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Changes in climate are likely to have a negative impact on water availability and soil
fertility in many maize-growing agricultural areas. The development of high-throughput
phenotyping platforms provides a new prospect for dissecting the dynamic complex
plant traits such as abiotic stress tolerance into simple components. The growth
phenotypes of 20 maize (Zea mays L.) inbred lines were monitored in a non-invasive
way under control, nitrogen, and water limitation as well as under combined nitrogen
and water stress using an automated phenotyping system in greenhouse conditions.
Thirteen biomass-related and morphophysiological traits were extracted from RGB
images acquired at 33 time points covering developmental stages from leaf count
5 at the first imaging date to leaf count 10–13 at the final harvest. For these traits,
genetic differences were identified and dynamic developmental trends during different
maize growth stages were analyzed. The difference between control and water stress
was detectable 3–10 days after the beginning of stress depending on the genotype,
while the effect of limited nitrogen supply only induced subtle phenotypic effects.
Phenotypic traits showed different response dynamics as well as multiple and changing
interaction patterns with stress progression. The estimated biovolume, leaf area index,
and color ratios were found to be stress-responsive at different stages of drought
stress progression and thereby represent valuable reference indicators in the selection
of drought-adaptive genotypes. Furthermore, genotypes could be grouped according to
two typical growth dynamic patterns in water stress treatments by c-means clustering
analysis. Inbred lines with high drought adaptability across time and development were
identified and could serve as a basis for designing novel genotypes with desired, stage-
specific growth phenotypes under water stress through pyramiding. Drought recovery
potential may play an equal role as drought tolerance in plant drought adaptation.
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INTRODUCTION

Crop research today is more important than ever as scientists
confront global threats from climate changes and diseases which
may affect food security and livelihoods of smallholder farmers
around the world. Maize is one of the most important crops
globally, and more than half of the increased food demand
for cereal plants will come from maize (Yan et al., 2011).
However, maize suffers from several production constraints of
which limited water availability and nitrogen deficiency are the
most restricting factors (Moser et al., 2006), frequently occurring
together (Nyombayire et al., 2011). Average temperatures and
water availability are predicted to become an increasing problem
under future climate conditions (IPCC, 2014), which will also
influence soil organic matter (Brevik, 2013). Thus, developing
maize varieties with improved water and nutrient use efficiency is
a primary breeding target (Fiorani and Schurr, 2013), for which
efficient phenotyping approaches are necessary (Araus et al.,
2012; Avramova et al., 2016; Zhang et al., 2017).

Automated phenotyping (a.k.a. phenomics) is widely regarded
as a priority for future crop breeding research (Awada et al.,
2018; Liang et al., 2018). Image-based phenotyping allows non-
destructive analyses of dynamic processes in plant growth in
response to diverse environmental conditions (Neilson et al.,
2015; Ge et al., 2016; Muraya et al., 2017). Automated plant
phenotyping contributes to the identification of a genetic
variation to increase genetic gain within a breeding program
(Araus et al., 2018). Previous studies showed that image-
based traits are reliable estimators of manually measured traits
(Humplík et al., 2015; Neilson et al., 2015) including high
correlations between digital biovolume (biomass proxy) and
measured yield (Chen et al., 2014; Honsdorf et al., 2014;
Neumann et al., 2015; Ge et al., 2016; Muraya et al., 2017;
Dodig et al., 2019). Although predicting field performances based
on controlled environment experiments is still under question
(Poorter et al., 2012; Araus and Cairns, 2014; Junker et al.,
2015), there are several studies in the literature that report that
glasshouse-grown potted plants could be extrapolated to field-
grown plants (Kholová et al., 2012; Pardo et al., 2015; Peirone
et al., 2018). In maize, it is shown that a considerably high
percentage of the total variation in grain yield under drought
conditions could be predicted by vegetative phenotypic data
generated in water-limited controlled environments (Chapuis
et al., 2012; Zhang et al., 2017).

The sensitivity of maize yield mainly varies over stressing
periods in relation to growth stages, being the greatest at
flowering in the case of drought (Vitale et al., 2009, 2011; Araus
et al., 2012). Although the maize water requirement is highest
in the reproductive stage, water shortage during the vegetative
growth can also significantly reduce grain yield (Pandey et al.,
2000; Çakir, 2004; Mi et al., 2018). Stress during the maize
vegetative growth period leads to a significant reduction in plant
height and leaf area (which determines radiation interception and
biomass accumulation), which indirectly affect the growth rate
at flowering and the seed number (Moser et al., 2006; Borras
et al., 2009; Araus et al., 2012; Chapuis et al., 2012). Plant
morphology is one of the most important types of phenotypic

traits, feasible to provide access to every aspect of plant growth
and stress response (Fahlgren et al., 2015; Wang et al., 2019).
Plant growth was considered as a measure of stress-adaptive
capacity (Dolferus, 2014), which integrated both stress tolerance
and plant capability to resume growth after exposure to severe
stress (Luo, 2010; Fang and Xiong, 2015). Research on early plant
development can be used in plant breeding as an indirect measure
of tolerance to abiotic stresses (Montes et al., 2011). Screening
for drought tolerance of maize hybrids at the seedling stage
under controlled conditions clearly demonstrates the potential
to identify candidate drought-tolerant genotypes and reduce
selection under field conditions (Avramova et al., 2016). Plants
exposed to some kind of stress during the vegetative growth will
often adapt their structure and physiology, which makes them
more tolerant to the next limitation, at later stages of their life
(Pieruschka and Schurr, 2019).

The life cycle of maize can be divided into vegetative (from
emergence to tasseling) and reproductive (from silking to
physiological maturity) phases (Ransom et al., 2014). Vegetative
growth stages between emergence (VE) and tasseling (VT) are
based usually upon the number of visible leaf collars (V stages).
The period between V6 (six leaves with visible collars) and
VT (tassel) is often referred to as the period of rapid growth.
At VT, the plant has reached its full height and all leaves have
emerged. While water stress prior to the V4 to V5 growth stages
would probably cause little yield loss if plants survive, at V6, the
development of tassels and ears starts, so water stress can cause
more damage than at the seedling stage, with progressively
more damage the closer the stress occurs to tasseling
(Lee and Grove, 2012).

