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Grazing exclusion is an effective management practice to restore grassland ecosystem
functioning. However, little is known about the role of soil microbial communities in
regulating grassland ecosystem functioning during long-term ecosystem restorations.
We evaluated the recovery of a degraded semiarid grassland ecosystem in northern
China by investigating plant and soil characteristics and the role of soil microbial
communities in ecosystem functioning after 22 years of grazing exclusion. Grazing
exclusion significantly increased the alpha diversity and changed the community
structure of bacteria, but did not significantly affect the alpha diversity or community
structure of fungi. The higher abundance of copiotrophic Proteobacteria and
Bacteroidetes with grazing exclusion was due to the higher carbon and nutrient
concentrations in the soil, whereas the high abundance of Acidobacteria in overgrazed
soils was likely an adaptation to the poor environmental conditions. Bacteria of the
Sphingomonadaceae family were associated with C cycling under grazing exclusion.
Bacteria of the Nitrospiraceae family, and especially of the Nitrospira genus, played
an important role in changes to the N cycle under long-term exclusion of grazing.
Quantitative PCR further revealed that grazing exclusion significantly increased the
abundance of nitrogen fixing bacteria (nifH), ammonia oxidizers (AOA and AOB), and
denitrifying bacteria (nirK and nosZ1). Denitrifying enzyme activity (DEA) was positively
correlated with abundance of denitrifying bacteria. The increase in DEA under grazing
exclusion suggests that the dependence of DEA on the availability of NO3

− produced is
due to the combined activity of ammonia oxidizers and denitrifiers. Our findings indicate
that decades-long grazing exclusion can trigger changes in the soil bacterial diversity
and composition, thus modulating the restoration of grassland ecosystem functions,
carbon sequestration and soil fertility.
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INTRODUCTION

Livestock grazing is a common grassland management practice
with far-ranging societal and environmental impacts. However,
the effect of grazing on grassland ecosystem functioning
primarily depends on the initial grazing intensity (Bardgett and
Wardle, 2003). Overgrazing has been found to cause degradation
of grassland ecosystem functioning and to reduce both plant
productivity and soil fertility, resulting in nutrient depleted initial
systems (Bardgett and Wardle, 2003; Chartier et al., 2013; Li et al.,
2016; Yang et al., 2019). Grazing exclusion is an effective grassland
management practice aimed at preventing grassland degradation
and maintaining grassland ecosystem functions (Wang et al.,
2018). Grazing exclusion can promote plant productivity (Deng
et al., 2014), species diversity (Wu et al., 2014), soil fertility (Raiesi
and Riahi, 2014), and soil microbial activity (Owen et al., 2015).
Previous studies reported that approximately 20 years of grazing
exclusion would be appropriate for restoring the degraded
grasslands in northern China in terms of productivity and C and
N storage (Qiu et al., 2013). Microbes are important contributors
to the structure and functioning of ecosystems (Buyer et al.,
2010); they drive nutrient transport and cycling in the soil
(Wang Z. et al., 2019). However, there is not much literature
reporting on the cumulative effects of long-term continuous
overgrazing on the soil microbial community, and the role of
the soil microbial community in the temporal progression of
recovery from overgrazing remains unclear.

Grazing exclusion can have multiple effects on interactions
among the soil microbiome, plant community and soil properties
(Yang et al., 2018; Zhang X. et al., 2019). The plant community
is an important driver during ecosystem restoration, affecting
soil physicochemical properties by altering the input of litter,
soil turnover of roots, and root exudation (Fry et al., 2016). In
turn, the change in soil physicochemical properties influences
the microbial communities (Liu et al., 2018). Microbes may,
therefore, impact the growth of the plants in the sward because
microbes can drive the transformation of organic substrates and
the release of mineral elements during the process of ecosystem
restoration (Wang Z. et al., 2019). However, we do not know the
extent to which changes in the soil microbial community affect
the impact of the grazing exclusion on plant growth and soil
physicochemical properties.

On the other hand, soil microbial communities play an
important role in biogeochemical processes, especially the N
cycle. Microbes can support the N cycle via many of the critical
processes, including nitrogen fixation, assimilation, nitrification
and denitrification (Yang et al., 2013). Although grazing can
strongly influence these N processes and related microbial groups
(Patra et al., 2005; Xu et al., 2008; Xie et al., 2014), the effects of
grazing on N cycling and microbial groups depend on its intensity
(Bardgett and Wardle, 2003). Grazing exclusion eliminates the
intake of livestock, which often leads to an increase in soil C
and N storage, mainly due to the accumulation of plant litter on
the soil surface (Wang Z. et al., 2019). The high soil N content
under grazing exclusion increased soil ammonia availability,
and substantially impacted the activity and communities of
ammonia oxidizers (e.g., AOA, ammonia-oxidizing archaea;

AOB, ammonia-oxidizing bacterial) (Lou et al., 2011). As a result
of the change in nitrification [ammonium (NH4

+) is converted
to nitrite (NO2

−) and then to nitrate (NO3
−)], there is a change

in the soil N cycle (Philippot et al., 2011).
Moreover, appropriate restoration (approximately 20 years

of grazing exclusion) reduces soil compaction by avoiding
animal trampling, which results in increased soil aeration and
water-holding capacity (Kauffman et al., 2004; Blagodatsky
and Smith, 2012). The denitrification activities of bacteria are
suppressed in the presence of either NO3

− or NO2
− when animal

trampling is avoided due to the changes in soil aeration (Hayatsu
et al., 2008), which are linked to nitrite reductase and nitrous
oxide reductase encoded by nirK, nirS, and nosZ1 (Pan et al.,
2016). Therefore, further research is needed to investigate the
mechanisms behind the influence of ecosystem rehabilitation
on soil microbial community structure and function, especially
related to the N cycle.

In this study, we investigate the long-term impact of
grazing exclusion on the structure and functioning of soil
microbial communities during ecosystem recovery. Considering
the water-limited and oligotrophic environmental conditions
in the semi-arid steppe (Pan et al., 2016; Wang Z. et al.,
2019), the objectives of the current study were to analyze
(1) which main environmental factors drive the shift of soil
microbiome (bacterial or fungal community) during the recovery
of a degraded ecosystem after the release of grazing pressure;
and (2) whether the changes in the composition of soil
microbial communities play a large role in the recovery of the
biogeochemical function.

