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The aerial surfaces of plants are covered by a protective barrier formed by the cutin 
polyester and waxes, collectively referred to as the cuticle. Plant cuticles prevent the loss 
of water, regulate transpiration, and facilitate the transport of gases and solutes. As the 
cuticle covers the outermost epidermal cell layer, it also acts as the first line of defense 
against environmental cues and biotic stresses triggered by a large array of pathogens 
and pests, such as fungi, bacteria, and insects. Numerous studies highlight the cuticle 
interface as the site of complex molecular interactions between plants and pathogens. 
Here, we outline the multidimensional roles of cuticle-derived components, namely, 
epicuticular waxes and cutin monomers, during plant interactions with pathogenic fungi. 
We describe how certain wax components affect various pre-penetration and infection 
processes of fungi with different lifestyles, and then shift our focus to the roles played by 
the cutin monomers that are released from the cuticle owing to the activity of fungal 
cutinases during the early stages of infection. We discuss how cutin monomers can 
activate fungal cutinases and initiate the formation of infection organs, the significant 
impacts of cuticle defects on the nature of plant–fungal interactions, along with the possible 
mechanisms raised thus far in the debate on how host plants perceive cutin monomers 
and/or cuticle defects to elicit defense responses.

Keywords: plant cuticle, pathogenic fungi, defense response, epicuticular wax, plant-pathogen interactions

INTRODUCTION

The aerial surfaces of plants are covered by a lipophilic protective shield called the cuticle. 
The cuticle acts as a diffusion barrier and, therefore, influences the diffusion of an array of 
molecules such as water, gases, and solutes (Isaacson et  al., 2009; Chen et  al., 2011). Yet, 
apart from enabling plants to survive in dry environments, the cuticle represents the first line 
of defense against biotic stresses triggered by a variety of pathogens and pests, including fungi, 
bacteria, and insects. Thus, the cuticle acts as the interface where the complex molecular 
interactions occur between plant surfaces and pathogens. Not surprisingly, many attributes of 
the cuticle, for example, its architecture, thickness, and biochemistry were associated with 
altered resistance or susceptibility to pathogens (Manandhar and Hartman, 1995; Gabler et  al., 
2003; Gomes et  al., 2012; Martin and Rose, 2014).
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Plant cuticles are made of lipophilic compounds that are 
deposited onto the outer cell walls of the epidermis layer 
(Figure 1). These include the solvent-extractable cuticular waxes 
and cutin, cuticle’s main component, which cannot be extracted 
due to its polymeric nature. Cuticular waxes are typically 
deposited within (intracuticular) or on top (epicuticular) of 
the cutin matrix and are composed of a mixture of C20 to 
C40 very-long-chain-fatty-acids (VLCFAs), which are further 
modified to form corresponding alkanes, aldehydes, ketones, 
primary and secondary alcohols, and esters (Samuels et  al., 
2008; Buschhaus and Jetter, 2011). The polyester cutin is 
composed of C16 and C18 fatty acids modified with functional 
groups, such as terminal and mid-chain hydroxy, epoxy, and 
carboxy groups, which are cross-linked by ester bonds (Cohen 
et al., 2019; Philippe et al., 2020). Studies show that the structural 
and chemical nature of the cuticle varies greatly between plant 
species, genotypes, organs, and developmental stages (Jeffree, 
2006; Domínguez et al., 2011; Yeats and Rose, 2013; Fernández 
et  al., 2016; Jetter and Riederer, 2016).

The development of the cuticle facilitated the terrestrialization 
of land plants approximately 450 million years ago (Cohen et al., 
2017). As most primary nutritional source of carbon for fungal 
species is living or dead plant tissue, it is hypothesized that the 
early colonizing plants paved the way to the foundation and 
divergence of the first fungal ancestries (Lutzoni et  al., 2018). 
Indeed, the main concept opines that plants and fungi coevolved 
400–600 million years ago (Heckman et  al., 2001), and that 
during this period, these two kingdoms developed complex 
relationships. These include symbiotic interactions where both 
the host plant and the fungus benefit from their mutualistic 
relationship; saprotrophy, where the fungus obtains nourishment 
from dead or decaying plant tissues; and parasitism, practiced 
by most pathogenic fungi, which need to penetrate the host 
plant tissue in order to reach the nutritional contents of inner 
cells (Burdon and Thrall, 2009). Plant colonization by fungi 