In the present study, we used a high-throughput platform to
collect visible light images to identify genotypic differences and
analyze and evaluate dynamic changes and developmental trends
in 20 maize inbred lines (ILs) throughout the maize vegetative
growth season. Data on biomass at different growth stages and
from different genotypes can be used to form temporal profiles,
which offer novel insights into the diversity of phenotype that
could not be detected through traditional terminal measurements
alone (Pugh et al., 2018; Han et al., 2019a). Detailed growth
curves can provide new tools for plant breeders to assess overall
plant growth and tolerance to various stresses throughout its
development (Pauli et al., 2016). Furthermore, dynamic cluster
analysis of time series data is of great significance since it could
extract expression patterns and changing rules of traits in the
time space dimension (Han et al., 2019b). Fuzzy c-means is
one of the best-known clustering algorithms to organize the
wide variety of datasets automatically and extract meaningful
statistics. More specific objectives in this study were to identify
(i) reliable and useful image-based traits for predicting biomass
accumulation at different stages of stress progression, (ii)
genotypic differences in dynamic changes and developmental
trends of estimated biovolume (EBv) during different growth
stages by time series clustering, and (iii) traits that contribute
to drought adaptability (DAD) based on the relative growth
of the studied ILs. In addition, the roles of drought tolerance
(DTO) and drought recovery (DRC) in DAD of maize were
comparatively analyzed.
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MATERIALS AND METHODS

Plant Material
Twenty temperate maize (Zea mays L.) ILs representing a set
of public and commercial inbreds with different tolerance to
abiotic (mainly drought) stresses were selected for the experiment
(Dodig et al., 2019). The developmental or collection origin of
the 20 ILs used in this study and further information such as
the maturity group and the germplasm pool they belong to are
given in Supplementary Table 1. All seeds used in this study
were obtained from the Maize Research Institute gene bank,
Zemun Polje, Serbia, and multiplied in a single year under non-
stress conditions.

Growth Conditions
A pilot study was performed in greenhouse conditions to
ensure phenological synchronization across 20 ILs at the targeted
stage when nitrogen and water stress were to be imposed.
Information on the number of days to the six-leaf stage was
used as covariate adjustment to group genotypes into subsets
of similar phenology (early, intermediate, and late) for sowing
at different times (Dodig et al., 2019). Plants were transplanted
and entered the IPK automated platform in 5.5 L pots filled
with the IPK soil mixture (Junker et al., 2015). The temperature
regime during the experiment was set to mimic the Zemun
Polje vegetative temperature, which raised stepwise sequentially
during the growth period starting with 20/15◦C day/night during
germination and the preculture period, then 22/17◦C day/night
for 10 days, and finally to 25/20◦C day/night temperature for
further 25 days. During the entire cultivation period, relative air
humidity was set to a minimum of 65% and the light period was
set to 16 h (06:00–22:00 h) with an average total illumination of
approx. 350 mmol m−2 s−1 PAR. For more details on growth
conditions during germination, preculture, and culture period,
see Dodig et al. (2019).

Experimental Design and Phenotyping
The lines were phenotyped using the automated non-invasive
plant phenotyping system for large plants (Junker et al., 2015) at
the Leibniz Institute of Plant Genetics and Crop Plant Research
(IPK), Gatersleben, Germany. Plants were grown in a greenhouse
using a setup that aimed at controlling the amount of both
nutrient and water while trying to best mimic natural conditions.
In brief, after the precultivation period, plants were transplanted
in larger pots [at the stage of four to five leaf count (LCn) across
ILs] and transferred into the IPK automated plant phenotyping
platform, where ILs were grown for further 35 days. Plants
were exposed to control (C) and limiting nitrogen (N) and
water conditions (W), as well as to the combination of NW.
Optimal and limiting water conditions were defined as 75 and
30% of soil field capacity (SFC), respectively, while optimal and
limiting nitrogen conditions were defined as 35 and 15 mg of
nitrogen per pot, respectively. The control treatment involved
optimal water and nitrogen supplies. In W and NW treatments,
water stress was initiated at 9 days after transplanting (DAT) by
cumulative soil drying to 20% SFC (DAT 22) and then raised to

30% SFC and kept at this level until the end of the experiment
(Supplementary Figure 1). In the C and N treatments, pots
were watered daily to a target weight corresponding to 75% SFC
from transplanting (DAT 0) to DAT 35. SFC in all pots and
each treatment was adjusted to the same level based on daily
measurements of pot weight for all ILs (Junker et al., 2015). In
N and NW treatments, nitrogen stress was initiated at DAT 8
by applying reduced nitrogen level compared with control and
repeated in three more occasions till the end of the experiment
(Supplementary Figure 1). In total, 140 mg of nitrogen per pot
(equivalent to 25.5 mg L−1 substrate) was applied in optimal
nitrogen conditions and 60 mg of nitrogen per pot (equivalent
to 10.9 mg L−1 substrate) in reduced nitrogen conditions during
4 weeks. More details on fertilizer type used are given in Dodig
et al. (2019).

In each treatment, eight plants per IL were tested, which
resulted in a total of 640 plants. Plants were phenotyped from
DAT 2 (five LCn across ILs) to DAT 35 (12 LCn across
ILs) at 33 time points. Technical issues resulted in a loss of
images for DAT 30, although watering continued. At each time
point, four side-view images and one top-view image of each
plant were taken at imaging boxes for acquiring visible light
(RGB), static fluorescence (FLUO), and near-infrared image
data. The IPK Integrated Analysis Platform (IAP version 0.9;
Klukas et al., 2014) was used for the image (pre-) processing
and automated feature extraction. The majority of the used
traits in this study were derived from RGB images, except one
FLUO-based trait (Supplementary Table 2). The experimental
design and phenotyping are described in more detail in
Dodig et al. (2019).

Image-Derived Plant Traits and Indices
To assess maize growth over time, the following 12 different
image-derived plant traits were chosen to be analyzed in this
study: EBv, side compactness (SCom), solidity (Sol), surface
coverage (SCov), caliper length (CLe), plent height (PHg), LCn,
yellow to green (Y2G) ratio, blue to green (B2G) ratio, lab color
a (Lab_a), lab color b (Lab_b), and static fluorescence intensity
(FI). Selected image-derived traits could be broadly classified into
biomass-related (EBv), architectural (SCom, Sol, SCov, CLe, PHg,
and Ln), and physiological (Y2G, B2G, Lab_a, Lab_b, and FI)
traits. The detailed information for image-based trait definitions
and details of the trait extraction are shown in Supplementary
Table 2. EBv showed to be a very good proxy of biomass in
our experiment (Dodig et al., 2019). The majority of the selected
traits were also substantially important for vegetative fresh and/or
dry biomass weight in one or all treatments based on LASSO
and Ridge regression models (Dodig et al., 2019). FI showed
not to be indicative of the vegetative plant performance at a
single time point (harvest) in the previous study by the same
authors. However, it is included in this study to be checked at
multiple time points, since it is widely used in plant physiology
research. PHg is added to the list as this trait is regarded to be
a key contributor to maize biomass yield. In addition, LCn is
included into the list as a key trait to describe plant phenology.
Based on the EBv, a relative growth rate was calculated for
each treatment. The relative growth rate (voxel day−1) was

Frontiers in Plant Science | www.frontiersin.org 3 May 2021 | Volume 12 | Article 652116

https://www.frontiersin.org/journals/plant-science
https://www.frontiersin.org/
https://www.frontiersin.org/journals/plant-science#articles


fpls-12-652116 May 10, 2021 Time: 12:36 # 4

Dodig et al. Maize Growth Dynamics Under Stress

calculated as RGR = (Ln W2 − Ln W1)/(T2 − T1), where
W1 and W2 are plant EBvs at times T1 and T2, while Ln is
a natural logarithm. To estimate genetic variability and roles
of DTO and DRC in drought adaptation, for each IL, DTO,
DRC, and DAD were estimated based on the relative growth
of EBv during drought stress (DTO = DAT 22treatment − DAT
9treatment/DAT 22control − DAT 9control), rewatering (DRC = DAT
35treatment − DAT 23treatment/DAT 35control − DAT 23control) and
the entire water stress cycle (DAD = DAT 35treatment − DAT
9treatment/DAT 35control − DAT 9control), respectively. DAT 9,
DAT 22, DAT 23, and DAT 35 refer to day of stress initiation, day
of maximum stress, start of rewatering, and day of harvest (end of
the experiment), respectively. Water use efficiency based on EBv
and water applied (voxel g−1 water) was calculated for each IL
during drought stress (EBvDAT 22 − EBvDAT 2/water applied) and
recovery (EBvDAT 35 − EBvDAT 22/water applied) separately.