MATERIALS AND METHODS

Study Area
The field experiment was carried out at the Inner Mongolia
Grassland Ecosystem Research Station (N 43◦35′30′′ to
43◦35′42′′, E 116◦42′20′′ to 116◦42′35′′, Figure 1), which
represents the semiarid steppe ecosystem. The long-term mean
annual precipitation (1953–2009) was 335 mm, with more
than 70% of precipitation falling during the growing season
(May−August). The mean annual temperature is 0.4◦C, ranging
from the lowest monthly average temperature of −21.4◦C in
January to the highest of 18.0◦C in July. The soil is classified
as Calcic Chernozems (IUSS Working Group WRB, 2006),
with similar physiochemical properties of chestnuts and calcic
chernozems in a previous study (Steffens et al., 2008). The
basic soil properties of the study areas were found to comprise
17.3% clay, 34.8% silt and 47.9% sand by using the hydrometer
method (Kettler et al., 2001), the soil organic carbon (SOC) was
21.10 g kg−1 assessed using dichromate oxidation (Nelson and
Sommers, 1982) and soil total nitrogen (TN) content was 1.85 g
kg−1 assessed using an automatic Kjeldahl instrument (Kjeltec
8400, FOSS Corporation, Denmark).

Experimental Design and Sampling
To explore the role of grazing exclusion on grassland ecosystem
function, we compared the soil community in grazed plots
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FIGURE 1 | Effect of overgrazing and grazing exclusion on the semiarid steppe.

where grazing had been eliminated for 22 years. Our study was
established as a pair of large-scale plots which involved pseudo-
replication limited in space-for-time substitution. However, this
challenge is surmountable as has been reported in previous
ecological studies (Walker et al., 2010; Blois et al., 2013; Lü
et al., 2015). Grazing and grazing exclusion plots had similar soil
types, topographies, altitudes, slope gradients and slope aspects
(Supplementary Table 1). The grazed plots were located adjacent
to the grazing exclusion (or restoration) plots, and had been
grazed year-round for more than 30 years. Grazing begins in
early-June and ends in early-October. The stocking rate in the
grazing plots was approximately 3 sheep ha−1 y−1, which was two
times higher than the local stocking rate of 1.5 sheep ha−1 y−1 (Li
et al., 2015). The dominant plant species in the grazing site were
Stipa grandis (grass), Artemisia frigida, (forb), and Cleistogenes
polyphylla (grass) (Supplementary Table 2 and Supplementary
Figure 1), while the grazing exclusion site was dominated by
Leymus chinensis (grass) and Stipa grandis (grass) after 22 years
of restoration (Supplementary Figure 1). Bare soil increased by
24.25% under overgrazing in our study.

Four 20 m × 20 m plots were randomly established at each
site, using a paired sampling method within the overgrazed
and grazing exclusion treatments (Figure 1). The two sites
were never fertilized or mowed during the management. The
plots were randomly assigned within 200 m of each other.
Three 1 m × 1 m subplots were established along a transect
within each plot for investigation and sampling in mid-August
2018. In the middle of August during peak biomass, we

measured vegetation ground coverage, aboveground net primary
productivity (ANPP), plant height, and species richness (SR).
All aboveground plant materials were harvested to the ground
surface (including living aboveground biomass, standing litter,
and ground litter) in the quadrat (1 m× 1 m). We separated plant
aboveground tissue (living aboveground biomass) from standing
litter of the previous year and litter on the ground. We used
the Shannon−Wiener index (H = −6PilnPi) and plant species
richness to estimate the diversity of the plant communities, where
Pi is the ratio of the coverage of each species to the coverage
of all species. Harvested biomass was determined by drying
the aboveground tissues at 65◦C for 48 h (Wang et al., 2014).
Aboveground net primary productivity (ANPP) was calculated
as the sum of the aboveground biomass for all plant species
(Wang et al., 2016). Soil bulk density (BD) was measured by using
the USDA (1972) method. Five soil cores (3.5 cm in diameter)
were extracted and segmented in depth increments of 0–5, 5–
10, 10–15, and 15–20 cm. The core was composited at different
depth increments, air-dried, then ground until passable through
a 2-mm screen. Soil samples were collected from the top 20 cm of
the soil profile as soil cores (3.5 cm in diameter). Five soil cores
were collected from each subplot after removing aboveground
biomass, and then a total of 15 soil cores (five each from three
subplots) were combined to make one composite sample. We
eliminated roots, stones, litter, and debris from each soil sample
by using a 2-mm sieve, before field storage and transport to the
laboratory on ice in a cooler. The composite soil samples were
divided into three subsamples. The first subsample was air dried
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for physicochemical analysis. The second subsample was stored
at 4◦C to determine soil NH4

+ and NO3
− concentrations and

transported to the laboratory for immediate analysis, as well as for
microbial C and N biomass determination. The third subsample
was stored at−80◦C for DNA extraction.

Analysis of Soil Physicochemical
Properties
Soil water content (SW) of each composite soil sample was
measured by weighing before and after drying at 105◦C for
24 h. Soil pH was determined by shaking a soil/water suspension
(1:1 weight/vol, DI water) for 30 min (Fierer et al., 2006). Soil
organic carbon (SOC) was measured using dichromate oxidation
(Nelson and Sommers, 1982). The total nitrogen content (TN)
was determined using an automatic Kjeldahl instrument (Kjeltec
8400, FOSS Corporation, Denmark). The NH4

+ and NO3
−

concentrations in the soil subsamples were determined by
digestion with 2 mol L−1 KCl at a 1:3 ratio (w:v) and analyzed by a
flow injection analyzer (FIAstar 5000, FOSS Analytical, Höganäs,
Sweden). Soil available phosphorus (AP) was measured using the
Kelowna method as described by Van Lierop (1988) using a solid
to liquid ratio of 1:5. The soil total phosphorus concentration
(TP) in the extracting solution was measured using an Astoria
auto-analyzer (Clackamas, OR, United States).

Soil Microbial Biomass and Enzymatic
Activities
We used a fumigation extraction method to measure the soil
microbial C and N biomass (Vance et al., 1987). We fumigated
25 g of the oven-dry equivalent of field-moist at 25.8◦C for
24 h with CHCl3. The soil was added to 100 ml of 0.5 M
potassium sulfate, shaken at 200 rpm for 1 h, and then filtered
(0.2 µm) after removing the fumigant. An additional 25 g of non-
fumigated soil was simultaneously extracted. The soil organic
carbon (SOC) and soil total nitrogen (TN) contents of the
extracts were measured using a Liqui TOCII analyzer (Elementar
Analyses system, Hanau, Germany).