strongly depends on their lifestyle. Spores of necrotrophic fungal 
species (e.g., Botrytis cinerea) land on the host plant cuticle 
surface, germinate via germ tubes that eventually become the 
primary hyphae that penetrate through the host cuticle (Figure 2A, 
upper panel). Following penetration, hyphae grow below the 
cuticle to some complex secondary hyphae that kills epidermal 
and inner tissue host cells (Figure  2A, bottom panel). At the 
early stages of infection, hemibiotrophic fungal (e.g., Magnaporthe 
oryzae) spores germinate on the cuticle surface and develop a 
specialized infection structure called appressorium, a flattened 
organ that pressures the host plant surface eventually penetrating 
it via a penetration peg. This stage is considered biotrophic as 
the bulged hyphae that colonize the infected cells do not kill it 
(Figure 2B, upper panel). However, at later infection stages, these 
hyphae adopt a necrotrophic lifestyle eventually killing epidermal 
and inner tissue host cells (Figure 2B, bottom panel). Biotrophic 
fungi (e.g., Blumeria graminis) germinate on the cuticle surface 
and typically develop an appressorium. This structure penetrates 
through the host plant cuticle and colonizes the intercellular 
space via a feeding structure called haustorium, which invades 
the host cell without piercing the plasma membrane and killing 
it (Figure  2C, upper panel). At the final stages of infection, the 
fungus produces dense mycelia on the cuticle surface and conidia 
(Figure  2C, bottom panel; Schulze-Lefert and Panstruga, 2003; 
Laluk and Mengiste, 2010; Lo-Presti et  al., 2015).

Pathogenic fungi have established a battery of strategies to 
overcome the cuticle barrier. These include the utilization of 
cuticle-derived signals that induce the spore germination on 
the plant surface, the formation of specialized infection organs, 
and penetration of the cuticle. Some fungal species enter through 
stomata or natural gaps, whereas others pierce the surface of 
the cuticle by applying mechanical pressure. Most pathogenic 
fungi, however, secrete a blend of specialized cell wall-degrading 
enzymes toward the plant surface, including pectate lyases, 
cellulases, and cutinases. The latter family of enzymes possesses 
a unique ability to release the ester bond-linked monomers 
that build the cutin polyester (Kubicek et  al., 2014). Cutinase 
activity was shown in various pathogenic fungi to greatly impact 
the process of infection: from the initial stages of spore adhesion 
to the plant surface, through spore germination and the formation 
of specialized infection organs, to the breakdown of the cuticle 
and the colonization of the host plant (Kolattukudy, 1985).

Regardless of the kind of relationship, all the types of 
interaction between the aerial organs of plants and fungi take 
place at the cuticle surface – a hub of plant innate immunity 
and fungal infection responses. In the current review, we  focus 
on the multidimensional roles of plant cuticle-derived 
components during the infection of pathogenic fungi. For 
additional information about the regulation of plant–bacteria 
interactions at the cuticle surface, we  warmly refer readers to 
the excellent reviews of Aragón et  al. (2017) and Ziv et  al. 
(2018). Here, we  first describe rudimentary evidence that 
establishes epicuticular waxes as major determinants of plant–
fungal interactions and that certain wax components can affect 
various pre-penetration and infection processes of fungi with 
different lifestyles. We  then shift our focus to the roles played 
by cutin monomers that are released from the cuticle owing 

FIGURE 1 | A schematic representation of the cellular localization of the 
plant cuticle. Cell wall and plasma membrane are presented.
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to the activity of fungal cutinases during the early stages of 
infection. We  describe how these monomers activate fungal 
cutinases and initiate the formation of infection organs. Finally, 
we  mention key reports that revealed the significant impacts 
of imperfections in cuticle biochemistry and permeability on 
the nature of interactions between pathogenic fungi and host 
plants and discuss possible mechanisms by which host plants 
perceive released cutin monomers to elicit defense responses.

Epicuticular Waxes Are Major Determining 
Factors of Plant–Fungal Interactions
As epicuticular waxes are deposited on top of the outermost 
surface of the cuticle, they are the first to interact with any 
type of pathogen. It is, therefore, expected that changes to 
the patterns of crystallization, composition, and hydrophobicity 
of epicuticular waxes will significantly impact various aspects 
of plant–fungal interactions (Shepherd and Griffiths, 2006; 
Buschhaus and Jetter, 2011; Lewandowska et al., 2020). Extensive 
work on B. graminis has shown that this pathogenic fungus 
exploits components of the plant epicuticular wax to induce 
pre-penetration processes. For instance, silencing 3-ketoacyl-CoA 
synthase 6 (KCS6) and enoyl-CoA reductase (ECR) in wheat 
(Triticum aestivum), both of which are important for VLCFA 
biosynthesis and the elongation reactions required for cuticular 
lipid biosynthesis, attenuates B. graminis spore germination 
(Wang et  al., 2019; Kong et  al., 2020). In line with these 