Statistical Analysis
To analyze the degree of variation during the different time
points, EBv from data collected on 20 ILs was plotted against
the coefficient of variation (CV, %). CV was calculated with
mean and standard deviation. Restricted maximum likelihood
(REML) was conducted to determine the overall importance of
the factors like genotype, treatment, and their interaction for
EBv over time. The analysis follows a Gaussian linear mixed
model which was formulated for each day separately. The effect
of replication in the model was treated as fixed, while the
effects of genotype, treatment, and the interaction were treated
as random effects. Diagrams with error bars were used to present
the development of image-derived traits and relative growth rate
in each treatment over time. The diagram y-axis was generated
by the means of all ILs, while the x-axis represents DAT. At
each DAT, data were analyzed by analyses of variance (ANOVA
linear mixed model) to test the effect of treatment using Tukey’s
post hoc test, and a P < 0.05 was considered significant. The
analysis of covariance structure was done using the linear mixed
model (Gilsum et al., 2009). Five different covariance structures
of the observations within the same image-based trait in each
treatment were compared: uniform (UN), power (POWER),
heterogeneous power (HETPOWER), antedependence (ANTE),
and unstructured (US). The Bayesian information criterion (BIC)
value was used to find the best matrix among each model
considered, so that the lower its value, the better the adjustment
of the model in question.

To identify the trait mean dynamic change pattern, cluster
analysis was applied on a time series dataset for EBv using the
fuzzy c-means clustering algorithm (Han et al., 2019b). The
best number of clusters is determined by using the majority
rule (Charrad et al., 2014). −Log10 (P-value) was used for
the differential expressions between obtained cluster groups.
After clustering, a typical curve is generated by connecting the
mean of EBv data during the period between the maximum
growth before maximum water stress and the day following
maximum water stress (from DAT 19 to DAT 23) for each cluster.
A typical curve of EBv represents a group of genotypes that had
similar dynamic change.

Pearson linear correlations were calculated to analyze the
dynamic changes of the relationship between EBv and other
studied traits over time. Simple linear correlations were also
used to determine the relationship among drought-adaptive
capabilities of the various genotypes and the relationship between
their drought-adaptive capabilities and their image-derived traits
and relative growth rate at two time points. Statistical analysis and
data visualization were completed using the R software (R Core
Team, 2016) and Microsoft Excel (Office 2010). The mixed model
analyses were conducted with the ASReml software (Gilmour
et al., 2009). The analysis of covariance structure was conducted
using the mixed model procedures of SAS 9.3 version (SAS
Institute, 2011).

RESULTS

Phenology
Image-derived LCn, as a proxy of leaf developmental stage (V),
was used to compare the phenology of ILs and treatments during
the imaging period (Supplementary Tables 3–6). At the time
of the beginning of imaging (DAT 2), plants had approximately
five to six leaves in all treatments. At the time of nitrogen and
water stress imposed (DAT 8 and DAT 9, respectively), plants
had approximately seven to eight leaves in all treatments. At the
time of maximum water stress (DAT 22), plants had from 7–11
leaves in NW, over 8–11 leaves in W, 9–11 leaves in N, to 9–
12 leaves in C. At the end of the experiment (DAT 35), plants
had approximately 11–14 leaves (in C and N) and 8–13 leaves
(in N and NW) at the developmental stage. Two ILs reached the
VT developmental stage (visually assessed) in C and N (ILs 13
and 19), while two ILs reached the VT developmental stage in all
treatments (ILs 8 and 11). On average, the N treatment did not
slow down the leaf development rate compared with C as in both
treatments the average LCn was 13 at DAT 35. However, in W
and NW treatments, the mean leaf developmental stage was by
two and three leaves less compared with C and N, respectively.

Dynamic Treatment Effect on
Image-Derived Traits and the Relative
Growth Rate
The temporal dynamics of the influence of treatment on the
overall image-derived trait and RGR development based on
daily non-invasive imaging across ILs are shown in Figure 1,
as well as in Supplementary Table 7. Lower water availability
in W and NW compared with C had a significant negative
effect on PHg (starting from DAT 12), EBv (DAT 15), SCom
(DAT 18), SCov (DAT 19), CLe (DAT 19), and Sol (DAT 20)
development, and all traits continually significantly reduced
until the end of the experiment. Due to less severe nitrogen
stress than water stress, its effect on morphological image-
derived trait development was significant in comparison with
C later in the course of the trial: EBv (starting from DAT 23),
SCom (from DAT 28), and Sol (from DAT 31). The low N
effect on SCov, CLe, and PHg was not reached by the end
of the experiment. In NW, all morphological image-derived
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traits (except CLe) were significantly reduced compared with
water stress only (W) from DAT 22 (EBv), DAT 26 (SCom),
DAT 28 (PHg), and DAT 34 (Sol and SCov) to the end of the
experiment. The most sensitive image-derived morphological
trait to water and combined water and nitrogen stress was EBv
with the maximum reduction of 53 and 54% at DAT 22 in
W and NW compared with C, respectively (Supplementary

Table 7). EBv was also the most reduced trait in N of 8% at
DAT 35 compared with C, followed by SCov (5%). Cle was the
most tolerant trait with maximum reduction of 14% (DAT 22)
in both W and NW.

Among color-related traits, B2G and Y2G were the most
sensitive to water stress. A significant increase in B2G and
Y2G ratios in W and NW compared with C was observed 10

FIGURE 1 | Continued
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FIGURE 1 | Development of image-derived morphological and colour traits as well as relative growth rate in control (C), nitrogen stress (N), water stress (W) and
combined nitrogen and water stress (NW) conditions across inbred lines over time. Data points were missing on DAT 30. The x-axis represents days after
transplanting. Vertical bars represent standard error of the mean. Vertical dashed lines represent the beginning of both nitrogen stress (DAT 8) and water stress
(DAT 9), and maximum stress recorded when soil water capacity (SFC) was at the minimum of 20% (DAT 22). Vertical arrows represent time points at which
difference between treatment and control become significant (P ≤ 0.05). SFC gradually declined in the period from DAT 2 (75%) to DAT 22 (20%), and then was
slightly increasing to 30% until the end of the experiment (DAT 35).

