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A mechanistic model was developed to predict secondary infections of Plasmopara viticola 
and their severity as influenced by environmental conditions; the model incorporates the 
processes of sporangia production and survival on downy mildew (DM) lesions, dispersal 
and deposition, and infection. The model was evaluated against observed data (collected 
in a 3-year vineyard) for its accuracy to predict periods with no sporangia (i.e., for negative 
prognosis) or with peaks of sporangia, so that growers can identify periods with no/low 
risk or high risk. The model increased the probability to correctly predict no sporangia 
[P(P−O−) = 0.67] by two times compared to the prior probability, with fewer than 3% of 
the total sporangia found in the vineyard being sampled when not predicted by the model. 
The model also correctly predicted peaks of sporangia, with only 1 of 40 peaks unpredicted. 
When evaluated for the negative prognosis of infection periods, the model showed a 
posterior probability for infection not to occur when not predicted P(P−O−) = 0.87 with 
only 9 of 108 real infections not predicted; these unpredicted infections were mild, 
accounting for only 4.4% of the total DM lesions observed in the vineyard. In conclusion, 
the model was able to identify periods in which the DM risk was nil or very low. It may, 
therefore, help growers avoid fungicide sprays when not needed and lengthen the interval 
between two sprays, i.e., it will help growers move from calendar-based to risk-based 
fungicide schedules for the control of P. viticola in vineyards.

Keywords: downy mildew, secondary infections, weather-based model, disease prediction, model evaluation, 
modeling

INTRODUCTION

Downy mildew (DM) is an important disease of grapevines, and much research has focused 
on its causal agent, the oomycete Plasmopara viticola (Berk. & M. A. Curtis) Berl. & De Toni. 
The life cycle of P. viticola consists of sexual and asexual cycles that occur throughout the 
grapevine growing season and that are driven by oospores and sporangia, respectively.

In the last century, researchers assumed that infection by oospores was only important 
early in the grapevine vegetative season. They attributed the explosive development of the 
disease to the sporangia, which originated from asexual reproduction and which were assumed 
to migrate over distances in a short time. In the 2000s, researchers investigated the previous 
assumptions regarding the pathogen’s epidemiology (Gobbin et  al., 2003) and especially the 
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qualitative and quantitative contribution of oosporic vs. clonal 
(asexual) infections (Gessler et  al., 2003; Gobbin et  al., 2005). 
Combining epidemiological and population genetics data, a 
broader perspective of the disease dynamics was finally obtained 
(Rumbou and Gessler, 2004; Gobbin et  al., 2006). According 
to the new perspective, the role of secondary (asexual) cycles 
for the epidemic development had been overestimated in the 
past. Nevertheless, secondary cycles may be  locally important, 
and growers pay great attention to their control with repeated, 
calendar-based fungicide applications (Gessler et  al., 2011).

Secondary disease cycles involve the processes of sporulation, 
dispersal, and infection. Within 5–10  days after the infection, 
depending on weather conditions (Blaeser and Weltzien, 1979; 
Lafon and Clerjeau, 1988; Schruft and Kassemeyer, 1999), the 
pathogen emerges from stomata and forms sporangiophores 
and sporangia on DM lesions. Sporulation becomes visible as 
a dense, raised, white-cottony mildew on the abaxial surface 
of leaves, on green shoots, and on young berries. Sporangia 
are dispersed by rain (Kast, 1997) and wind (Diaz et  al., 1997, 
1998; Fernandez-Gonzales et  al., 2009; Magyar et  al., 2009; 
Caffi et al., 2013a), and are deposited on the host tissue. When 
host surfaces are moistened by rainfall or dew, sporangia release 
six to eight clonal zoospores (Lalancette et al., 1987) as secondary 
inoculum, which are able to further infect all green tissues 
of the vines.