findings, Feng et  al. (2009) characterized Lip1, a lipase in 
B. graminis that is secreted onto the surface of fungal cell 
walls and possesses the ability to release alkanes and primary 
fatty alcohols from the epicuticular wax of wheat leaves. 
Remarkably, the pretreatment of wheat leaves with Lip1 resulted 
in the removal of surface wax, which, in turn, severely 
compromised conidial adhesion, appressorium formation, and 
secondary hyphal growth of the fungus (Feng et  al., 2009). 
The spores of this fungus also hardly germinated on the barley 
(Hordeum vulgare) emr1 mutant, which is depleted in the leaf 
surface waxes due to a mutation in KCS6 (Weidenbach et  al., 
2014). In the case of Alternaria brassicicola, it was shown that 
the removal of epicuticular waxes from cauliflower (Brassica 
oleracea) leaves affected spore adhesion and fungal penetration 
during the early stages of infection (Berto et  al., 1999). An 
intriguing case that highlights the divergent effects of the wax 
composition on fungal infection is that of Curvularia eragrostidis, 
a cosmopolitan fungal pathogen that infects hosts from several 
botanical families (Ferreira et  al., 2014). It was found that 
epicuticular waxes from its grass host plant, hairy crabgrass 
(Digitaria sanguinalis), significantly induced spore germination 
and germ tube elongation, but had no effect on appressorium 
differentiation. Yet, the epicuticular waxes of tall fescue grass 
(Festuca arundinacea), which represents a nonhost species of 
this fungus, hindered fungal spore germination and appressoria 
formation (Wang et  al., 2008).

A B C

FIGURE 2 | A schematic representation of the host plant and pathogen fundamental structures during early and late stages of plant–fungal interaction. 
(A) Interaction with a necrotrophic fungus (e.g., Botrytis cinerea). Spores land on the host plant cuticle surface and generate a germ tube. These tubes become the 
primary hyphae that penetrate through the cuticle and grow below the cuticle into a complex secondary hyphae structure that kills epidermal and inner tissue host 
cells. (B) Interaction with a hemibiotrophic fungus (e.g., Magnaporthe oryzae). At early stages of infection, spores germinate on the cuticle surface and develop a 
specialized infection structure called appressorium, a flattened organ that pressures the host plant surface eventually penetrating it via a penetration peg. This stage 
is considered biotrophic as the bulged hyphae that colonize the infected cells do not kill it. However, at later infection stages, these hyphae adopt a necrotrophic life 
style. (C) Interaction with a biotrophic fungus (e.g., Blumeria graminis). At early infection stage, spores germinate on the cuticle surface and develop an 
appressorium. After penetration through the host plant cuticle, the fungus colonizes the intercellular space via a feeding structure called haustorium, which invades 
the host cell without piercing the plasma membrane and killing it. At final stages of infection, the fungus produces dense mycelia on the cuticle surface and conidia. 
Upper panels represent early infection stages, whereas bottom panels represent late infection stages.

https://www.frontiersin.org/journals/plant-science
www.frontiersin.org
https://www.frontiersin.org/journals/plant-science#articles


Arya et al. Plant Cuticle Defense Against Fungi

Frontiers in Plant Science | www.frontiersin.org 4 June 2021 | Volume 12 | Article 663165

The aforementioned studies clearly demarcate the importance 
of the signaling roles of epicuticular wax components to the 
initiation of fungal infection processes. Complementing 
investigations sought to isolate the specific wax components 
that initiate these processes. In vitro assays have validated that 
very-long-chain (VLC) aldehydes trigger the spore germination 
and appressorium differentiation of B. graminis (Ringelmann 
et al., 2009; Hansjakob et al., 2010, 2011). Similarly, wax inducer 
1 (WIN1) suppression in wheat negatively affected B. graminis 
germination by interfering with the VLC aldehyde wax 
biosynthesis. Remarkably, coating the leaves of WIN1-silenced 
lines with typical wild-type (WT) epicuticular waxes fully restored 
the spore germination of the fungus (Kong and Chang, 2018). 
More specifically, the C28 aldehyde of wheat was shown to 
endorse the spore germination in Puccinia graminis f. sp. tritici 
(Reisige et  al., 2006). Apart from the wax aldehydes, primary 
alcohols were also shown to play critical roles in the fungal 
infection initiation. Namely, the C24 primary alcohol on the 
surface of avocado (Persea americana) fruit triggers the spore 
germination and appressorium differentiation in Colletotrichum 
gloeosporioides (Podila et  al., 1993). Higher levels of the C30 
primary alcohol in the Arabidopsis cer1 line, which is mutated 
in the ECERIFERUM 1 (CER1) enzyme, were able to suppress 
the growth and reproduction of Golovinomyces orontii (Jenks 
et  al., 1995; Inada and Savory, 2011). Interestingly, the 
overexpression of CER1 in Arabidopsis promoted the VLC alkane 
biosynthesis, resulting in higher susceptibility to the infection 
by Sclerotinia sclerotiorum (Bourdenx et  al., 2011), highlighting 
that the wax alkanes also play significant signaling roles. 
Correspondingly, the transgenic cucumber (Cucumis sativus) 
fruit with lower expression of CsWAX2, a homolog of the 
Arabidopsis WAX2 gene involved in the biosynthesis of VLC 
wax alkanes, resulted in an overall reduction of 50% in the 
wax content of the fruit surface, owing to major reductions in 
C29 and C31 alkanes. Inoculation assays with B. cinerea 
demonstrated that its pathogenicity was dramatically impaired 
only at the fruit surface of this mutant, but not on the fruit 
surfaces of WT and WAX2-overexpression plants (Wang et  al., 
2015). WAX2 was shown to be  allelic to CER3/YORE-YORE 
(YRE)/FACELESS POLLEN1 (FLP1) and has a pleiotropic 
phenotype, including an altered wax composition (Rowland 
et  al., 2007). Finally, polar wax-associated terpenoids on the 
avocado fruit surface were shown to induce appressorium 
formation (Kolattukudy et  al., 1995).