and 11 days after stress was applied, and was significant until
DAT 28 and DAT 24, respectively (Supplementary Table 7).
However, at the end of the experiment, Y2G was significantly

higher in C compared with W and NW, probably due to a
phenomenon called physiological leaf spots (Neumann et al.,
2015). Regarding N treatment, a significant increase in B2G
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FIGURE 2 | Estimated biovolume plotted against the coefficient of variation over time (DAT 2–DAT 35) from data collected on 20 inbred lines in control (C), nitrogen
stress (N), water stress (W), and combined nitrogen and water stress (NW) conditions. A circle represents a ratio of the minimum to the maximum. Data points were
missing on DAT 30.

and Y2G ratios compared with C was observed at DAT 24 and
DAT 25, respectively, and was significant until the end of the
experiment. Other two color traits, Lab_a and Lab_b, showed
lower variability and less sensitivity to the applied stresses than
color ratios. A significant increase in both Lab_a and Lab_b was
observed only in water stress treatments at DAT 21 and remained
significant until DAT 31 and DAT 35, respectively. A significant
difference of FI in water stress treatments compared with control
started at 14 DAT and continued until the end of the experiment;
in N, there was no significant difference with C at any time point.
RGR was significantly lower in water stress treatments and N
compared with C from DAT 17 to DAT 35 and from DAT 26 to
DAT 35, respectively.

Phenotypic and Genotypic Biovolume
Variation Over Time
The phenotypic variation of EBv with plant growth and the
distribution of the respective CV (%) in different treatments over
time are given in Figure 2. In C and N treatments, the degree
of variation of EBv at earlier growth stages (from DAT 2 to DAT
13–14) was very high (more than 35%) with continuous decrease

in the rest of the period. At the end of the experiment, variation
of EBv in C and N was moderate and the lowest for the entire
period (12.8 and 9.9%, respectively). In W and NW, the degree of
variation of EBv was also very high of over 35% at earlier growth
stages. After the period of EBv decreasing from DAT 14 (24–25%)
to DAT 21 (13–14%), it shortly increased (20–23%) in the period
of maximum stress (DAT 22–23) and then again dropped to the
moderate level (12–13%) until the end of the experiment.

To capture genotypic differences among ILs over time,
the relative contribution of the variance components to the
phenotypic variance of EBv was determined. Within each
treatment, the variation of EBv explained by the genotype was
consistently high (over 80% in N and over 90% in C, W, and NW)
throughout the growing experimental period (Supplementary
Figure 2). However, the analysis across treatments showed that
as stress got higher the genetic variation got lower and the
interaction term became more prominent (Figure 3). In the early
stage of the experiment, until shortly after the initiation of stresses
(DAT 10), the variation explained by the genotype was high (over
80%). From then, the proportion of phenotypic variance of EBv
attributable to genetic variance was gradually decreasing, and the
genotype × treatment interaction was steadily increasing until
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FIGURE 3 | The percentage of estimated biovolume variation explained by
components of variance for each day of imaging (shown as the number of
days after transplanting—DAT) across inbred lines and treatments. Data
points were missing on DAT 30.

maximum stress (being 37 and 39% at DAT 22, respectively).
From DAT 22 to the end of the experiment, the variation
explained by the genotype and the interaction was constant

and similar of about 32–38%, followed by the treatment effect
(20–25%) and the residual variation (2–14%).

Covariance Structure of Image-Based
Traits Over Time
Analysis of the structure of covariance was conducted to explain
the response of variability and correlations between the repeated
measurements. Five covariance structures of the observations
within the same image-based trait in each treatment were
analyzed. The BIC value was used to find the best covariance
structure, so that the lower its value, the better the adjustment
of the model in question (presented in Supplementary Table 8).
The most appropriate covariance structure for EBv, SCov,
and Sol was HEATPOW. For other morphological image-
derived traits SCom, CLe, and PHg, the POWER structure
was found to be the best in most treatments. ANTE gave the
best fit to describe covariance structure of color-related traits
and FI over time.

Change of Phenotypic Correlations
Between Digital Biomass and Other
Measured Traits
The patterns of trait correlations over time from DAT 2 to DAT
35 in each treatment are presented in Supplementary Tables 9–
12. Nearly all associations had a similar pattern over time in
different treatments. Nevertheless, there were several associations
that showed different patterns between non-stress and stressed
treatments. Figure 4 shows a sample of typical correlation
patterns for each treatment. In general, phenotypic correlations
between EBv and other image-derived traits at early stages are
much higher than those at later stages. All morphological traits
at early stages had a strong positive correlation with EBv in
all treatments, but the correlation coefficient decreased until
the end of the experiment, remaining positive or eventually
getting slightly negative. The longest duration of significant
correlation was recorded for the EBv–CLe association (from
DAT 2 to DAT 25 in N and NW, i.e., to DAT 31–33 in N and
C, respectively). In water stress treatments (N and NW) after
DAT 22 (maximum water stress), only the EBv–CLe association
was significant. In some cases (e.g., EBv–SCov and EBv–Sol),
associations re-established the significance around maximum
stress (DAT 22–23) and then again became non-significant until
the end of the experiment.

Color ratios Y2G and B2G had a similar pattern of correlations
over time with EBv. They had strong negative correlations
with EBv at early stages (up to DAT 18–23 across treatments),
and then the correlation coefficient decreased until the end
of experiment, remaining negative (N and NW) or even got
slightly positive (C and N). However, while the EBv–Y2G
association was not significant in the period shortly before and
after maximum stress at DAT 22, the EBv–B2G association
remains significant and moderately negative (∼0.45–0.50). Lab_a
had a similar correlation pattern with EBv as two color ratios
in C and N, while Lab_b in these treatments had a low and
non-significant correlation with EBv during the whole imaging
period. In water stress treatments, the EBv–Lab_a association
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FIGURE 4 | Pearson’s correlation coefficients between estimated biovolume and other image-derived traits over time. Only examples of the typical point and figure
trend line for each treatment are presented. C, control treatment; N, nitrogen stress treatment; W, water stress treatment; NW, combined nitrogen and water stress
treatment. Horizontal lines represent the critical value of the correlation coefficient at P ≤ 0.05.

was significant only at the beginning, but it re-established its
significance around maximum stress (DAT 21–23). A significant
(moderate) correlation between EBv and Lab_b in W and
NW treatments was established only during and shortly after
maximum stress (DAT 22–24).

Fluorescence intensity had no significant correlation with EBv
at any day in the control treatment. In N, although the EBv–
FI association was increasing until the end of the experiment
to be moderately positive, it remained non-significant. It is
possible that in case of continuing N stress, it will become
significant. However, in W and NW, the EBv–FI association was
moderately positive and significant around maximum stress and
shortly after that (DAT 22–29). Finally, RGR had no effect on
EBv over time in the C and N treatments. However, in a very
short period around maximum stress (DAT 22–23) in W and
NW treatments, RGR established a very strong (0.70–0.80) and
positive correlation with EBv.