Some mathematical models have been developed to provide 
short-term and field-scale predictions of DM epidemics resulting 
from infections caused by P. viticola sporangia in Switzerland, 
France, Austria, Germany, and Italy (Blaise and Gessler, 1990; 
Hill, 1990; Magarey et al., 1991; Magnien et al., 1991; Orlandini 
et  al., 1993; Ellis et  al., 1994; Blaise et  al., 1999; Leroy et  al., 
2013). All of these models have been developed using a common 
database of previous publications and are based, more or less 
explicitly, on HLIR models, in which H, L, I, and R represent 
healthy sites, latent sites, infectious sites, and removed sites, 
respectively (Zadoks, 1971; Madden et  al., 2007). In these 
models, the number of new lesions developing on the healthy 
tissue on any day depends on the following variables: (i) the 
amount of susceptible host tissue that is disease-free and can 
be  infected; (ii) the number of spores that are available (i.e., 
spores that are produced, dispersed, and deposited on the 
host surface); and (iii) the infection efficiency of available 
spores. The number of available spores depends on the number 
of sporulating lesions and on the quantity of spores produced 
per unit of sporulating lesion (Zadoks, 1971; Zadoks and 
Schein, 1979). These models simulate the temporal dynamics 
of affected sites (i.e., L+I+R sites) in terms of disease severity 
or a disease index. Some of these models also enable the 
mobilization of available knowledge on the P. viticola-Vitis 
vinifera system and the exploration of the system’s behaviour 
under different environmental conditions, e.g., in different years 
and/or locations (Bove et  al., 2020a,b).

The above-mentioned models have limitations when used 
for guiding fungicide applications to control DM. Because 
P. viticola can rapidly cause devastating epidemics, DM control 
aims to prevent the establishment of the disease in the vineyard 
by controlling primary infections (Caffi et  al., 2009) and to 

prevent secondary spread as soon as the first seasonal DM 
lesions appear in the vineyard. A model that is able to predict 
the occurrence of favourable conditions for secondary infections 
may, therefore, be more useful than models that simulate disease 
progress over time. To date, however, such a model does not exist.

In the current study, a weather-driven, mechanistic model 
for predicting secondary infection by P. viticola was, therefore, 
developed. A preliminary version of the model was published 
in 2013 (Caffi et  al., 2013b). In the current study, the latter 
model was updated with recent epidemiological findings and 
was validated with a 3-year data set collected in a vineyard.

MATERIALS AND METHODS

Model Description
The model was designed to (i) produce warnings about the 
occurrence of environmental conditions favourable for secondary 
infection periods and (ii) assess the relative severity of the 
corresponding infections. The model was not intended to provide 
an assessment of the progeny/parent ratio, i.e., the number of 
DM daughter lesions produced per mother lesion in each 
infection period and, consequently, to simulate the DM progress 
curve in a vineyard; such a model was recently developed in 
another study (Bove et  al., 2020a).

The model begins when the first seasonal DM lesions appear 
in the vineyard, which are detected by scouting; scouting and 
other general processes of the model are indicated on the left 
side of Figure  1. Once DM lesions appear, the model assumes 
that lesions will be  present all season long and that these 
lesions may produce sporangia under suitable conditions; that 
assumption is reasonable given that a single DM lesion can 
sporulate several times, and that spore production can continue 
after unfavourable periods (Kennelly et  al., 2007; Caffi et  al., 
2013a). The first model step, therefore, consists of “sites with 
visible DM lesions” (Figure  1). The term “site” refers to a 
unit of host surface that can sustain a DM infection and 
potentially give raise to new infections, and the total number 
of sites is the host carrying capacity (Van der Plank, 1963). 
Sites can be  either DM-free or occupied by a DM lesion, and 
the latter can either be  a visible non-sporulating lesion or a 
sporulating lesion.

The model assesses the main biological and epidemiological 
processes involved in secondary infections by P. viticola and 
is organised into three compartments: (i) sporulation; (ii) 
dispersal and deposition of sporangia; and (iii) infection. A 
relational diagram of the model is shown in Figure 1; variables 
are listed in Table  1.

