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Cell-to-cell communication in plants is mediated by plasmodesmata (PD) whose 
permeability is tightly regulated during plant growth and development. The actin 
cytoskeleton has been implicated in regulating the permeability of PD, but the underlying 
mechanism remains largely unknown. Recent characterization of PD-localized formin 
proteins has shed light on the role and mechanism of action of actin in regulating 
PD-mediated intercellular trafficking. In this mini-review article, we will describe the progress 
in this area.
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INTRODUCTION

The growth and development of multicellular organisms requires intercellular communication. 
Intercellular communication in plants can be classified into symplasmic and apoplasmic pathways. 
For the symplasmic pathway, intercellular communication is achieved through complex channel-
like structures embedded within the cell walls, called plasmodesmata (PD). The development 
of the PD structure enables the trafficking of molecules between adjacent plant cells, including 
some small molecules, such as ions, carbohydrates, and hormones, as well as some large 
molecules including RNAs, proteins, and viruses (Tilsner et  al., 2016; Lee and Frank, 2018). 
As such, PD are involved in the regulation of plant growth and development and environmental 
adaptation including disease resistance (Cheval and Faulkner, 2018). The structure and function 
of PD must be  tightly regulated throughout the life of a plant (Lee and Frank, 2018). Indeed, 
many factors have been shown to be  involved in regulating the permeability of PD. For 
instance, the callose at the neck of PD is involved in the regulation of intercellular trafficking 
in plants. It was shown that callose deposition at PD will accelerate during virus infection in 
order to prevent the spread of viruses (Levy et  al., 2007). In line with this finding, some 
viruses have movement proteins (MPs), which can mediate the degradation of callose to open 
up PD (Schoelz et  al., 2011). In addition, consistent with the presence of actin cytoskeletal 
proteins in PD, the actin cytoskeleton has been implicated in the regulation of intercellular 
trafficking via PD (White and Barton, 2011; Pitzalis and Heinlein, 2017), but the underlying 
mechanism remains largely unexplored. In this mini-review, we  are going to describe the 
recent progress made in this respect.
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EVIDENCE SUPPORTING THE ROLE OF 
ACTIN IN REGULATING THE 
PERMEABILITY OF PD

Actin is a highly conserved 42  kDa protein, and it is very 
abundant in eukaryotes. Actin is involved in many cellular 
physiological processes in plants, including cell growth, cell 
division, cytokinesis, and various intracellular trafficking events. 
As such, actin plays a crucial role in plant growth and 
development (Szymanski and Staiger, 2018). Under optimal 
conditions, actin can assemble into filamentous structures, called 
actin filaments (F-actin) or microfilaments. Most actin-based 
functions are dictated by the spatial organization and dynamics 
of F-actin in cells. Within cells, actin is associated with many 
proteins, called actin-binding proteins (ABPs), which modulate 
the kinetics of actin assembly and disassembly as well as 
facilitating the formation of different actin structures (Wang 
et  al., 2015). Characterization of the role and mechanism of 
action of ABPs promises to provide insights into the action 
of actin within different cellular physiological processes.

Experimental treatments with actin-based pharmacological 
agents showed that the actin cytoskeleton is involved in the 
regulation of intercellular communication via PD. It was shown 
that the transport efficiency through PD increases after 
microinjection of specific actin depolymerizers into tobacco 
mesophyll cells, whereas the transport efficiency decreases after 
microinjection of the microfilament stabilizer phalloidin into 
the cells (Ding et  al., 1996; Su et  al., 2010). In line with these 
findings, treatment with the myosin inhibitor 2,3-butanedione 
monoxime (BDM) reduces the neck width of PD (Radford 
and White, 1998). However, given that those drugs non-selectively 
target the actin cytoskeletal system within cells, it remains 
uncertain whether, and to what extent, the changes in structure 
and function of PD result from the alteration in the actin 
cytoskeletal system.