The findings described above emphasize that different epicuticular 
wax components can affect various processes of pathogenic fungal 
infection, yet these effects are seemingly far more complex than 
assumed, as demonstrated by Uppalapati et al. (2012). The forward-
genetics screen using Barrel clover (Medicago truncatula) Tnt1 
retrotransposon insertion lines followed by the authors found 
that the inhibitor of rust germ tube differentiation 1 (irg1) mutant 
failed to promote the pre-infection structural differentiation of 
two rust pathogens, Phakopsora pachyrhizi and Puccinia emaculata, 
on the abaxial leaf surface. The chemical analysis of the epicuticular 
wax composition revealed a >90% reduction in C30 primary alcohols 
and overaccumulation of C29 and C31 alkanes in the leaves of 
the irg1 mutant (Uppalapati et al., 2012). Further analyses validated 

that IRG1 encodes the Cys(2)His(2) zinc transcription factor, 
PALM1, which plays important role in regulating epicuticular 
wax metabolism and transport. Yet, the most intriguing observation 
was that the altered wax composition in leaves of this mutant 
had entirely dissimilar effects on the virulence of pathogenic fungi 
with different lifestyles. As mentioned above, the irg1 mutant 
inhibited the pre-infection structural differentiation of the rust 
fungal species Phakopsora pachyrhizi and Puccinia emaculata, but 
had no effect on the pathogenicity of the necrotrophic fungus 
Phoma medicaginis (Uppalapati et  al., 2012), suggesting that the 
changes in leaf wax composition might be limited to fungal species 
that form pre-infection appressoria structures in response to the 
surface signals, unlike Phoma medicaginis, which directly penetrates 
the cuticle without forming these structures.

Cutin Monomers Released During 
Infection Activate Fungal Cutinases and 
Initiate the Formation of Infection Organs
The cuticle is considered as the major protective barrier that 
fungi should overcome. During the earliest stages of infection, 
fungal cutinases secreted from spores landing on the plant 
cuticle surface release cutin monomers from the cuticle in a 
spatially localized manner (Köller et  al., 1982; Figure  2). Many 
reports on pathogenic fungi with different life styles have 
established the importance of the signaling of these released 
cutin monomers for the continuation and progression of infection, 
as it leads to the elevated cutinase activity at later stages of 
the fungal development essential for the cuticle penetration 
(Woloshuk and Kolattukudy, 1986; Francis et  al., 1996; Gilbert 
et  al., 1996). These include in vitro studies of a vast range of 
pathogenic fungi demonstrating that the cutinase activity 
significantly increases upon the addition of typical cutin monomers 
into their growing media, mainly C16 and C18 n-aliphatic primary 
alcohols and 16-hydroxyhexadecanoic acid. Amongst the 
pathogenic fungi investigated are the hemibiotrophic fungal 
species of Fusarium solani (Purdy and Kolattukudy, 1975; Lin 
and Kolattukudy, 1978; Woloshuk and Kolattukudy, 1986), 
Colletotrichum graminicola (Pascholati et  al., 1993), and 
Colletotrichum gloeosporioides (Wang et  al., 2017), and also the 
necrotrophic fungal species of B. cinerea (van der Vlugt-Bergmans 
et al., 1997), Ascochyta rabiei (Tenhaken et al., 1997), Pyrenopeziza 
brassicae (Davies et al., 2000), S. sclerotiorum (Bashi et al., 2012), 
Venturia inaequalis (Köller et al., 1991), and Monilinia fructicola 
(Lee et  al., 2010). Another set of reports demonstrated that, 
apart from activating fungal cutinases, released cutin monomers 
trigger the formation of spore germ tubes and specialized 
infection organs, such as appressoria. This was demonstrated 
in the biotrophic fungal pathogens Erysiphe graminis f. sp. hordei 
and hemibiotrophic Magnaporthe grisea (Francis et  al., 1996; 
Gilbert et  al., 1996; DeZwaan et  al., 1999; Zhang et  al., 2005).

