be
noted that the reported results of statistical analysis will require
at least three additional stages of validation and verification: (1) a
larger amount of data for external validation that has to include
blind and double-blind spectral assessment strategies; (2) a larger
number of nematode-resistant varieties; and (3) elucidation of

TABLE 9 | 70:30 prediction and validation model.

Calibration

Predicted as
susceptible

Predicted as
resistant

Total number Prediction
accuracy,%

Susceptible 177 35 212 82.1

Resistant 1 32 33 84.8

Validation

Susceptible 72 14 86 83.7

Resistant 3 15 18 83.3

TABLE 10 | 80:20 prediction and validation model.

Calibration

Predicted as
susceptible

Predicted as
resistant

Total number Prediction
accuracy,%

Susceptible 201 37 238 84.5

Resistant 5 37 42 88.1

Validation

Susceptible 54 6 60 90.0

Resistant 2 7 9 77.8

contribution of environmental factors, such as soil structure,
fertilizers, irrigation, and weather conditions.

Critical analysis of chemometric models recently reported
by Xu and Goodacre showed that (i) the size of the dataset
and (ii) choice of the data splitting methods were critical for
model performance (Xu and Goodacre, 2018). Xu and Goodacre
determined that datasets with less than 30 spectra were unlikely
to be suitable for the development of robust and reliable methods.
The researchers also found that model performance was also very
sensitive to the choice of a data splitting method used to partition
the training data into training and validation sets. The reported
results of the current study are based on 51 spectra collected for
resistant and 326 spectra collected from susceptible varieties. We
envision that although different spectral partitioning strategies
provided similar outcomes, collection of 300–1,000 spectra from
the resistant varieties will be required in the future to enable
external validation of the reported models. We expect that such
a large dataset will be sufficient to fully validate the robustness
of the reported proof-of-principle spectroscopic approach in the
current study. We also anticipate that development of novel
nematode-resistant varieties, which is currently in progress in
our laboratory, will allow for additional generalization of the
reported spectroscopic approach. Finally, we expect to reproduce
the reported studies in several different geographic locations
in the U.S. to investigate the extent to which environmental
factors alter spectroscopic signatures of nematode-resistant and
susceptible peanut varieties.

Nutrient Content Analysis
From analyzing Figure 2, the vibrational bands at 1,155–
1,218 cm−1 that are associated with carotenoids had a
higher intensity in nematode-resistant varieties than nematode-
susceptible varieties (Payne and Kurouski, 2011). Likewise,
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the vibrational band at 1,525 cm−1 that is also associated
with carotenoids was also more intense in nematode-resistant
varieties. However, the vibrational band at 1,606 cm−1, associated
with phenylpropanoids, was much more intense in nematode-
susceptible varieties (Payne and Kurouski, 2011; Farber et al.,
2019b, 2020a; Sanchez et al., 2020a). These data suggest that
nematode-resistant peanut plants are higher in carotenoid
content than nematode-susceptible peanut plants.

It also should be noted that RS analysis costs are much lower
than traditional genomic analysis because there is no additional
cost incurred on a per sample basis for the phenotyping of
plants. In addition, the hand-held nature of Raman spectrometers
enables their use for on-site analysis of plants which further
lowers overall costs and increases efficiency. Most currently
available hand-held RS instruments have incorporated computers
that allow for chemometric analysis of spectra immediately upon
acquisition. Thus, integration of the spectroscopic libraries of
germplasm into the hand-held spectrometer units eliminate the
need to transfer the collected spectra for later analyses at a
different location. As trait libraries are expanded and developed,
researchers, seed companies, consultants, and even growers can
obtain results almost instantaneously which will allow them to
make almost real-time decisions in the field from the small screen
of the RS spectrometers.

CONCLUSION

Our results demonstrate that RS can be used for highly accurate
identification of peanut genotypes. We showed that with a proper
number of scans, PLS-DA can be used to build a model that
can identify specific peanut genotypes by leaf scans with close
to 100% accuracy. Additionally, we demonstrated that RS can be
potentially used for indication of valued traits such as nematode

resistance by leaf scans with approximately 83% accuracy. The
ability to distinguish cultivars will allow peanut breeders, shellers,
and processors to maintain high purity levels at all levels of
the value chain. Finally, we showed how analysis of leaf spectra
may give insight into peanut plant biochemistry which could be
used as a possible direction to further the resistance mechanism
that is present in nematode-resistant germplasm. In addition, the
fast, portable nature of RS allows for researchers, consultants,
and growers to begin to implement the use of RS for digital
farming/precision agriculture. With tools like RS at their disposal,
they can better selectively breed and manage the valued traits, and
maximize production.
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