In addition to functioning in plant growth and development, 
PD are involved in defense against plant pathogens (Cheval 
and Faulkner, 2018). The important role of PD in virus infection 
is quite obvious, as viruses spread between cells using PD as 
the channels. Plant viruses encode MPs to mediate the 
intercellular transport of infectious genomes via PD. It was 
reported that MPs can mediate the degradation of callose to 
open up PD (Schoelz et  al., 2011). Besides that, another 
interesting report showed that MPs open up PD via interacting 
with the actin cytoskeleton in PD. Specifically, it was shown 
that Cucumber mosaic virus (CMV) MP severs and caps actin 
filaments in vitro and its filament severing activity is required 
for its function in PD (Su et  al., 2010). Accordingly, it was 
shown that pretreatment with the actin monomer sequestering 
reagent latrunculin A (LatA) to depolymerize actin filaments 
promotes the function of MP in opening up PD, whereas 
pretreatment with phalloidin to stabilize actin filaments has 
the opposite effect (Su et  al., 2010). These studies imply that 
there might exist endogenous ABPs that are involved in regulating 
the permeability of PD via controlling actin dynamics in PD. 
However, due to the lack of techniques to directly visualize 

the actin cytoskeleton in PD, there is still a debate about 
whether filamentous actin exists in PD and, if so, how it is 
organized. This prevents us from understanding the function 
of the actin cytoskeleton in regulating cell-to-cell trafficking 
via PD. In this regard, development of technology enabling 
the visualization of the actin cytoskeleton in PD is extremely 
necessary. In addition, development of methods to specifically 
alter actin dynamics in PD might provide insights into the 
function and mechanism of action of actin in the regulation 
of PD function.

THE PRESENCE OF ACTIN AND ACTIN-
BINDING PROTEINS IN PD

The involvement of the actin cytoskeleton in regulating the 
function of PD is also supported by data showing that actin 
and some ABPs associate with PD. The association of actin 
with PD was initially discovered by the immunogold labeling 
approach (Table  1; White et  al., 1994; Blackman and Overall, 
1998) using a monoclonal antibody against chicken gizzard 
actin. The association of actin with PD structures was further 
confirmed using fluorescent phalloidins or by 
immunofluorescence using an antibody against human actin 
(Table  1; Baluska et  al., 2001, 2004).

Similarly, myosin was first discovered to associate with PD 
with immuno-EM using polyclonal antibodies against animal 
myosins (Table  1; Blackman and Overall, 1998; Radford and 
White, 1998), which recognize highly conserved motifs in the 
myosin head, as well as an antibody against the C-terminal tail 
of plant myosin VIII (Table 1; Reichelt et al., 1999). The association 
of myosins with PD was also verified by immunofluorescence 
analyses with the same antibodies (Table 1; Radford and White, 
1998; Reichelt et al., 1999; Baluska et al., 2001, 2004). Subsequent 
analysis of myosin XI fused to different fluorescent proteins 

TABLE 1 | Actin and its associated proteins identified in plasmodesmata (PD).

Cytoskeletal 
protein

Function Reference(s)

Actin Building blocks of the 
actin cytoskeleton

White et al., 1994; Ding et al., 1996; 
Blackman and Overall, 1998; 
Fernandez-Calvino et al., 2011

Myosin Actin filament side 
binding; actin-based 
movement

Blackman and Overall, 1998; Radford 
and White, 1998; Reichelt et al., 1999; 
Volkmann et al., 2003; Wojtaszek et al., 
2005; Golomb et al., 2008; Sattarzadeh 
et al., 2008; Fernandez-Calvino et al., 
2011; Haraguchi et al., 2014