Clustering of Temporal Biomass
Accumulation in ILs Under Different
Stress Regimes
To investigate whether ILs can express EBv in similar patterns,
temporal profiles were clustered by using the fuzzy c-means

clustering algorithm. For clustering temporal profiles of EBv,
we obtained an optimal number of two (hereafter named as
groups A and B) typical dynamic patterns for each treatment,
but of a different size (Supplementary Figure 3). Temporal
patterns of EBv in 20 maize ILs in groups A and B within
treatments are presented in Figure 5. The upward trends of
EBv profiles observed in groups A (15 temporal profiles) and B
(five temporal profiles) in both C and N were similar. However,
cluster A consistently showed a significantly higher EBv than
cluster B in both treatments (Supplementary Tables 13, 14).
The difference in EBv between group A and group B was more
expressed in the earlier stages of growth than in the later stages,
being more than double reduced from DAT 2 to DAT 35. The
difference between A and B in EBv was constantly significant,
but the level of significance was decreasing toward the end
of the experiment, particularly in N. The average values of
morphological image-derived traits were lower in group B than
in group A through the entire period, except for Sol and SCov,
which were higher in group B than in group A after maximum
stress had been reached (Supplementary Tables 17, 18). RGR
was constantly higher in group B than in group A during
the whole imaging period in both C and N. The difference in
Y2G and B2G between the two groups was higher at earlier
stages of growth (in favor of group B) than toward the end of
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FIGURE 5 | Clustering of temporal profiles of estimated biovolume. Temporal profile of each inbred line is assigned to group A or B by fuzzy c-means clustering. The
box plot represents the full range of variation (from minimum to maximum) and mean value. C, control; N, nitrogen stress; W, water stress; NW, combined nitrogen
and water stress. Data points were missing on DAT 30.

the experiment. Values of other color-related traits (Lab_a and
Lab_b) as well as FI were similar for both groups across all
imaging periods in C and N.

Due to water stress, the temporal patterns of EBv
accumulation were not linear with time and demonstrated
the upward and the downward variation in W and NW
(Supplementary Tables 15, 16). Group A (12 temporal profiles)
consistently showed a significantly higher EBv than group B
(eight temporal profiles) in both water stress treatments. The
differences in EBv between groups A and B were more expressed
in the earlier stages of growth than in the later stages of growth.
All ILs reached their minimum EBv at maximum stress (DAT
22) and then continued to gradually increase after rewatering
(from SFC 20% to SFC 30%) until the end of the experiment
(DAT 35). However, several ILs showed at an earlier time and
a more rapid decline immediately following maximum growth
before DAT 22. Namely, the EBv decline across ILs took from 1
to 3 days following maximum growth prior to maximum stress
at DAT 22 (Supplementary Tables 15, 16). The observed decline
ranged, more or less, from 1% (IL 16) to 45–46% (ILs 4, 11, and
14) in both W and NW. The typical temporal profile of groups
A and B for the period between DAT 19 and DAT 23 (period
between maximum growth before maximum stress and the day
following maximum stress) is presented in Figure 6. Both groups
A and B had an increase in EBv from DAT 19 to DAT 20 by
about 1 and 10% in both N and NW, respectively. While the EBv

of group A started to decrease at DAT 20, the EBv of group B
continued to increase up to DAT 21. Finally, both groups reached
the bottom level at DAT 22 and then started to grow up again as
SFC increased from 20 to 30% by watering done after imaging
at DAT 22. On average, the EBv decline immediately following
the maximum growth before DAT 22 in water stress treatments
was higher in group A (23%) than in group B (16–17%). RGR
had a similar decline in groups A and B in W and NW during
the mentioned period (26 vs. 18–20%, respectively). The patterns
of difference between group A and group B for RGR and other
image-derived traits in W and NW were similar to those in C
and N (Supplementary Tables 19, 20).

Drought Tolerance, Recovery, and
Adaptability of ILs
Drought tolerance, DRC, and DAD were estimated in water stress
treatments based on the relative growth of EBv during drought
stress (DAT 9–22), rewatering (DAT 23–35), and the entire cycle
(DAT 9–35), respectively. DTO, DRC, and DAD (hereinafter
referred to as drought-adaptive capabilities) showed a substantial
variation among the ILs (Supplementary Table 21). IL 8 showed
the strongest DTO at up to 0.730 (W) and 0.724 (NW), while IL 4
showed the weakest at 0.204 (W) and 0.205 (NW). IL 19 had the
strongest DRC over all water stress treatments (ranked 2 and 1
in W and NW, respectively), while IL 4 showed the weakest DRC
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FIGURE 6 | Generated typical curve for the period between the maximum growth before maximum stress and the day following maximum stress for groups A and B
obtained by fuzzy c-means clustering. Inbred lines reached their maximum growth between DAT 19 and DAT 21, with the bottom level recorded for all inbred lines at
DAT 22 (maximum stress). Dashed lines show a polyline formed joining the clustering means at five time points. W, water stress; NW, combined nitrogen and water
stress.

in water stress treatments. Plant DAD was the strongest in ILs
8 and 6, while it was the weakest in ILs 4 and 14. On average,
group A had a statistically weaker DTO but stronger DRC
than group B (Supplementary Table 21). Furthermore, group A
showed stronger, although not significant, DAD compared with
group B in both water stress treatments. DAD can result from
either strong tolerance or strong recovery. DAD had a higher
correlation with DRC in W (r = 0.762∗∗∗) and NW (r = 0.733∗∗∗)
than with DTO (r = 0.552∗ and 0.499∗ in W and NW,
respectively) (Figure 7). There was little correlation (r = −0.065
and −0.171 in W and NW, respectively) between DTO and
DRC. DTO was in a significant and positive relationship with
WUE and RGR, but not with plant size in both water-limiting
treatments. On the other side, DRC was in a significant and
positive relationship with WUE and plant size (except plant size
in NW), but not with RGR (Supplementary Figure 4).

Relationship Between Image-Derived
Traits and Drought-Adaptive Capabilities
To define which image-derived traits may contribute to plant
drought adaptation, correlation analysis between drought-
adaptive capabilities and image-derived traits was conducted
at two time points in W and NW (Table 1). At the time of
maximum water stress (DAT 22), SCov, Sol, EBv, and RGR
had a significant positive correlation with DTO and DAD in
both treatments, while Y2G, B2G, and Lab_a (only in NW)
had a significant negative correlation with DTO. There was no
significant correlation between DRC and image-derived traits in
any of the treatments at DAT 22. At the end of the experiment
(after recovery, DAT 35), the only significant correlations in W
and NW found were positive correlations between RGR and
DTO, RGR and DAD, EBv and DRC, EBv and DAD, and SCom
and DRC (only in NW).
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FIGURE 7 | Correlations between drought-adaptive capabilities in water stress (W) and combined nitrogen and water stress (NW). DTO, drought tolerance; DRC,
drought recovery; DAD, drought adaptability. Asterisks indicate significant differences between drought-adaptive capabilities (*P ≤ 0.05; ***P ≤ 0.001).