Urease activity was measured using a urea solution as the
substrate and incubation at 37◦C for 24 h (a spectrophotometer
was employed to determine the NH4

+-N concentration at
578 nm) (Nannipieri et al., 1980). Nitrate reductase activity
was determined using KNO3 solution as the substrate and
incubation at 25◦C for 24 h (a spectrophotometer was
employed to determine the NO2

− concentration at 520 nm)
(Daniel and Curran, 1981).

The potential nitrification rate (PNR) was assessed according
to the procedures described in Kurola et al. (2005). Twenty mL of
phosphate buffered saline (PBS) solution was added as substrate
to 5 g of fresh soil in a 50 mL centrifuge tube with 1 mmol L−1

(NH4)2SO4 (100 ppm N), and then the centrifuge tubes were
placed at room temperature in the dark for 24 h. Eight grams
NaCl, 0.2 g KCl, 0.2 g Na2HPO4 and 0.2 g NaH2PO4 were mixed
in about 800 mL of water as PBS solution (pH = 7.1). To inhibit
nitrite oxidation, potassium chlorate (at a final concentration of
10 mmol L−1) was then added to the centrifuge tubes. After
incubation, 5 mL of 2 mol L−1 KCl was added to the tubes
to extract NO2-N. After centrifugation, the sulfonamide and

naphthalene oxalamide were used as reagents to analyze the
optical density of the supernatant by the presence of NO2-
N at 545 nm.

Soil denitrifying enzyme activity (DEA) was measured
according to the method of Hart et al. (1994). A fresh soil sample
(equivalent to 15 g dry soil) was added to a 250 ml plasma flask
with a 100 mL solution of 1.5 mM (NH4)2SO4 (100 ppm N) and
1 mM phosphate buffer (pH = 7.2). The flask was incubated at
room temperature with continuously stirring (180 rpm). Samples
were extracted at 2, 4, 8, 12, and 24 h during incubation.
The concentrations of NO2

− and NO3
− were measured in the

samples by using a continuous flow analyzer. The DEA rate was
calculated based on the slope of the regression of NO2

− plus
NO3

− concentration against time.

Soil DNA Extraction and Sequencing
Before sequencing the 16S rRNA and internal transcribed
spacer (ITS) gene sequences, all soil composite samples (0.5 g)
were processed for DNA extraction with the FAST DNA Spin
Kit for Soil (MP Biomedicals, Santa Ana, CA, United States)
according to the manufacturer’s instructions. Two separate DNA
extractions from 0.5 g of soil were then merged together for
polymerase chain reaction (PCR) amplification. The bacterial
PCR primers were 515F (5′-GTGCCAGCMGCCGCGGTAA-
3′) and 806R (5′-GGACTACHVGGGTWTCTAAT-3′) with the
target 16S V4 region (Zheng et al., 2018). The fungal ITS1
region was amplified using the primers ITS5-1737F (5′-
GGAAGTAAAAGTCGTAACAAGG-3′) and ITS2-2043R (5′-
GCTGCGTTCTTCATCGATGC-3′) (Bellemain et al., 2010).
Both sets of primers contained a 6-bp error-correcting barcode
(8 – 4 for overgrazing and 4 for grazing exclusion) that was
unique to each sample for the identification of individual
samples in mixture Illumina HiSeq sequencing runs (Novogene
Bioinformatics Technology Co., Ltd., Beijing, China). PCR
amplicons were further purified with a DNA purification kit
(BioFlux, Japan), and the concentrations were determined
using spectrometry (NanoDrop-1000, United States). Amplicons
from different samples were then mixed and purified with
Qiagen Gel Extraction Kit (Qiagen, Germany) to achieve
equal mass concentrations in the final mixture, and sent to
Novogene Co., Ltd., Tianjing, China, for sequencing library
construction and pair-end sequencing using the Illumina HiSeq
sequencing system (Illumina, United States). All amplicon
sequencing data have been deposited in the NCBI SRA
under the accession number PRJNA695426 (bacteria) and
PRJNA695427 (fungi). After sequencing, 250 bp paired-end
reads were generated and assigned to samples based on
their unique barcode sequence, followed by cutting off the
barcode and primer sequence. Paired-end reads were merged
using FLASH (V1.2.7) (Magoč and Salzberg, 2011). Quality
filtering (Bokulich et al., 2013) was performed to obtain only
the high-quality clean tags according to the QIIME quality
control process (V1.7.0) (Caporaso et al., 2010). Chimera
sequences were removed by comparing with the reference
database (Gold database) using the UCHIME algorithm (Edgar,
2013). Sequences with ≥97% similarity were assigned to
the same operational taxonomic unit (OTU). The SILVA
(bacteria) and UNITE (fungi) databases were used to assign
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taxonomic information to each OTU representative sequence.
OTU abundance information was normalized using a standard
sequence number corresponding to the sample with the least
number of sequences (44,254 for bacteria and 37,223 for fungi)
and used for subsequent analysis of alpha diversity and beta
diversity (Supplementary Figure 2).

Real-Time Quantitative PCR
We quantified the amount of the target sequence in genomic
DNA by using real-time quantitative PCR. After the quality
control, nitrogen-fixing genes were quantified using different
primers. The primer pairs and thermal-cycling conditions of real-
time quantitative PCR are described in detail in Supplementary
Table 3. The total bacterial community was quantified using
the 16S rRNA gene (34lF/534R). The total fungal community
was quantified using the ITS gene (ITS4/ITS5). The abundances
of nitrogen-fixing (nifH), nitrification (AOA and AOB), and
denitrification genes (nirK, nirS, and nosZ1) were obtained
for subsequent comparative analysis. The amplification of PCR
products was monitored by measuring specific fluorescence
signals using the dsDNA-specific fluorescent dye SYBR Green
I (measured after the extension phase). The inhibition tests
were performed when we ran the qPCR assay. We conducted
an inhibition test to determine whether samples were amplified
with the same efficiency as the standard. In the qPCR inhibition
test, each sample to be tested was spiked with a standard. The
Ct value of the spiked sample was then compared with the Ct
value of the pure standard. The percent inhibition (or actual %
efficiency) was calculated according to the following formula:
1 − [(Ct sample – Ct standard)/Ct standard] × 100. In our
study, a calculated inhibition of 1–2% was observed in some
samples and was accepted without dilution. All quantitative
PCR reactions were performed in triplicate with an ABI 7900
system. We added Bovine Serum Albumin (BSA) (10 mg/mL)
to these PCR reaction mixes to reduce the inhibitory effects
of co-extracted polyphenolic soil compounds. Briefly, 10 µL of
reaction mixes contained 5 µL Power qPCR PreMix (GENEray,
GK8020) and primers, 1 µL BSA, 1 µL 20×-diluted DNA
template (1.2–5.0 ng) and 3 µL Milli-Q water. We analyzed the
products from quantitative PCR reactions, and only accepted
one specific peak of each target sequence in the dissociation
curves. A standard curve of DNA copies was created using
the concentration on the X-axis (in copies/µL of 10-folded
dilution series) and CT value on the Y-axis (Greilhuber et al.,
2005). Every dot represents a CT value from duplication
of standard DNA. We performed a linear regression and
obtained the logarithm equation from each standard curve.
The equation Eff = [10(−1/slope) – 1] was used to calculate
the amplification efficiencies, which resulted in the following
values: bacterial 16S rRNA 90%, fungal ITS 91%, nifH 92%,
AOA-amoA 93%, AOB-amoA 85%, nirK 87%, nirS 98%, and
nosZ1 99%.