Tropomyosin Actin filament side 
binding

Faulkner et al., 2009; Fernandez-
Calvino et al., 2011

ARP2/3 Actin nucleation Van Gestel et al., 2003
NET Actin binding Deeks et al., 2012
Formin Barbed end capping, 

actin nucleation
Diao et al., 2018; Oulehlova et al., 2019

Profilin Actin monomer binding Fernandez-Calvino et al., 2011
ADF Actin filament severing; 

actin monomer binding
Fernandez-Calvino et al., 2011

GSD1 Actin binding Gui et al., 2014
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showed no localization to PD (Reisen and Hanson, 2007). 
Interestingly, one GFP fusion with the IQ-tail zone of ATM1, 
a member of the Arabidopsis myosin VIII family, appears to 
localize to sites of ER attachment as well as pitfields when 
expressed in Nicotiana benthamiana leaves (Golomb et al., 2008).

In addition, it was shown that tropomyosin-like proteins 
localize to PD and cell plates using antibodies against mammalian 
tropomyosins (Table  1; Faulkner et  al., 2009). Using the same 
approach, it was shown that actin-related protein 3 (Arp3) is 
localized in PD and multivesicular bodies (MVBs) in maize 
and tobacco (Table  1; Van Gestel et  al., 2003). In addition, 
it was shown that a plant-specific ABP, network protein 1A 
(NET1A), is able to localize to PD (Table  1; Deeks et  al., 
2012). Another interesting report showed that grain setting 
defect1 (GSD1), a plant-specific remorin protein, is able to 
interact with actin (Gui et  al., 2015) and can localize to PD 
(Table  1; Gui et  al., 2014). The presence of ABPs in PD was 
also supported by data showing that profilin and ADF are 
present in the Arabidopsis plasmodesmal proteome (Table  1; 
Fernandez-Calvino et  al., 2011). Certainly, direct cytological 
evidence is needed to confirm that these proteins are indeed 
localized to PD. Interestingly, recent characterization showed 
that several Arabidopsis and rice class I  formins associate with 
PD (Table  1; Diao et  al., 2018; Oulehlova et  al., 2019). In 
summary, actin and some ABPs are able to associate with PD.

THE ROLE OF CLASS I  FORMINS IN 
REGULATING THE PERMEABILITY OF PD

Formin (formin homology protein) nucleates actin assembly 
for the generation of linear actin bundles. The formin proteins 
contain the characteristic formin homology domain 1 (FH1) 
and FH2, which are capable of nucleating actin assembly 
from actin or actin-profilin complexes. The biochemical 
activities of plant formins have been characterized extensively 
in vitro and most of them are typical formins that nucleate 
actin assembly from actin or actin bound to profilin (van 
Gisbergen and Bezanilla, 2013). In vitro biochemical analysis 
revealed that some plant formins have evolved some unusual 
activities. For instance, AtFH1 was shown to be a nonprocessive 
actin polymerase, which can bundle actin filaments (Michelot 
et  al., 2006). The formin proteins have been implicated in 
numerous actin-based cellular processes in plants, such as 
pollen germination (Lan et al., 2018; Liu et al., 2018), polarized 
pollen tube growth and root hair growth (Ye et  al., 2009; 
Cheung et  al., 2010; Huang et  al., 2013; Lan et  al., 2018), 
cell division (Li et  al., 2010), cytokinesis (Ingouff et  al., 
2005), and cell expansion (Yang et  al., 2011; Zhang et  al., 
2011), as well as defense (Favery et  al., 2004). There are 21 
formin genes in the Arabidopsis genome, and the encoded 
proteins can be  divided into two classes (Blanchoin and 
Staiger, 2010). Specifically, there are 11 class I  formins and 
10 class II formins in Arabidopsis. Among them, Class 
I  formins contain the characteristic transmembrane domain 
(TMD) at their N-terminus, which enable them to target to 
membranes (van Gisbergen and Bezanilla, 2013).