Sporulation Compartment
Sites with DM lesions produce sporangiophores and sporangia 
when weather conditions are favourable; the occurrence of 
favourable conditions is regulated by the switch SPO (Figure 1). 
If SPO  =  1, then lesions advance the second model step, i.e., 
“sites with DM lesions bearing sporangia”; if SPO  =  0, in 
contrast, lesions remain in the first model step (i.e., they remain 
non-sporulating). Because P. viticola sporangia emerge from the 
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lesion surface and produce sporangia in the dark when there 
is moisture and when temperature is >10°C (Blaeser and Weltzien, 
1979; Gessler et  al., 2011), the model sets SPO  =  1 when the 
night-time moist period (MP) is ≥3  h and the temperature of 
the moist period (TMP) is between 10 and 30°C (Lalancette 
et  al., 1988b); an hour is considered moist when the relative 
humidity (RH) is ≥80%, rain (R) is >0  mm, or leaf wetness 
(LW) is >30  min (Caffi et  al., 2013a). Once sporulation is 
triggered (i.e., SPO  =  1), the model initiates a “run.” Therefore, 
the number of model runs in a season is equivalent to the 
number of days that SPO  =  1  in a season; a model run can 
result or fail to result in a DM infection (Figure  1).

When lesions begin producing sporangia, they continue 
sporulating as long as weather conditions remain favourable 
(as defined before); this is a “sporulation period” in the model. 
During each sporulation period, the relative “dose of sporangia 
on DM lesions” (D’) is calculated with a sporulation rate, SPOR, 
by using the equation shown in Figure 2A, which is modulated 
by the number of sporulation events (SPOn) by using the 
equation of Kennelly et  al. (2007). As the sporulation period 
ends, the dose of sporangia progressively diminishes because 
the sporangia still attached to sporangiophores may die under 
unfavourable conditions of temperature and relative humidity 
(Blaeser and Weltzien, 1979; Kast and Stark-Urnau, 1999).  

FIGURE 1 | Relational diagram of the model predicting secondary infection cycles of P. viticola, drawn following the symbols of systems analysis as in Rossi et al. 
(2010). Boxes represent state variables; solid arrows represent flows that connect state variables; dashed arrows represent flows that connect driving variables to 
rates; circles represent parameters; rhombuses represent switches; clouds represent outgoing variables; valves represent rates; lines with a circle in the middle 
represent driving variables (acronyms of all of the elements of the model and their units are listed in Table 1). Lesion onset (LES), sporulation onset (SPO), and 
infection occurrence (INF) are dichotomic variables, with values = 1 when there are lesions, sporulation events, and infections, respectively, and values = 0 when 
there are no lesions, sporulation events, or infections, respectively.
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The model calculates the reduction of sporangial dose through 
a mortality rate MOR’, which is a function of the vapour 
pressure deficit (VPD), as shown in Figure  2B.

Spore Dispersal and Deposition Compartment
The next model step consists of DM-free sites on which the 
sporangia deposit after being detached from sporangiophores 
on sporulating DM lesions and dispersed into the air (Figure 1). 
Because P. viticola sporangia become airborne under a wide 
range of environmental conditions (Caffi et  al., 2013a) and 
because they are normally present in the air of DM-affected 
vineyards (Diaz et  al., 1997, 1998; Albelda et  al., 2005; 
Fernandez-Gonzalez et al., 2009; Magyar et al., 2009; Fernández-
González et  al., 2011,  2019; Martínez-Bracero et  al., 2019; 
Rodríguez et  al., 2020), the model assumes that whenever 
there are sporangia on DM lesions, sporangia may detach, 
disperse, and be  deposited on the host surface, i.e., when 
D’  >  0; if D’  =  0, there are no viable sporangia, and the 
model run ends.