Statistical Analysis
Prior to statistical analysis, plant characteristic data in the
three 1 m × 1 m subplots were averaged. All of the statistical
analyses were conducted using R software (Version 3.2.4) (R

Core Team, 2016). Univariate analysis of variance (ANOVA)
was used to examine the effects of grazing exclusion on
plant characteristics (ANPP and diversity), soil physicochemical
metrics (SOC, TN, TP, NH4

+, NO3
−, and AP), soil enzymatic

activities (urease, nitrate reductase, potential nitrification rate,
and denitrifying enzyme activity), soil microbial characteristics
(C and N biomass, and diversity), bacterial 16S rRNA, abundance,
fungal ITS abundance, and N cycle functional genes (nifH,
AOA-amoA, AOB-amoA, nirK, nirS, and nosZ1). A suite of
alpha diversity indices, including number of OTUs, Chao1,
Shannon–Wiener, Simpson, ACE, and good-coverage, were
calculated for analyzing species diversity with QIIME, and
visualized with R software. Significance tests were based on
Tukey’s honestly significant difference (HSD) between any two
compared objects. Statistical significance was defined as P-values
in the Tukey’s HSD corrected with the Benjamini-Hochberg
false discovery rate.

Additionally, PERMANOVA was used to examine the effects
of grazing exclusion on soil bacterial and fungal community
compositions based on weighted UniFrac distances. The
weighted UniFrac distances were employed to assess whether
two communities were different using the QIIME software
(Version 1.7.0). A principal coordinate analysis (PCoA) was
used to assess the differences in the structures of microbial
communities among different grazing treatments based on
weighted UniFrac metric matrices using the VEGAN package
(Oksanen et al., 2013) in R software (R Core Team, 2016).
The relative abundances of different taxa in the bacterial
and fungal community compositions between grazing and
grazing exclusion were also determined by PERMANOVA using
the VEGAN package in R software. The effects of grazing
exclusion on the statistical difference between the relative
abundance of bacterial and fungal taxa were analyzed using
STAMP software. Significance tests were based on unpaired
Student’s t-tests to identify differences between any two
compared objects.

Pearson’s correlation analyses were conducted to identify the
environmental factors accounting for the patterns of microbial
alpha diversity (number of OTUs, Chao1, Shannon–Wiener,
Simpson, ACE, and good-coverage) and the gene abundances
associated with N fixation (nifH), nitrification (AOA-amoA and
AOB-amoA) and denitrification (nirK, nirS, and nosZ). Heat
maps were generated to show the relationships between the
relative abundances of different taxa in soil microbial community
compositions (bacterial/fungal) and environmental variables
(plant characteristics and soil chemical properties) and microbial
C and N biomass. The heat maps were generated in R.3.2.4
using the pheatmap package and the correlation analysis was
carried out using the psych package of R.3.2.4. A multivariate
regression trees (MRT) analysis was carried out to identify the
most important biotic and abiotic factors for bacterial and fungal
community composition using the mvpart package (De’Ath,
2002). Stepwise multiple linear analyses were used to examine
the relationships between the gene abundances associated with
N fixation (nifH), nitrification (AOA-amoA and AOB-amoA),
denitrification (nirK, nirS and nosZ1), and soil properties (SW,
pH, NH4

+, NO3
−, SOC, and TN).
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FIGURE 2 | Comparison analysis of the plant community characteristics, soil properties, soil microbial C and N, and soil enzyme activities between the overgrazing
and grazing exclusion treatments. Plant community characteristics include (A) ANPP, (B) litter biomass, (C) species richness, and (D) Shannon–Wiener index. Soil
properties include (E) soil pH value, (F) soil water content (SW), (G) soil organic carbon content (SOC), (H) soil total nitrogen content (TN), (I) soil C/N ratio, (J) soil
total phosphorus content (TP), (K) soil NH4

+ content, (L) soil NO3
- content, and (M) soil available phosphorus content (AP). Soil microbial biomass include (N)

microbial C, and (O) microbial N. Soil enzyme activities include: (P) urease (UR), (Q) Nitrate reductase (NR), (R) the potential nitrification rate (PNR), and (S) soil
denitrifying enzyme activity (DEA). G, overgrazing; E, grazing exclusion. Values represent the mean ± standard error (n = 4). Significance levels are indicated as:
*P < 0.05, **P < 0.01, and ***P < 0.001.

RESULTS

The Effect of Grazing Exclusion on Plant,
Soil, and Microbial Activity
Grazing exclusion significantly changed plant community
composition and increased plant species biomass (P < 0.05),
including Leymus chinensis (P < 0.001), Stipa grandis (P < 0.001),
Achnatherum sibiricum (P = 0.006), and Agropyron cristatum

(P < 0.001) (Supplementary Figure 1), ANPP (P < 0.001),
species richness (P = 0.003) and the Shannon−Wiener index
(P = 0.003) (Figure 2 and Supplementary Table 4). Moreover,
there was a significantly positive effect of long-term grazing
exclusion to soil physicochemical characteristics (Figure 2).
Grazing exclusion significantly increased SW (P = 0.007), SOC
(P = 0.043), TN (P = 0.006), soil C/N ratio (P = 0.048),
NO3

− (P = 0.014), nitrate reductase activity (P = 0.003), and
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DEA (P < 0.001) (Figure 2 and Supplementary Table 4).
Grazing exclusion significantly reduced soil BD at different depth
increments, including 0–5 (P = 0.007), 5–10 (P < 0.001), 10–15
(P = 0.035), and 15–20 cm (P = 0.041) (Supplementary Figure 3).