DISCUSSION

To keep up with the increasing food demand, breeders aim to
measure a large number of plants in various stress conditions,
like drought or low fertility soils, to identify traits that will make
the plants more tolerant to a changing climate and to identify the
best progeny. High-throughput phenotyping techniques based on
sensor technology are considered as important tools to better
understand the interaction of a genotype with the environment
for rapid advancement of genetic gain in breeding programs
(Zhao et al., 2019). The aim of this study was to assess the genetic
variation of growth dynamics in 20 maize ILs through automated
non-invasive phenotyping based on visible light (RGB) imaging
in different stress conditions. This allowed us to assess the stress
response dynamics across young developmental stages and go
in line with the report about existing reliable genetic factors to
the early- and the mid-season growth in maize that cannot be
captured by conventional measurements at the end of growth
(Muraya et al., 2017; Pugh et al., 2018). Research on early plant
development is a common practice in plants demonstrating
the potential to identify stress-tolerant genotypes and reduce
selection under field conditions (Montes et al., 2011; Avramova
et al., 2016).

Genotypic differences were identified for 13 biomass-related
morphological and physiological image-derived traits. The
dynamic growth phenotype was measured from LCn of 5–
6 (all treatments) to 8–13 (N and NW) and 11–14 (C and

N) across 20 ILs with 33 time points each. The difference in
the development stages among ILs was continuously increasing
during the experiment in each treatment, being more prominent
in water stress treatments. However, at the time of NW initiation
(DAT 8 and DAT 9, respectively), the difference between the
earliest and latest IL was still reasonably low of only one leaf
difference. Additionally, the majority of the ILs (18 out of 20
and 17 out of 20 in W and NW, respectively) were within only
one leaf difference (8–9) at the maximum water stress (DAT
22) that we can consider phenologies to be similar to reduce
likelihood of artifacts.

The EBv showed a good correlation with the manually
measured fresh weight and dry weight (Dodig et al., 2019) and,
thus, can be used to represent the biomass. Maize plants in C
and N treatments showed a continuous increase in the EBv and
other image-derived morphological traits through the period of
the imaging. Maize growth is reported to be logarithmic up to or
slightly past flowering (Pugh et al., 2018). Although our intention
was to obtain moderately reduced nitrogen growth conditions,
the applied nitrogen stress appeared to be in a mild and more
chronic fashion. This resulted in a less observable phenotypic
effect in the N treatment compared with W and NW treatments.
For some traits such as SCov, CLe, and PHg, a significant N
effect was not reached by the end of the experiment. On the
other hand, the applied water stress level built up rapidly and
was quite severe, particularly when SFC was between 30 and
20%. All genotypes after the first increase (from DAT 2 to DAT
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TABLE 1 | Correlations (r) between drought-adaptive capabilities and image-based traits at the maximum stress (DAT 22) and after recovery (DAT 35) under water stress
and combined nitrogen and water stress.

Trait DAT 22 DAT 35

DTO DRC DAD DTO DRC DAD

Water stress

SCom 0.28 −0.27 0.02 0.36 −0.07 0.25

Sol 0.66** 0.40 0.70*** 0.01 0.38 0.34

SCov 0.71*** 0.31 0.66** −0.18 0.32 0.15

CLe −0.10 0.33 0.13 0.06 0.18 0.16

PHg −0.17 −0.24 −0.38 −0.14 −0.30 −0.34

LCn 0.01 0.12 0.12 0.10 0.04 0.20

EBv 0.65** 0.40 0.65** 0.03 0.74*** 0.66**

FI 0.16 0.16 0.16 0.09 0.26 0.21

Y2G −0.50* 0.03 −0.24 0.10 −0.21 −0.11

B2G −0.60** 0.03 −0.28 −0.19 0.17 0.07

Lab_a 0.07 0.04 0.10 0.10 0.07 0.14

Lab_b 0.13 0.23 0.20 0.06 0.27 0.21

RGR 0.83*** 0.19 0.70*** 0.60** 0.20 0.62**

Combined nitrogen and water stress

SCom 0.35 −0.20 0.13 0.34 −0.08 0.23

Sol 0.66** 0.31 0.65** 0.00 0.31 0.65**

SCov 0.71*** 0.14 0.54* −0.12 0.47* 0.35

CLe −0.11 0.37 0.17 0.06 0.19 0.18

PHg −0.18 −0.11 −0.29 −0.12 −0.23 −0.29

LCn 0.04 0.25 0.37 0.13 0.04 0.24

EBv 0.64** 0.28 0.58** −0.05 0.73*** 0.63**

FI 0.21 0.11 0.17 −0.06 0.05 −0.04

Y2G −0.59** 0.02 −0.36 −0.11 −0.13 −0.26

B2G −0.65** 0.06 −0.35 −0.36 0.01 −0.25

Lab_a 0.67** −0.10 −0.44 −0.37 0.15 0.13

Lab_b 0.22 0.24 0.30 0.06 0.23 0.20

RGR 0.48* 0.19 0.68*** 0.57** 0.29 0.70***

DAT, days after transplanting; DTO, drought tolerance; DRC, drought recovery; DAD, drought adaptability. *P ≤ 0.05, **P ≤ 0.01, ***P ≤ 0.001.

18) showed a decrease in the EBv (from DAT 19 to DAT 22),
yet the time and quantity of the adverse effects of water stress
on the growth varied among the inbreds (this will be discussed
later). All ILs showed wilting symptoms from DAT 19 to DAT
22, and consequently, plant size (height and width) and leaf area
were decreasing. Under water deficit conditions, plants exhibited
several important physiological responses, including decreased
cell turgor (Chaves et al., 2009) and leaf rolling (Sudhakar et al.,
2016). Along with size, a lower turgor pressure results in a
“wilted” cell or plant structure (i.e., leaf and stalk). The change
in the leaf shape or form (leaf rolling) of plants experiencing
water deficit provides a less exposed surface area to reduce
transpiration. Both decreased cell turgor and leaf rolling led to
the decreasing number of plant pixels on RGB images at the time
of maximum stress. At the same time, physiological traits, such
as color ratios of Y2G and brown to green, which may represent
stress or wilting symptoms (Neumann et al., 2015), were at the
maximum at DAT 22. Especially color traits were identified as
early response traits which represent signs of wilting before the
permanent wilting point is reached. At the permanent wilting
point (commonly estimated for agricultural crops at −1.5 kPa

soil matric potential), plants fail to recover their turgor upon
rewetting (Tolk, 2003). In our case, maize plants experienced
temporary wilting symptoms as they all recovered after increasing
SFC from 20 to 30%.

The coefficient of variation was used to analyze the degree of
phenotypic EBv variation over time. The change in the coefficient
of variation may reflect the variation in the traits with crop
growth (Han et al., 2018). In C and N treatments, heterogeneity of
the EBv among ILs gradually decreased, which may suggest that
the function of the EBv for plant growth is better during early
growth stages than later ones. This is in agreement with Han et al.
(2018) who analyzed the phenotypic variation of PHg and canopy
cover during four critical growth stages of maize in non-stress
field conditions. However, during severe (maximum) stress in W
and NW, ILs became more different, which is expected as studied
ILs are mixture of resistant and susceptible ones. Increased
genetic variability in drought conditions is commonly observed,
e.g., in maize (Campos et al., 2004). Observed genotypic variation
of the EBv was consistently high throughout the growing period
in each treatment. However, variation of the EBv explained by the
genotype across treatments showed a decreasing genetic variation
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as stress get higher and the interaction term became equal to
the genetic term. Our results suggests that the variation in the
EBv during the plant growth is largely governed by genetic and
interaction factors, rather than the treatment factor. Significant
genotype × treatment effects indicate that genetically determined
differences in the stress response were high enough to be detected
by the EBv trait. Crop external phenotypes, such as morphology
or biomass, results from internal phenotypes (structural traits
from the cellular to the plant level and physiological traits), which
are also influenced by the genotype × environment interaction
(Zhao et al., 2019).