The Significant Impact of Cuticle 
Imperfections on the Nature of 
Plant–Fungal Interactions
Cutin monomers that are released from the host plant cuticle 
during infection might shape plant–fungal interactions by 
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endorsing several fungal infection strategies. The question of 
how defects in cuticle structure, biochemistry, and permeability 
affect these interactions has puzzled researchers in recent years. 
Sadler et  al. (2016) demonstrated that the physical structure 
and the precise molecular arrangement of wax molecules affect 
cuticular permeability, but not the thickness of wax and cutin 
depositions in the cuticle. In the current section, we  elaborate 
on some of the key reports that inferred the significant impact 
of cuticle defects on various stages of fungal infection, from 
the adhesion of fungal spores to the plant surface, through 
the physical attachment of infection organs, to the capacity 
of the fungus to penetrate into the inner tissue of the host 
plant. These studies highlight how these defects might 
consequently lead to immunity or susceptibility of the host 
plant upon an attack by pathogenic fungi.

In an early study, Sieber et  al. (2000) generated Arabidopsis 
plants with heterologous overexpression of a cell wall-targeted 
fungal cutinase from Fusarium oxysporum. These transgenic 
plants, termed CUTE, displayed a striking full immunity to 
B. cinerea despite dramatic modifications in their cuticle 
ultrastructure and enhanced permeability to solutes and strong 
postgenital organ fusions (Sieber et  al., 2000; Chassot et  al., 
2007). These results paved the way to the notion that the 
cuticle is a key component of plant–fungal interactions, and 
that alterations to its structure and permeability might facilitate 
immunity to invading fungi. Some follow-up studies geared 
toward characterizing the interactions between cuticle-deficient 
mutants and pathogenic fungi further strengthened this notion. 
For example, the Arabidopsis lacs2 mutant, deficient in the 
long-chain acyl-CoA synthetase 2 enzyme that catalyzes the 
synthesis of fatty acyl-CoA intermediates in the cutin pathway 
and unsubstituted fatty acids in wax biosynthesis, had a fivefold 
reduction in the total amount of ꞷ-hydroxylated fatty acids 
and their derivatives as compared to the WT variant. These 
modifications led to a strong resistance of the lacs2 mutant 
plant to the necrotrophic fungi B. cinerea and S. sclerotiorum 
(Schnurr et  al., 2004; Bessire et  al., 2007). In addition, the 
70% reduction in the cutin content of the cyp86a2/att1 mutant, 
which is deficient in the CYP86A2 P450-dependent 
monooxygenase that hydroxylates fatty acids, led to enhanced 
resistance to B. cinerea (Xiao et  al., 2004). The Arabidopsis 
thaliana ATP-binding cassette (ABC) protein AtABCG32, an 
ABC transporter localized to the plasma membrane of epidermal 
cells, was suggested to export cutin precursors from these cells 
to the surface (Bessire et  al., 2011). The mutation of this gene 
in the corresponding Arabidopsis pec1/abcg32 mutant also led 
to resistance to B. cinerea. Fully expanded leaves of this mutant 
featured significantly lower levels of the cutin monomer C16 
dicarboxylic and ꞷ-hydroxy C18:2 acids, apparently leading to 
a more permeable cuticle (Fabre et  al., 2016). Similarly, rice 
(Oryza sativa) plants with silenced or mutated expression of 
OsABCG31, the homolog of the Arabidopsis ABCG32, displayed 
increased cuticle permeability and were more resistant to M. 
oryzae (Garroum et  al., 2016).

Resistant phenotypes to B. cinerea were also detected in 
the Arabidopsis mutant lines fiddlehead (kcs10/fdh), lacerata 
(cyp86a8/lcr), and bodyguard (bdg), which surprisingly 

accumulate more cutin, even though they carry mutations in 
key cuticle biosynthetic genes (Voisin et  al., 2009). kcs10/fdh 
is deficient in the 3-ketoacyl-CoA synthase 10 condensing 
enzyme that is part of the fatty acid elongation complex 
involved in the synthesis of VLCFAs, though its exact function 
in cuticle formation has yet to be  determined (Lolle et  al., 
1992, 1997; Pruitt et  al., 2000); cyp86a8/lcr is mutated in 
CYP86A8, which is involved in the fatty acid hydroxylation 
pathway (Wellesen et  al., 2001); and bdg has a mutation in 
BODYGUARD, an extracellular α/β hydrolase suggested to 
be involved in cutin polyester assembly (Kurdyukov et al., 2006b;  
Jakobson et  al., 2016).