Effect of Grazing Exclusion on Microbial
Biomass and Composition
Grazing exclusion significantly increased soil microbial biomass
C (P < 0.001) and N (P < 0.001) (Figure 2 and Supplementary
Table 4). Bacterial alpha diversity was higher in grazing exclusion
soils than in overgrazed ones, including higher OTU richness
(P = 0.035), and higher values for the H′ (P = 0.039),
Chao1 (P = 0.039), and ACE diversity (P = 0.029) (Table 1).
However, there were no significant differences in the fungal alpha
diversity index between the overgrazing and the grazing exclusion
soils (Table 1).

The change of relative abundances in bacterial groups
revealed shifts in dominant taxa between overgrazing and
grazing exclusion (P < 0.05, Figure 3). The dominant
bacterial phyla in the overgrazing and grazing exclusion
included Acidobacteria (29.13% vs. 18.54%), Proteobacteria
(22.53% vs. 25.97%), Verrucomicrobia (10.57% vs. 12.21%),
Actinobacteria (10.59% vs. 12.86%), Gemmatimonadetes (10.33%
vs. 8.51%), Bacteroidetes (2.63% vs. 5.80%), Planctomycetes
(4.95% vs. 3.81%), and Firmicutes (4.49% vs. 3.17%; Figure 3A).
Acidobacteria (P < 0.001) and Planctomycetes (P < 0.001)
showed greater relative abundance in the overgrazed soils,
while Proteobacteria (P = 0.034), Actinobacteria (P < 0.001),
Bacteroidetes (P = 0.005), and Firmicutes (P = 0.034) showed
greater abundance in grazing exclusion soils (P < 0.05;
Figure 3A). Grazing exclusion significantly increased
the relative abundance of Betaproteobacteria (P = 0.001)
and Deltaproteobacteria (P = 0.015) (Supplementary
Figure 4). Compared with overgrazing, grazing exclusion
significantly increased the relative abundance of some
families, including Gaiellaceae, Solirubrobacteraceae,
Nocardioidaceae, and Conexibacteraceae (all belonging to
the phylum Actinobacteria), Sphingomonadaceae, Rhodobiaceae,
Polyangiaceae, Sinobacteraceae, and Haliangiaceae (all belonging
to the phylum Proteobacteria), and Nitrospiraceae (phylum
Nitrospirae), but significantly decreased the relative abundance
of mb2424 (phylum Acidobacteria) (P < 0.05; Supplementary
Figure 5). Grazing exclusion significantly increased the
abundance of some genera, such as Mycobacterium (phylum
Actinobacteria), Afifella, Sphingomonas, and Lysobacter (all
belonging to the phylum Proteobacteria), and Nitrospira (phylum
Nitrospirae) (P < 0.05; Supplementary Figure 6).

Compared with overgrazing, grazing exclusion significantly
increased the abundance of Basidiomycota (P = 0.039;
Figure 3B). Grazing exclusion significantly increased the
relative abundance of some families, including Lasiosphaeriaceae
and Herpotrichiellaceae (phylum Ascomycota), as well
as Auriscalpiaceae (phylum Basidiomycota) (P < 0.05;
Supplementary Figure 7). The PCoA ordination revealed
differences in bacterial communities, which showed a clear
separation between overgrazing and grazing exclusion along the

first PCoA 1 axis (P < 0.05, Figure 4A). No difference was found
for the fungal community (Figure 4B).

Associations of Bacterial and Fungal
Diversity With Soil and Plant Properties
In this study, plant characteristics (SR, ANPP, and litter biomass)
and soil properties (SOC, C/N ratio, and NO3

−) were positively
related to the alpha diversity indices of the soil bacterial
community (the number of OTUs, H′, Chao1 and ACE)
(P < 0.05, Supplementary Table 5). For bacterial communities,
significant correlations based on heat map analyses were found
between soil or plant characteristics and bacterial taxa (except
Chloroflexi) (Figure 5A). For fungal communities, no significant
relationship was found between environmental factors (except
SW) and fungal taxa (Figure 5B). MRT analysis was used to
explain the relative effects of plant and soil properties on the
bacterial and fungal community composition from all samples
(Figures 5C,D). A visual tree in the MRT analysis showed
two splits in the bacterial community based on plant and soil
properties (Figure 5C; cross-validated relative error 1.27 and
0.742, respectively), whereas fungal community composition
showed three splits in a visual tree (Figure 5D; cross-validated
relative error 1.16 and 0.510, respectively). SOC was the
major factor affecting soil bacterial community composition
and explained 70.47% of the variation (Figure 5C). SW and
SOC together explained 91.66% of the variation in fungal
community composition (Figure 5D), and we found that SW
(which explained 81.70%) was the key factor affecting changes in
the fungal community composition.

Effect of Grazing Exclusion on the
Abundances of Microbial Groups
A significant difference between overgrazed and grazing
exclusion soils was found for bacterial 16S rRNA gene copy
numbers and six key functional N gene families (nitrification,
denitrification and N fixation) (P < 0.05; Figure 6). The
grazing exclusion significantly increased the bacterial 16S rRNA
gene copy numbers and nifH gene abundance (P = 0.003;
Figure 6). For nitrification genes, the abundances of AOA-amoA
(P < 0.001) and AOB-amoA (P = 0.014) both increased in the
grazing exclusion soils (Figure 6). For denitrification genes, the
grazing exclusion significantly increased the abundance of the
nirK (P = 0.007) and nosZ1 (P = 0.008) genes (Figure 6). Soil
physicochemical characteristics (SOC, TN and NO3

−) increased
linearly with the gene abundances of the N cycle (nifH, AOA,
AOB, nirK, and nosZ) (P < 0.05, Figure 7). Soil microbial
biomass (C and N) showed a linear and positive correlation
with gene abundances of the N cycle (nifH, AOA, AOB, nirK,
and nosZ) (P < 0.05, Figure 7). The soil enzyme activities
(NR and DEA) also indicated a positive, linear relationship
with the N cycle gene abundances (nifH, AOA, AOB, nirK,
and nosZ) (P < 0.05, Figure 7). Stepwise multiple regression
analyses showed that the abundance or relative abundance of
six key functional N gene families could be explained by the
four soil physicochemical factors, namely, SW, SOC, soil TN
content, and soil NO3

− content (Table 2). SW and SOC together
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TABLE 1 | The comparison of the alpha diversity of bacteria and fungi between overgrazing and grazing exclusion.