Generally, correlations between the EBv and image-derived
morphological and color-related traits were much better at earlier
than later growth stages. The phenomenon that correlations
between various maize plant growth parameters became weaker
at later growth stages was also reported by other authors in field
(Freeman et al., 2007) and controlled conditions (Ge et al., 2016;
Muraya et al., 2017). This can be attributed to the large difference
in the plant architecture of maize genotypes as plants grow larger
(Ge et al., 2016). In addition, the correct determination of some
image-derived traits at later developmental stages can be biased
by overlapping leaves or by reduced accuracy of measurements
on material that are too tall (Golzarian et al., 2011; Pereyra-
Irujo et al., 2012; Humplík et al., 2015; Ge et al., 2016; Pugh
et al., 2018). Related to these, covariance structures that best
explain the response of variability and correlations between the
repeated measurements showed that correlations either decay
(EBv and morphological traits) or change (FI and color-related
traits) over days.

In the control condition, CLe and PHg (i.e., plant size)
were two of the traits that had the longest duration of a
significant correlation with the EBv. Both traits may be regarded
as important traits in maize because they are highly heritable
(Peiffer et al., 2014; Dodig et al., 2019) and easy to measure. It
was reported that PHg correlated highly with biomass or grain
yield in maize (Salas Fernandez et al., 2009; Yin et al., 2011;
Barrero Farfan et al., 2013; Han et al., 2019b). Caliper length
was a significant contributor to manually measured fresh and
dry weights in maize grown under non-stress conditions (Dodig
et al., 2019). A longer caliper was consistent with a larger leaf area
(Neilson et al., 2015). The produced leaf area during vegetative
stages is closely associated with the growth rate at flowering,
which in turn increases the seed number (Moser et al., 2006;
Borras et al., 2009). Both the plant size and leaf area, among
other traits, are reported to contribute as constitutive traits in
dehydration avoidance (ability to sustain tissue hydration under
drought) in drought-resistant cereal cultivars (Blum, 2005).

A faster decrease of correlation coefficients between the EBv
and other image-derived traits with increasing stress intensity
suggests that different physiological mechanisms and genes
may be involved in adaptation for higher stress (Banziger and
Edmeades, 1997). Although morphological image-derived traits
remain highly correlated with the EBv also in stress conditions,
color-related traits such as color ratios (Y2G and brown to
green) showed a more durable significant effect on the EBv
than morphological traits (except CLe). Color ratios may help
to determine a different stress status and its effects on the

phenotype (Chen et al., 2014), and since they are highly heritable
(in the range of 0.60 and above), they can be used in studies
to investigate the genetics of wilting processes (Neumann et al.,
2015; Dodig et al., 2019). However, selecting not only the most
appropriate traits but also the critical time for their evaluation
is also essential to be determined (Araus and Cairns, 2014). The
highest correlation between the secondary trait and the target
trait (biomass or yield) is considered to be a critical stage from
a breeding point of view. For example, few traits such as Lab_b,
FI, and relative growth rate had exerted a particularly strong and
timely effect on the EBv at the time of maximum water stress.
Few traits such as solidity, SCov, and Lab_a had two periods
of significant effects on the EBv: first, at earlier growth stages
when no or little stress was present (up to DAT 12–13) and
again at the maximum water stress (DAT 22–23). Only FI can
be used to differentiate stressed genotypes after maximum stress
(DAT 23–29). This is in agreement with the statement that a
single chlorophyll fluorescence level can be used to distinguish
between non-stressed and senescent area primarily at later stages
of stress development (Humplík et al., 2015). The FI estimation
based on color detection by RGB imaging allows the detection
of senescence, necrosis, and chlorosis, but it is not suitable for
measuring photosynthetic activity since the lighting system is
not pulsed. In general, under no stress or mild stress conditions,
morphological traits were more appropriate than color-related
traits for the prediction of biomass accumulation. Nevertheless,
under more severe stress conditions, color-related traits and FI
would be more useful to differentiate genotypes for high biomass.
Both types of traits (morphological and physiological) are shown
to be more indicative for biomass accumulation earlier than
later in the season. This may imply that the number and the
size of genetic factors operative at later stages are not much
larger and much higher in effect than those acting at early stages
(Muraya et al., 2017).

To analyze whether ILs can express the EBv in similar
patterns, temporal profiles were clustered by using the fuzzy
c-means clustering method. Typical temporal profiles could
provide better distinction of genetic differences in the time
dimension (Han et al., 2019a). We have identified two temporal
dynamics of EBv patterns among the studied ILs in each
treatment (named groups A and B). Basically, in each treatment,
groups were distinguished by the size of the EBv. Group A
had a constantly higher EBv and plant size (i.e., PHg and
CLe) through the experiment than group B. However, the
difference was bigger at the beginning of the experiment than
in the end due to a constantly higher relative growth rate
of group B than group A by 14, 16, 20, and 19% in C, N,
W, and NW, respectively. Furthermore, group B showed a
strong increase in solidity and SCov (proxies for the leaf area
index) compared with group A, being lower at the beginning
but increasing until the end of the experiment. The leaf area
index is defined as one half the total/green leaf area per
unit horizontal ground surface and plays an important role in
processes such as canopy interception, evapotranspiration, and
gross photosynthesis (Yang et al., 2009). A recent study showed
leaf area index dynamics as a promising trait in crop breeding
(Blancon et al., 2019).
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Color ratios at maximum stress (at DAT 22 in W and
NW; at the end of experiment in N) were lower in group B,
suggesting a lower level of stress in group B compared with
group A. Indeed, group B had better DTO than group A.
The typical growth curve of groups A and B for the period
between the maximum growth before maximum stress and
the day following maximum stress (DAT 19–23) showed that
the EBv in group B started to decrease 1 day later than in
group A. Moreover, a relative decline of the EBv immediately
following the maximum growth before DAT 22 was lower in
group B than in group A for 4–5%. It seems that smaller plants
(group B) faced less severe drought than taller plants (group
A). Different genotypes might have experienced different stress
levels due to differences in biomass. A smaller plant/genotype
would have a lower demand for water than a taller one.
Indeed, SFC at maximum stress (DAT 22) was significantly
different among ILs in both water stress treatments, ranging
from 19.3 to 24.3% (W) and from 19.5 to 24.7% (NW).
These differences were in significant negative correlations with
maximum EBv growth before maximum water stress in W
(r = −0.605∗∗) and NW (r = −0.502∗). Both parameters,
the EBv decline in days and its relative decrease following
maximum growth, may characterize timing and quantity of
wilting symptoms in each IL, respectively. In this regard, IL 16
(1 day of decline and 1% of decrease), IL 3 (1 day and 3%),
and IL 17 (1 day and 4%) were the most drought-resistant
ILs in both water stress treatments. In addition, these ILs
were among the top ranked for DTO based on the relative
growth calculated for the period between water stress initiation
and maximum water stress. The genetic gain in maize yield
is not associated with yield potential per se, or with heterosis
per se, but rather with increased stress tolerance, and the
potential for the future yield improvement through increased
stress tolerance of maize is still large (Tollenaar and Lee,
2002; Duvick, 2005). Interestingly, the improvement of mid-
season DTO in maize resulted also in improved performance
under low nitrogen stress, without significant yield penalties
under optimal input conditions (Banziger et al., 1999; Zaidi
et al., 2004). Indeed, our previous study (Dodig et al., 2019)
showed that high resilient/tolerant and high productive ILs had
significantly better physiological nitrogen use efficiency than
low resilient/tolerant and low productive ILs under nitrogen
stress treatment. Interestingly, when we compared fuzzy c-mean
cluster group A and group B for mean physiological nitrogen use
efficiency, there was no difference between them under nitrogen
stress. However, under W and NW, group B showed better
physiological nitrogen use efficiency than group A, suggesting
that better nitrogen use under water stress may help DTO. This
needs further investigation given the fundamental importance
of water and nitrogen supply to the success of sustainable
crop production.