However, not all plants that feature an increase in cuticle 
permeability display heightened resistance against pathogenic 
fungi. The Arabidopsis hothead (hth) mutant is deficient in 
its ability to oxidize long-chain ꞷ-hydroxy fatty acids to ꞷ-oxo 
fatty acids and, therefore, has less α,ꞷ-dicaroxylic fatty acids 
and more ꞷ-hydroxy fatty acids. This results in a disordered 
cuticle membrane structure and increased leaf cuticle 
permeability (Lolle et  al., 1998; Kurdyukov et  al., 2006a). 
Conversely, hth does not exhibit increased resistance to B. cinerea 
(Bessire et  al., 2007). The Arabidopsis double mutant gpat4/
gpat8, which features altered expression of two glycerol-3-
phosphate sn-2-acetyltransferases essential for cuticle assembly, 
is more susceptible to infection by the necrotrophic fungus 
A. brassicicola (Li et al., 2007). Moreover, Arabidopsis mutants 
that are defective in acyl carrier protein4 (ACP4) and exhibit 
malformed leaf cuticle are also more susceptible to B. cinerea 
(Xia et  al., 2009). Additional studies showed that mutations 
in SHINE1, a transcription factor of the ethylene response 
factor (ERF) family that regulates cutin biosynthesis, produce 
less cutin, and are more susceptible to B. cinerea (Kannangara 
et  al., 2007; Sela et  al., 2013). Likewise, lower cutin content 
in the cuticles of the tomato (Solanum lycopersicum) fruit 
skin due to reduced expression of cutin regulator SHINE3 
leads to higher susceptibility to B. cinerea (Buxdorf et  al., 
2014). Finally, the cutin polymerization in the tomato fruit 
skin occurs via the transesterification of hydroxyacylglycerol 
precursors catalyzed by the Gly-Asp-Ser-Leu (GDSL)-motif 
lipase/hydrolase family protein cutin deficient1 (CD1; Yeats 
et al., 2012). The fruit skin cuticle of its corresponding mutant, 
cd1, has significantly less cutin, and its fruits are more susceptible 
to B. cinerea (Isaacson et  al., 2009).

Possible Mechanisms by Which Host 
Plants Perceive Cutin Monomers and/or 
Cuticle Defects to Elicit Defense 
Responses
The impressive studies described above provide solid lines of 
evidence that mutants and transgenic lines with altered cuticular 
structure and increased permeability exhibit higher resistance 
to attacks by pathogenic fungi. This concept is still under 
debate, as other permeable cuticle mutants display an opposite 
trend, that is, heightened susceptibility to pathogenic fungi. 
In this section, we  mention some of the possible mechanisms 
that have been raised to explain how host plants perceive 
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cutin monomers and/or changes in cuticle structure 
and permeability.

Earlier studies showed that the ectopic supplementation of 
synthetic analogs of typical cutin monomers can confer treated 
plants with higher resistance against attack by pathogenic fungi. 
For instance, Namai et al. (1993) treated Sasanishiki rice plants 
with C18 epoxy fatty acids and examined the ability of these 
compounds to inhibit the germination and germ tube elongation 
of the spores of the rice blast fungus Pyricularia oryzae. The 
authors were able to show that the rate of necrotic lesions 
formed on the treated leaves was significantly lower than leaves 
of nontreated control plants, indicating the induction of resistance 
to the pathogen by the epoxides in the plants. Additionally, 
uptake experiments using [1-14C] derivatives validated that the 
supplemented epoxides were incorporated into the treated leaves 
(Namai et  al., 1993). In the same way, the topical spray 
application of synthetic cutin monomers or of a cutin hydrolysate 
from apple fruit partially protected barley and rice leaves from 
infection by the fungal pathogens E. graminis f.sp. tritici and 
M. grisea, respectively. It was further demonstrated that cis-
9,10-epoxy-18-OH stearic acid (HESA), the most abundant 
cutin monomer in barley, was amongst the most active com
pounds. Interestingly, these substances did not seem to have 
any inhibitory effect on pathogenic fungi when added to their 
growing media, further suggesting that the resistance observed 
in these treated plants is associated with the induction of 
plant defense responses (Schweizer et  al., 1994, 1996b). The 
hypothesis that free cutin monomers are perceived by plant 
cells as endogenous stress-associated signals were examined 
in a model system consisting of cultured potato (Solanum 
tuberosum) cells, where, again, HESA was the most active 
compound in the induction of transient alkalinization of the 
culture medium, implying an induced defense response. The 
authors also demonstrated that the application of cutin monomers 
stimulated the production of the plant stress hormone ethylene 
and activated the expression of defense-associated genes such 
as phenylalanine ammonia-lyase (PAL), glutathione S-transferase 
(GST), and 3-hydroxy-3-methylglutaryl-coenzyme A reductase 
(HMGR; Schweizer et  al., 1996a). Finally, Fauth et  al. (1998) 
showed that adding alkaline hydrolysates of cutin from cucumber 
(Cucumber sativus), tomato, and apple to the epidermal surface 
of gently abraded hypocotyls of etiolated cucumber seedlings 
resulted in the generation of H2O2. The authors concluded 
that the physiological significance of this might be  that upon 
cuticle degradation by fungal cutinases, the cutin monomers 
may act as H2O2 elicitors to induce defense responses (Fauth 
et  al., 1998). Altogether, these reports provide circumstantial 
evidence that free cutin monomers can be  perceived by the 
host plant cells as chemical signals and endogenous elicitors 
of defense responses, though the mechanism by which the 
host plants sense cutin monomers and/or cuticle defects is 
yet to be  fully determined.