Bacteria Fungi

Overgrazing Grazing exclusion P-value Overgrazing Grazing exclusion P-value

OTU richness 3990.00 ± 25.16 4193.25 ± 69.07 0.0348 1302.00 ± 78.21 12 19.25 ± 114.87 0.5733

H′ 9.77 ± 0.07 10.00 ± 0.06 0.0385 7.84 ± 0.38 7.12 ± 0.59 0.3402

Simpson 0.99 ± 0.01 0.99 ± 0.01 0.5370 0.98 ± 0.01 0.94 ± 0.02 0.1681

Chao1 5027.81 ± 184.58 5649.88 ± 107.16 0.0269 1752.88 ± 128.81 1627.63 ± 114.34 0.4345

ACE 5224.60 ± 110.94 5661.46 ± 105.73 0.0292 1795.70 ± 114.77 1719.43 ± 127.36 0.6722

Goods_coverage 0.97 ± 0.01 0.96 ± 0.01 0.0528 0.97 ± 0.01 0.97 ± 0.01 0.7329

Results reported as the mean ± standard error (n = 4). P < 0.05 values in bold indicates significant differences between grazing and grazing exclusion. H′, Shannon–
Wiener diversity.

FIGURE 3 | Comparison of phyla with significant differences between the overgrazing and grazing exclusion treatments. The data were visualized using STAMP
(error bars represent Welch’s t-interval). (A) Bacteria, (B) fungi. Bars on the left represent the proportion of each phylum abundance (bacterial and fungal) in the
treatments. Bacterial abundance differences with a q-value of <0.05 were considered to be significant. Q-values were determined using the Benjamini-Hochberg
adjustment for p-values.

accounted for 98% of the spatial variation in the nifH gene
(P < 0.001; Table 2). SW explained 53% of the spatial variation
in the abundance of AOA genes (P = 0.025; Table 2). TN alone
explained 58% of the abundance of AOB genes (P = 0.017;
Table 2). Soil NO3

− content alone explained 83% of the spatial
variation in the gene abundance of nirK (P < 0.001), whereas
NO3

− alone explained 52% of the spatial variation in the gene
abundance of nirS (P = 0.026; Table 2). Both SW and TN
content were responsible for 92% of the spatial variation in the
abundance of nosZ1 (P < 0.001; Table 2).

DISCUSSION

Grazing Exclusion Altered Bacterial
Diversity
Our results revealed that bacterial alpha diversity (i.e., OTU
richness, H′, Chao1, and ACE) significantly increased in response
to grazing exclusion (Table 1), which was consistent with
previous findings that both the H′ and ACE indices of soil
bacterial diversity significantly increased with recovery age (Wu

et al., 2014; Zhang et al., 2018). The observed positive relationship
between soil nutrient content (i.e., SOC and NO3

−) and bacterial
alpha diversity in our study supported previous findings (Cheng
et al., 2016; Wang et al., 2018). Additionally, bacterial alpha
diversity was not directly associated with plant diversity in a
previous study (Millard and Singh, 2010), but in our study
plant diversity had a positive relationship with bacterial alpha
diversity (Supplementary Table 5). Our results suggested that
the management practice of grazing exclusion (appropriate
restoration) increased bacterial alpha diversity and are consistent
with a recent study on semiarid grasslands (Zhang et al., 2018),
in which bacterial alpha diversity was higher after 25 years
of grazing exclusion than in other sites (0, 10, and 35 years
of grazing exclusion). We attributed this to the fact that the
nutrients required by soil bacteria are usually obtained from
plant litter, release of root exudates and root decay of live plants
(Tang et al., 2020). High plant species diversity increased plant
community production, which was related with greater litter
accumulation on the soil surface and enhanced C inputs to soil
(Buyer et al., 2010). Our results further showed that the effect
of plant diversity on soil nutrient concentration also impacted
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FIGURE 4 | Principal Coordinates Analysis (PCoA) of bacteria (A) and fungi (B) dissimilarity based on weighted UniFrac distance matrix between overgrazing (red
squares) and grazing exclusion (blue circles).

soil bacterial diversity among soil bacteria taxa (Figures 3, 5).
High plant diversity may contribute to greater diversity of
plant-derived resources (El Moujahid et al., 2017), and provide
more opportunities for soil microbes to specialize in different
resources (Kinkel et al., 2011). Thus, changes in bacterial alpha
diversity were closely associated with plant diversity (i.e., species
richness and Shannon–Wiener index). The relationship between
the diversities of plant species (above-ground) and soil bacteria
(below-ground) is a key point of the ecosystem biodiversity
(Yang et al., 2020).

Grazing Exclusion Changed Bacterial
Community Composition
With regard to the effects of grazing exclusion on the microbial
community composition, we observed that different microbial
taxa exhibited different behaviors. A previous study showed
that intensive grazing increased the relative abundances of
Proteobacteria, Bacteroidetes and Firmicutes (Patra et al., 2005;
Xun et al., 2018; Zhang et al., 2020b). However, in our
study, the relative abundances of Actinobacteria, Proteobacteria,
Firmicutes, and Bacteroidetes increased under grazing exclusion
by increasing soil carbon. These induced changes of grazing
exclusion in bacterial taxa are consistent with previous studies
(Cheng et al., 2016; Wang et al., 2018).

There are some possible explanations for the changes in
bacterial community diversity and composition due to grazing
exclusion. First, direct effects of avoiding animal trampling under
grazing exclusion on soil carbon have been associated with
increased soil air permeability (Wang Z. et al., 2019). Indirect
carbon storage induced under grazing exclusion via plant litter
accumulation has been demonstrated in the Loess Plateau (Cui
et al., 2019). The increased abundances of bacterial taxa are for
copiotrophic groups under grazing exclusion, which are generally

fast-growing and positively linked to SOC concentration (Leff
et al., 2015; Zhang et al., 2018). Thus, the increase in SOC after
22 years of grazing exclusion resulted in a shift in the bacterial
community from oligotrophic groups to copiotrophic groups,
characterized by decreases in Acidobacteria phyla abundances
and increased abundances in the Actinobacteria phylum and
the Bacteroidetes phylum, and the Betaproteobacteria and
Deltaproteobacteria class (Figure 4; Supplementary Figure 3).