Interestingly, recent studies showed that several class I formins 
specifically localize to PD (Diao et  al., 2018; Oulehlova et  al., 
2019) and they are involved in regulating the permeability of 
PD in Arabidopsis (Diao et  al., 2018). It was shown that the 
class I  formin AtFH2 localizes to PD in various tissues, and 
this function is dictated by its N-terminal TMD. Analysis of 
atfh2 mutants showed that the permeability of PD is increased 
when compared to WT. As such, atfh2 mutants are sensitive 
to virus infection. Strikingly, it was shown that a mutant AtFH2, 
which was deficient in interacting with actin filaments, failed 
to rescue the defective intercellular trafficking via PD in atfh2 
mutants. This suggests that the interaction of AtFH2 with the 
actin cytoskeleton is crucial for its function in PD. In vitro 
biochemical analysis showed that AtFH2 lacks actin nucleation 
activity but it caps the barbed end of actin filaments and 
stabilizes them against dilution-mediated depolymerization in 
vitro (Diao et  al., 2018). This allows us to speculate that actin 
filaments become instable and/or the amount of actin filaments 
is reduced in PD in atfh2 mutants. It is quite unusual that 
AtFH2 can cap the barbed end of actin filaments to prevent 
their elongation but fails to nucleate actin assembly in vitro. 
Certainly, it cannot be  completely ruled out that AtFH2 is 
able to nucleate actin assembly after post-translational 
modification or by interacting with some partners in vivo. 
Nonetheless, the current in vitro biochemical data suggest that 
AtFH2 regulates actin dynamics only by binding to the barbed 
end of filamentous actin. To some extent, this supports the 
notion that actin filaments exist in PD. Certainly, uncovering 
the precise localization of AtFH2  in PD will further refine 
this hypothesis. However, we  still do not know how to fit 
actin filaments into PD as the gap between the plasma membrane 
and the ER (called the cytoplasmic sleeve) within PD pores 
is less than 10  nm (Nicolas et  al., 2017). It could be  possible 
that actin filaments stay in cytoplasmic sleeve but twine around 
the ER within PD pores. In addition, Nicolas et  al. (2017) 
also discovered a second PD morphotype (type I) that lacks 
a visible cytoplasmic sleeve but is capable of non-targeted 
movement of macromolecules, which indicates that the size 
of PD pores undergoes dynamic changes. Therefore, the space 
of cytoplasmic sleeve might increase substantially under certain 
condition that allows the fitting of actin filaments.

Interestingly, it was shown that several other class I  formins 
are also able to target to PD. Specifically, the closest homolog 
of AtFH2, namely AtFH1, is also able to associate with PD 
(Diao et  al., 2018; Oulehlova et  al., 2019). AtFH1 functions 
redundantly with AtFH2  in regulating the permeability of PD 
(Diao et  al., 2018). Strikingly, it was shown that several rice 
class I  formins are also able to target to PD (Diao et  al., 2018), 
suggesting that targeting of class I formins to PD is an evolutionarily 
conserved strategy in plants. An interesting but yet-to-be-answered 
question is how the TMD of the PD-localized class I  formins 
have evolved to enable their targeting to PD. This function may 
be  linked to the fact that the membrane of PD has a unique 
phospholipid composition (Grison et  al., 2015). Certainly, it 
could be  possible that the TMD of those class I  formins might 
have additional functions besides the membrane anchoring. In 
support of this speculation, a very recent report showed that 
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TMD of Arabidopsis thaliana Plasmodesmata-located protein 
(PDLP) 5 is involved in the self-interaction of PDLP5 that is 
essential for PDLP5 to regulate cell-to-cell movement besides 
its role in membrane targeting (Wang et  al., 2020).

As mentioned above, PD permeability is increased in atfh2 
mutants. Interestingly, targeting of Arabidopsis FIMBRIN 5 
(FIM5) to PD alleviates the intercellular trafficking phenotype 
in atfh2 mutants (Figure 1). This suggests that loss of AtFH2 
causes instability of actin filaments and/or reduction in the 
amount of actin filaments in PD. These data actually support 
the previous notion that stabilization of actin filaments 
decreases the permeability of PD whereas destabilization of 
actin filaments increases it (Ding et al., 1996; Su et al., 2010). 
In summary, these data together suggest that the amount 
of actin filaments and/or the stability of actin filaments are 
crucial for the permeability of PD, and actin filaments in 
PD presumably act as the physical barrier to regulate the 
permeability of PD.