Another mechanism raised to explain the link between a 
permeable cuticle and increased resistance of the host plants 
to attack by pathogenic fungi involves the accumulation of 
reactive oxygen species (ROS). A study performed by L’Haridon 
et  al. (2011) proposed that the production of ROS like H2O2 

and O2
−, a permeable cuticle, and increased resistance to 

invading fungi are all tightly associated. The authors 
demonstrated that Arabidopsis plants with wounded leaves, 
plants treated with cutinase, and the cuticle-deficient mutants 
bdg and lacs2.3, all produce more ROS and exhibit increased 
resistance to B. cinerea. Remarkably, the authors were able 
to show that the ROS accumulation and induced resistance 
occurs under certain conditions only once the cuticle has 
been permeabilized, and that invading fungi circumvent this 
mechanism by generating effectors that interfere with the ROS 
production (L’Haridon et  al., 2011). A follow-up study 
demonstrated that the soft mechanical stress applied to 
Arabidopsis leaf surfaces by gentle sweeping results in altered 
cuticle permeability, accompanied by strong resistance to B. 
cinerea, rapid changes in calcium concentrations, and the 
release of ROS. The authors concluded that Arabidopsis plants 
can convert gentle forms of mechanical stimuli into strong 
activation of defense mechanisms against B. cinerea (Benikhlef 
et  al., 2013). Finally, the overexpression of DEWAX, an AP2/
ERF-type transcription factor that negatively regulates cuticular 
wax biosynthesis, increases cuticle permeability (Ju et  al., 
2017). Even though this phenomenon has been attributed 
more to pronounced changes in cuticular wax deposition than 
to cutin deposition, both an in situ assay of hydrogen peroxide 
and fluorometric measurements showed that the levels of ROS 
are higher in DEWAX-overexpressing leaves as compared to 
the WT leaves. These plants displayed more tolerance to B. 
cinerea infection, accompanied by the upregulation of defense-
related genes. Thus, the authors concluded that the increased 
ROS accumulation and DEWAX-mediated upregulation of 
defense-related genes are closely associated with enhanced 
resistance to B. cinerea (Ju et  al., 2017). Unlike these studies, 
Dubey et al. (2020) found no difference in ROS levels between 
cotyledons of WT- and polyunsaturated fatty acid (PUFA)-
deficient mutant fad2-3 Arabidopsis plants, even though this 
mutant was characterized by cuticle permeability defects (Dubey 
et  al., 2020). To summarize, the above studies suggest an 
exciting explanation for the increased resistance to B. cinerea 
of several mutants and transgenic plants with a more permeable 
cuticle and higher ROS production, yet the exact association 
between these two parameters is not fully understood and 
requires further examination.

An additional option by which a more permeable cuticle 
confers resistance relates to the production of fungitoxic 
substances on the cuticle surface. In fact, fungitoxic activity 
was measured in diffusates isolated from leaves of the cuticle-
deficient mutants lcr, lacs2, and pec1/abcg32, and also the 
cutinase-expressing CUTE plants (Bessire et  al., 2007, 2011; 
Chassot et al., 2007). Even though it was assumed that fungitoxic 
activity is associated with the same compound/s in all these 
cases, the chemical nature of such metabolite/s was not reported. 
A candidate for such a metabolite was recently raised by Dubey 
et  al. (2020), who identified the over accumulation of 
7-methylsulfonylheptyl glucosinolate (7MSOHG) at the cuticle 
surfaces of (PUFA)-deficient Arabidopsis mutants. Cuticle 
permeability defects accompanied by arrested hyphal growth 
were detected in fad2-1 and fad triple mutants of B. cinerea. 
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Therefore, the authors linked the appearance of 7MSOHG to 
defects in cuticle composition and permeability, and resistance 
to fungi (Dubey et  al., 2020). Based on these results, Dubey 
et  al. (2021) investigated the fungi-toxic activity of natural 
isothiocyanate derivatives of glucosinolates together with 
semisynthetic glucosinolates and chemical fungicides. The study 
confirmed that 13 out of the 31 tested were efficient fungicides 
when applied alone, whereas some operated in a synergistic 
manner when used in combination against three plant pathogenic 
fungal species, Alternaria radicina, Fusarium graminearum, and 
Plectosphaerella cucumerina (Dubey et  al., 2021). Altogether, 
it is reasonable to assume that not only glucosinolates but 
also fungitoxic metabolites from different biochemical groups 
play important defensive roles against pathogenic fungi and 
accumulate at the cuticle surface.