Although a previous study showed that grazing increased
the relative abundance of both the Firmicutes and Bacteroidetes
phyla through livestock dung, such results were observed under
moderate grazing (Zhang et al., 2020b). Compared to grazing
exclusion and moderate grazing, the limited amount of herbage
under overgrazing may cause livestock to consume more energy
while foraging and this might result in reduced quantities
of palatable, high-quality and highly productive grasses, such
as Leymus chinensis, Stipa grandis, and Melissilus ruthenicus
(L.) Peschkova (Supplementary Figure 1 and Supplementary
Table 1). Overgrazing decelerated nutrient cycling by the
dominance of nutrient-poor or chemically defensive species (e.g.,
Salsola collina and Tribulus terrestris) with low litter quality (Bai
et al., 2012). Under nutrient-deficient conditions, low-quality
litter decreased nutrient concentration and root biomass, which
often affects the amount of C-rich substrates exuded into the
rhizosphere (McNaughton, 1985). Thus, microbial activity and
the use of stored nutrients were inhibited under overgrazing. As
a result, overgrazing accelerated the loss of soil nutrients, and
consequently reduced SOC concentration. Both the Firmicutes
and Bacteroidetes phyla consisted of copiotrophic bacteria (Leff
et al., 2015), which are fast growing and positively correlated with
SOC concentration, thus, explaining the reductions in the relative
abundance of Bacteroidetes and Firmicutes under overgrazing.

Additionally, the heat map analyses also showed that the
change in the relative abundances of main bacterial phyla was
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FIGURE 5 | Correlations between biotic and abiotic factors and dominant bacterial and fungal phyla (A,B). Multivariate regression tree analysis of environmental
factors on the patterns of soil bacterial (C) and fungal (D) community composition. The number of soil samples included in the analysis is shown under the bar plots.
Plant community characteristics include the ANPP, litter (litter biomass), SR (species richness), and H (Shannon–Wiener index). Soil properties include the pH (soil pH
value), soil water content (SW), SOC (soil organic carbon content), TN (soil total nitrogen content), CN (soil C/N ratio), TP (soil total phosphorus content), NH4 (soil
NH4

+ content), NO3 (soil NO3
- content), and AP (soil available phosphorus content). Soil microbial variables include the MC (microbial C) and MN (microbial N).

Significance levels in heat maps analysis are indicated as: *P < 0.05, **P < 0.01, and ***P < 0.001.

related to plant characteristics, soil properties and soil microbial
biomass (Figure 5). For example, the Actinobacteria phylum
can promote plant growth by making nutrients/substrates (e.g.,
phosphorus and nitrogen) available to host plants and producing
various plant hormones to prevent plant infections (Liu et al.,
2017). The Proteobacteria phylum can accumulate soil N content
to promote plant growth because many N-fixing bacteria
belong to the Proteobacteria phylum (Spain et al., 2009). The
negative correlation between the abundance of the Acidobacteria
phylum and other parameters (plant characteristics, soil
properties, and soil microbial biomass) is due to the fact that
the Acidobacteria phylum contains microbes that usually grow
rapidly in a nutritionally poor environment (Koyama et al.,
2014). Moreover, the increased abundance of the Proteobacteria
family (Sphingomonadaceae, Sinobacteraceae, Haliangiaceae,

Polyangiaceae, and Rhodobiaceae), the Actinobacteria family
(Gaiellaceae, Solirubrobacteraceae, Streptomycetaceae, and
Conexibacteraceae), and the decreased abundance of the
Acidobacteria family (mb2424) under grazing exclusion,
also led to the change in bacterial community composition
(Supplementary Table 4).

Lack of Fungal Response Under Grazing
Exclusion
Unlike diversity and composition of the bacterial community,
fungal community composition did not significantly differ
between overgrazing and grazing exclusion (Patra et al., 2005),
suggesting that the bacterial community may develop faster than
the fungal community (Figure 5). Our results are consistent
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FIGURE 6 | Comparison of Bacterial 16S RNA gene, Fungal ITS gene and the N cycling gene abundances (nifH, AOA-amoA, AOB-amoA, nirK, nirS, and nosZ1)
between overgrazing and grazing exclusion. G, overgrazing; E, grazing exclusion. Values represent the mean ± standard error (n = 4). Significance levels are
indicated as: *P < 0.05, **P < 0.01, and ***P < 0.001. Bacterial 16S RNA gene copies (A), Fungal ITS gene copies (B), nifH gene copies (C), AOA-amoA gene
copies (D), AOB-amoA gene copies (E), nirK gene copies (F), nirS gene copies (G), and nosZ1 gene copies (H).

with a previous study conducted by Brown and Jumpponen
(2015), who found that the fungal community did not respond
to succession age, while the bacterial community strongly
responded, as determined by a phylogenetic diversity analysis.
Bacteria have a more diverse physiology than fungi, thus they
successfully colonize during the grassland ecosystem restoration
(Zhang et al., 2018). Compared to bacteria, fungi are more
dependent on C and N sources. Fungi may not have many
available niches before accumulating enough organic matter
in the succession process (Prewitt et al., 2014). Additionally,
MRT analysis showed that SW was a key factor affecting the
change in fungal community composition based on the MRT
analysis. Our results are in accordance with recent studies
(Tedersoo et al., 2014), in which water availability affected
plant community productivity, and subsequently impacted the
quantity and quality of the input of plant residues supporting
the soil fungal community. Grazing exclusion enhanced the
relative abundance of the Basidiomycota phyla (saprotroph)
(Figure 3B), which was likely due to the relatively higher SW,

MN, litter biomass, SOC, and plant biomass under grazing
exclusion (Yang et al., 2018).

Bacterial Response Under Grazing
Exclusion
Removal of grazing elicited changes in soil microbial community
structure that led to improved biogeochemical functions and
higher soil fertility. The change in bacterial phyla may be due
to increased soil C and N substrates by litter accumulation
(Zeng et al., 2017), which is in agreement with the higher
litter biomass, OC, and TN contents detected in our study
(Figure 2). The increase in the relative abundance of the family
Sphingomonadaceae may improve the oxygen availability and
may change the soil physical environment (e.g., decreased soil
bulk diversity) by avoiding animal trampling (Wang Z. et al.,
2019). As a result, grazing exclusion increased the SOC, which
is associated with greater litter input into soil. The MRT analysis
also identified SOC as the predominant factor driving the change
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FIGURE 7 | Pearson correlation coefficients between N cycling gene abundances (nifH, AOA-amoA, AOB-amoA, nirK, nirS, and nosZ1) and biotic and abiotic
factors. The correlations were derived for SW, water/moisture content of soil samples; pH, soil pH value; SOC, soil organic content of the soil samples; TN, total
nitrogen concentration of soil samples; C/N ratio, (soil C/N ratio); TP, total phosphorus content of soil samples; AP, available phosphorus content of soil; NH4

+, soil
NH4

+ content; NO3
-, soil NO3

- content; MC, soil microbial C; MN, soil microbial N; UN, urease; NR, nitrate reductase; PNR, the potential nitrification rate; DEA, soil
denitrifying enzyme activity. Significance levels are indicated as: *P < 0.05, **P < 0.01, and ***P < 0.001.

in the composition of the soil bacterial community. Therefore,
changes in the composition of specific microbial groups likely
played an important role in the recovery of the biogeochemical
functions as it is supported by the strengthened relationship
between microbial phylogenetic composition and soil fertility
since the release from the exclusion of grazing.