Drought recovery is defined as the capability of plants to
resume growth and to yield after drought events that altered
plant water relations (Luo, 2010; Fang and Xiong, 2015). While
group B had better DTO than group A, the latter had better
DRC and DAD. The strongest DRC in W and NW was recorded
in ILs 6, 9, 12, 13, and 19, all belonging to group A. The

correlation analysis confirmed a weak relationship between DTO
and DRC. DTO was in positive and significant correlation with
RGR and WUE, but not with plant size (maximum EBv before
wilting point) in both water-limiting settings. On the other
side, DRC was in positive correlation with WUE but not with
RGR. Although plant size had a positive effect on DRC, it
was significant only in W. This is in agreement with previous
studies, which reported that drought and subsequent recovery
had been independently regulated processes (Chen et al., 2016;
Lyon et al., 2016). DTO and DRC are key determinants of plant
drought adaptation (Chen et al., 2016). Our results suggest that
DRC may play a more critical role than DTO in DAD. This
is partly in agreement with Chen et al. (2016) who reported
that DAD is closely related to DRC but not to DTO. Among
the five ILs with the highest DAD in W (ILs 6, 8, 12, 16, and
19), IL 8 and IL 16 had high DTO, while IL 6, IL 12, and
IL 19 had high DRC. Several ILs had high tolerance but low
recovery (e.g., ILs 3, 7, and 17) and vice versa (ILs 9 and 13).
The same is in NW. The best performing ILs for drought-
adaptive capabilities were IL 6 (high DRC and DAD, and average
DTO) and IL 8 (high DTO and DAD, and average DRC). ILs
6 and 8 belong to different groups, A and B, respectively, in
both water stress treatments. This suggests that the ILs with
different temporal profiles had different strategies to cope with
drought stress. Avramova et al. (2016) showed that drought-
tolerant maize hybrids of European and African origin differed
in acclimation of the shoot and root growth and development
in response to drought stress. Thus, these two ILs with different
growth trajectories in our study could theoretically be crossed
to pyramid a new genotype with a desirable growth phenotype
under water stress. Finally, the obtained results on drought
capabilities fit well to the initial classification of susceptible
(ILs 1–5) or tolerant (ILs 6–20) as known from previous field
experiments (Supplementary Table 1). However, future work
will consider releasing a dataset from field trials in order to make
research more broadly relevant.

Finally, to define the roles of morphological and physiological
traits in plant drought adaptation, a correlation analysis between
drought-adaptive capabilities and image-derived traits was
conducted at two time points. A lower number of significant
correlations found at DAT 35 compared with DAT 22 indicated
that drought stress-related traits should be studied during or
immediately after the application of maximum stress. Under
maximum water stress, accumulated biomass, relative growth
rate, and proxies for the leaf area index (solidity and soil
coverage) can be considered, among the studied traits, as the
most relevant indicators of DTO and DAD. Furthermore, lower
color ratios (i.e., more green biomass) will contribute to better
DTO. More greenness means less damaged tissue, which may
contribute to the better maintenance of photosynthesis. Both
biomass-related traits (aerial biomass and relative growth rate)
and leaf area are basic growth traits proved to be the key
indicators related to water deficit in maize (Sinclair et al., 1990;
Tollenaar and Lee, 2006; Cairns et al., 2012; Chapuis et al.,
2012; Paredes et al., 2014). For example, the results of the
study of Chapuis et al. (2012) indicated that the capacity to
maintain leaf growth under water deficit in controlled conditions
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was consistent with high grain yield in different field drought
environments. Several other non-morphological and non-color-
related traits were reported to contribute to DTO such as leaf
water potential, chlorophyll content, starch content, total non-
structure carbohydrate, nitrogen content, and Fv/Fm (Chen et al.,
2016). Inbred lines with higher accumulated biomass at DAT 35
had better DRC and DAD, but not tolerance. However, DTO
can be improved by relative growth rate. Interestingly, only the
EBv and plant compactness (only in NW) showed a significant
relationship with DRC at DAT 35, but not at DAT 22, suggesting
different physiological bases of DTO and DRC. It seems that
genetically determined differences in the DRC were too small to
be detected by morphological and color-related parameters used
in this study. Recovery after stress in maize involved multiple
physiological and metabolic processes to repair drought-induced
injuries and resume plant growth (Avramova et al., 2015; Chen
et al., 2016; Zhang et al., 2018). The studies of Chen et al. (2016)
and Zhang et al. (2018), for example, showed that reducing the
damage caused by drought on the plant photosynthetic system
and the chlorophyll content contributes to a better recovery after
rewatering. Obviously, a set of only six morphological and five
physiological (mainly color-related) traits was not sufficiently
large to capture these complex biological processes related to
recovery. However, the latter upgraded the system at IPK, which
now supports the assessment of approximately 200 phenotypic
traits, including kinetic chlorophyll fluorescence (Tschiersch
et al., 2017), which may serve as a useful resource for future
investigations of drought-responsive traits.

CONCLUSION

In this study, we have used non-invasive and high-throughput
phenotyping for the quantitative assessment of dynamic growth
and architectural patterns during drought across vegetative
maize development. The accumulated biomass, relative growth
rate, leaf area index, and color ratios under water stress were
identified as drought- and recovery-responsive traits and could
be used as reference indicators in the selection of drought-
adaptive genotypes. The relative growth rate, leaf area index, and
greenness of the plant were related to DTO, whereas the EBv
was indicative of DRC. The correlation analysis suggests that
DRC may play an equal role as DTO in DAD. In general, under
no stress or mild stress conditions, morphological traits were
more appropriate than color-related traits for predicting biomass
accumulation. Nevertheless, under more severe stress conditions,

color-related traits and FI would be more useful to differentiate
the genotypes’ high biomass production ability. Genotypes with
high DAD but different growth trajectories could be theoretically
crossed to pyramid a new genotype with a desirable growth
phenotype under water stress.
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