Lastly, defense-related transcriptional responses seem to 
be  common amongst some of the permeable cuticle mutants, 
raising the possibility that these changes indirectly affect 
plant–pathogen interactions by conferring resistance against 
fungi and mounting systemic acquired resistance (SAR). Voisin 
et  al. (2009) compared gene expression changes in young 
rosette leaves of lcr, fdh, and bdg mutants to that of WT 
leaves and found commonly upregulated genes that participate 
in the cuticle and cell wall remodeling and in defense responses 
upon abiotic stresses and pathogens. Hence, the increased 
resistant phenotype of these three cuticle-deficient mutants 
to B. cinerea might be the result of primed defense mechanisms 
that arise due to cuticular defects. To gain deeper insight 
into the core mechanism by which cuticular defects trigger 
these types of transcriptional responses, the authors performed 
an overlap meta-analysis of differentially expressed genes. Using 
this approach, the SERRATE (SE) gene was identified and 
shown to encode a nuclear protein of multiprotein 
RNA-processing complexes and to be  epistatic to lcr and bdg 
(Voisin et  al., 2009). A link between cuticular defects and 
defense mechanisms was also proposed for the Arabidopsis 
acp4 mutants mentioned earlier. These mutants successfully 
generated the mobile signal, yet failed to induce SAR. It was 
demonstrated that the inactivation of SAR is associated with 
cuticle impairment in these mutants, rather than with alterations 
in the signaling pathways of the stress-related hormones salicylic 
and jasmonic acids (Xia et  al., 2009).

CONCLUDING REMARKS

In this review, we  delineate the multifaceted roles played by 
epicuticular waxes and released cutin monomers as chemical 
signaling molecules in the interactions between host plants 
and pathogenic fungi. The early and recent key reports we present 
in this fascinating field of research accentuate how these 
interactions are presumably far more complex than currently 
assumed. It is evident that these interactions are multifactorial, 
are regulated simultaneously by many components derived from 
both the pathogenic fungi and the host plant, and are highly 
influenced by the biochemical, structural, and permeability 
properties of the cuticle. Evidence shows that certain wax 

components affect pre-penetration and infection processes of 
fungi with different life styles, yet the mechanisms underlying 
these types of relationships are not fully known. Efforts to 
elucidate the roles of epicuticular waxes in plant–fungal 
interactions have thus far mostly utilized mutants with altered 
wax compositions. However, this approach is still challenging, 
as in most cases, compositional changes in one biochemical 
group of wax compounds are typically accompanied by changes 
in other groups of compounds.

How the cutin monomers released from the cuticle by fungal 
cutinases during the early stages of infection are recognized 
by the host plant to elicit defense responses and acquired 
resistance to pathogens remains a question to be  explicated. 
Thus far, several possible mechanisms have been proposed 
involving the production of ROS, the accumulation of fungitoxic 
compounds at the cuticle surface and a primed defense-related 
transcriptional response, all of which were associated with 
cuticle defects. In their review, Serrano et  al. (2014) suggested 
that a more permeable cuticle might facilitate the faster perception 
of signals derived from the cuticle that is being degraded by 
fungal cutinase during infection and/or that cutin monomers 
over accumulate in cuticle-deficient mutants due to incomplete 
cutin polymer assembly. The validity and nature of all these 
possible mechanisms would require further attention from the 
research community investigating the field of plant cuticle–
pathogenic fungi interactions.

While the cuticle has been solely attributed to aboveground 
tissues, a recent pioneering study showed that a cuticle-like 
cell wall structure covers plant root caps and contributes to 
its protection against abiotic stresses (Berhin et  al., 2019). The 
authors were able to demonstrate that this specialized polyester-
rich cuticle is formed in early developing root caps of primary 
and lateral roots and lost upon the removal of the first root 
cap cell layer (Berhin et  al., 2019). The discovery of cuticle 
in roots opens a whole new element in the research field of 
plant cuticle–pathogen interactions, which is of great significance 
due to the devastating diseases originating from soil-grown 
pathogenic fungi that attack root tissues. The varied subset of 
cuticle mutants available today offers an excellent platform 
with which to examine the possible interactions between root 
cap cuticles and pathogenic fungi. All in all, the outcome of 
such efforts is expected to aid the agricultural community to 
minimize economic and yield losses.
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