The changes in the abundance of N cycle functional genes
provided a glimpse of the functional potentials of microbial
communities under grazing exclusion. We observed a dramatic
increase in nifH gene abundance with the grassland ecosystem
recovery, which was related to plant and soil properties.

Previous studies showed that nifH genes primarily from aerobic
and facultatively anaerobic organisms, which belong to three
bacterial phyla (Proteobacteria, Firmicutes, and Actinobacteria)
(Gaby and Buckley, 2014). The higher relative abundance of
Proteobacteria, Firmicutes, and Actinobacteria led to an increase
in the abundance of nifH genes due to the increased soil fertility
under grazing exclusion (Meyer et al., 2013). Additionally, our
results are consistent with those of a previous study (Poly et al.,
2001), in which the increase in the soil C/N ratio drove N fixation
under grazing exclusion. Moreover, potential acidity is related to
pH, a well-established factor affecting the diversity of microbial
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TABLE 2 | Stepwise multiple regression analysis of the relationships between
independent variables and gene abundance of nifH, AOA, AOB, nirK, nirS,
and nosZ1.

Functional
genes

Results R2 F P

nifH y = 0.717 × (SOC) + 0.438 × (SW) – 2.07 0.98 177.27 <0.001

AOA y = 0.773 × (SW) – 1.01 0.53 8.88 0.025

AOB y = 0.802 × (TN) – 3.28 0.58 10.84 0.017

nirK y = 0.921 × (NO3
−) – 1.23 0.83 33.69 <0.001

nirS y = 0.061 × (NO3
−) + 0.38 0.52 8.59 0.026

nosZ1 y = 0.556 × (SW) + 0.498 × (TN) – 6.88 0.92 39.58 <0.001

SW, soil water content; SOC, soil organic carbon content; TN, soil total nitrogen
content; NO3

−, soil NO3
− content.

communities (Jesus et al., 2009), which also increased nifH gene
abundance under grazing exclusion.

For the nitrifier communities, the abundance of AOA was
much greater than that of AOB in our study. Our results
agree with those of a recent study, in which AOA played a
major role in the nitrification of acidic soils (Zhang et al.,
2012). Additionally, AOA rather than AOB is favored in the
low-fertility and low-nitrogen environments in this semiarid
grassland (Figure 2), which is in line with observations in
other ecosystems (Shrewsbury et al., 2016; Assémien et al.,
2017). Grazing exclusion increased the abundance of nitrification
genes (AOA and AOB) in soils, reflecting a response to remove
the grazing trampling. Nitrification genes in grazing exclusion
grassland soils increased (Figure 6), which might be attributed
to the removal of grazing trampling that promotes the oxygen-
requiring nitrification process (Pan et al., 2016). In our study,
SW was correlated with changes in the abundance of the AOA
gene (Table 2). This agreed with a previous study in the
Inner Mongolia Steppe (Xie et al., 2014; Ding et al., 2015), in
which AOA gene abundance rapidly responded to the water
content. The recovery of the soil NO3

− content is tightly
related to changes in the gene abundance of AOB (Table 2),
which was associated with the abundance of Nitrospiraceae
(Supplementary Figure 5). Our results agree with the findings of
Wang J. et al. (2019), who reported that the abundance of AOB
was correlated with Nitrospira abundance. Effectively, grazing
exclusion increased the abundance of nitrification genes.

Interestingly, grazing exclusion did not change PNR but
increased the abundance of the AOA and AOB communities,
suggesting the PNR was not necessarily associated with the
abundance of ammonia-oxidizers in our study (Yin et al., 2019).
Le Roux et al. (2013) showed that the correlations between the
abundance of ammonia oxidizers (AOA and AOB) and PNR
were weak in grasslands. Our results are consistent with previous
studies (Nicol et al., 2008; Yin et al., 2019), in which the activities
of ammonia-oxidizers were related with enzyme function rather
than with the abundance of functional genes.

For the denitrifier communities, the gene abundances (nirK
and nosZ1) showed positive relationships with DEA, which was
associated with the general enhancement of substrates (e.g.,
NO3

−). Our results are in line with a previous study, which
indicated that DEA can predict the change in denitrifier (nirK)

abundance (Morales et al., 2010; Attard et al., 2011; Zhang
X. et al., 2019). The higher DEA in our grazing exclusion
soils suggested that ammonia oxidizers (higher AOA and AOB
abundances under grazing exclusion) provided substrates (e.g.,
NO3

−) to denitrifiers (nirK and nosZ1), and DEA relies on the
availability of NO3

− production.
The increased abundance of nirK observed under grazing

exclusion supports the findings of previous studies, in which
the nitrate reducer communities increased during the ecological
recovery of the grassland (Song et al., 2019). Consistent with
this interpretation (Ding et al., 2015), the SW, soil nutrients
(e.g., NO3

−) and oxygen were the most important factors
mediating the gene abundances of denitrifiers. Grazing exclusion
significantly increased the abundance of the nirK gene, but
no changes were observed in the abundance of the nirS gene
(Figure 6), which was inconsistent with the findings of a
previous study in a semiarid steppe (Pan et al., 2016). Our
results are consistent with the observations of a recent study in
Tibetan alpine meadows (Xie et al., 2014), in which the different
responses of the abundances of nirK- and nirS-nitrite reducers
to grazing intensity were attributed to niche differentiation
between these two groups of denitrifiers for different ecosystems
(Assémien et al., 2019). Additionally, nitrate reductase activity
was determined by nirK, and there was a positive relationship
between enzyme activities and the changes in gene abundances
of denitrifier genes (Barrena et al., 2017).

CONCLUSION

Grazing exclusion in the semiarid steppe caused significant
changes in soil properties, bacterial diversity and community
structure, but there were no significant alterations in fungal
diversity and community structure. The diversity and structure of
the bacterial community indicated a positive linear relationship
with plant and soil functioning during restoration of these
grassland ecosystems. Our results clearly demonstrated a positive
relationship between the abundances of denitrifying functional
genes (nirK and nosZ1) and DEA during restoration of grassland
ecosystems. Our results suggest that grazing exclusion can initiate
changes in the soil bacterial community that facilitate the
recovery of ecosystem functions in grasslands.
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