CONCLUSIONS AND PERSPECTIVES

Increasing evidence is showing that the actin cytoskeleton is 
involved in the regulation of intercellular transport through 
PD, whereas the molecular mechanism by which the actin 
cytoskeleton regulates the permeability of PD remains largely 
unexplored. Research in this area progresses slowly for at 
least two reasons. Firstly, researchers lack approaches to directly 
visualize the actin cytoskeleton in PD, because PD are tiny 
structures that are deeply embedded in the cell walls. Secondly, 

researchers lack approaches to specifically manipulate the 
function of the actin cytoskeleton in PD. Recent identification 
of PD-localized class I  formins provides the possibility to 
manipulate the actin cytoskeleton in PD via regulating the 
function of those formins. Indeed, analysis of PD permeability 
in mutants lacking AtFH2 or AtFH1 and AtFH2, in combination 
with in vitro biochemical characterization of AtFH2, allows 
us to conclude that actin filaments might act as the physical 
barrier in controlling the permeability of PD. This is actually 
consistent with a previous assumption that actin filaments in 
PD might act as the filter in controlling PD permeability 
(Chen et  al., 2010). However, the precise localization of 
AtFH2  in PD is currently unknown. Dissection of the AtFH2-
mediated actin regulatory machinery in PD, for example, by 
searching for AtFH2-interacting proteins or screening for 
suppressors or enhancers of the atfh2 mutant phenotype, might 
provide further insights into the function and regulation of 
the actin cytoskeleton in PD. In summary, recent 
characterizations of PD-localized class I formins have provided 
insights into the function and mechanism of action of actin 
in regulating the permeability of PD. However, it remains 
largely unknown how exactly the actin cytoskeleton regulates 
the structure and function of PD. This will be  an exciting 
research avenue in the future.
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FIGURE 1 | Targeting of FIMBRIN 5 (FIM5) to PD Alleviates the PD Phenotype in atfh2 Mutants. (A) Subcellular localization of PDFIM5-eGFP and Cucumber 
mosaic virus (CMV) movement protein (MP)-mCherry in epidermal pavement cells of Nicotiana benthamiana leaves. PDFIM5 was obtained by fusing the N-terminal 
fragment of AtFH2 (AtFH2N282) with Arabidopsis FIMBRIN5 (Wu et al., 2010). PDFIM5 was further fused to eGFP (Diao et al., 2018). Plasmids encoding PDFIM5-
eGFP and CMV MP-mCherry were introduced into Agrobacterium tumefaciens strain GV3101 and transiently expressed in N. benthamiana leaves by GV3101 
injection. Bar = 10 μm. (B) Images of eGFP diffusion in leaf epidermal pavement cells of WT, atfh2, and PDFIM5; atfh2 plants. PDFIM5 was constructed as in (A). 
The PDFIM5 plasmid was introduced into Agrobacterium tumefaciens strain GV3101 and transformed into atfh2 plants by the floral dip method. The PD permeability 
of WT, atfh2, and atfh2 harboring PDFIM5 was assessed by the eGFP diffusion assay (Diao et al., 2019), and the images were collected by confocal microscopy. Bar 
= 10 μm. (C) Quantification of the number of cell layers with eGFP diffusion in Arabidopsis leaf epidermal pavement cells at 24 h after bombardment. PDFIM5; atfh2 
represents atfh2 plants expressing PDFIM5. More than 30 cells were counted and the experiments were repeated at least three times. Error bars represent SE. 
*p < 0.05 and **p < 0.01 by Mann-Whitney U test. ND, no statistical difference.
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