The relative “dose of available sporangia” on DM-free sites 
(D”) is calculated by a dispersal and deposition rate, D&DR. 
The model assumes that all of the sporangia on DM lesions 
have the same probability of becoming airborne and being 
deposited on the host surface; therefore, D&DR  =  1. This dose 
of sporangia, however, progressively diminishes because the 
sporangia detached from sporangiophores can die under 
unfavourable conditions (Blaeser and Weltzien, 1979). In the 
model, the reduction of sporangial dose is calculated through a 
mortality rate MOR”, as a function of VPD as shown in Figure 2C.

Infection Compartment
The last model step involves the sites that become latently 
infected (i.e., DM lesions that are not yet visible because the 
incubation period is not over; Figure  1). These sites enter 
into this stage when there are viable sporangia on DM-free 
sites, i.e., when D”  >  0 (if D”  =  0, the model run ends) and 
there are favourable conditions for infection. The presence of 
favourable conditions is regulated by the switch INF. If INF = 1, 
then lesions advance to the fourth model step: “sites with 
latent DM lesions”; otherwise INF  =  0 and lesions remain in 
the third model step (i.e., sites remain DM-free with sporangia 
on their surface).

For infection to occur, sporangia may release zoospores into 
water, and zoospores may swim to stomata, encyst, and produce 
germ tubes that penetrate the stomatal opening (Emmett et al., 
1992). In the model, the time required for completing these 
processes is an “infection period,” i.e., a period of hours with 
uninterrupted leaf wetness or with leaf wetness that is interrupted 
for a maximum 1  h (WP); in the model, INF  =  1 when the 
WP at the registered temperature (TWP) is longer than the 
minimum required for that temperature based on Figure  2D.

The relative infection severity of each infection period is 
finally calculated by an infection rate, INFR, which depends 
on WP and TWP, as shown in Figure  2E.

An example of the model output is shown in Figure  3.

Model Evaluation
Independent data (i.e., data not used in model development) 
collected during three growing seasons (2015–2017) from an 
experimental vineyard were used to validate the model’s ability 
to predict (i) the presence of sporangia, (ii) the occurrence 
of P. viticola infections on grape leaves, and (iii) the relative 
infection severity.

Experimental Vineyard
Data were collected in the vineyard described by Brischetto 
et  al. (2020). In brief, the vineyard was located on the campus 
of Università Cattolica del Sacro Cuore, Piacenza (northern 
Italy, 45° 2'N, 9° 43'E). It was planted in 2006 with V. vinifera 
cultivar Barbera, which is susceptible to DM (Rossi and Caffi, 
2007). Vines were spaced 1.1 m in the row and 1.3 m between 
rows, and were trained on a single Guyot system. No fungicides 
were used for the duration of the study. A standard meteorological 
station (iMetos®, Pessl Instruments, Austria) located in the 
experimental vineyard recorded hourly air temperature (T, °C), 

TABLE 1 | Description of the stages in the system, state variables, switch 
variables, rates, intermediate variables, and external variables used in the 
relational diagram of the model presented in Figure 1.

Variable Acronym Unit

Stages in the system
Sites with visible DM1 lesions - Dimensionless
Sites with DM lesions bearing sporangia - Dimensionless
Sites DM-free - Dimensionless
Sites DM-free with sporangia on surface - Dimensionless
Sites with latent DM lesions - Dimensionless
State variables

Dose of sporangia on DM lesions D’ Number
Dose of available sporangia for infection D” Number
Relative infection severity SEV Number
Switch variables

Lesion onset LES 0 (no lesions)/1(there 
are lesions)

Sporulation onset SPO 0 (no sporulation)/1 
(sporulation)

Infection occurrence INF 0 (no infection)/1 
(infection)

Rate variables
Sporulation rate SPOR 0–1
Mortality rate of sporangia on DM lesions MOR’ 0–1
Dispersal and deposition rate D&DR =1
Mortality rate of detached sporangia MOR” 0–1
Infection rate INFR 0–1
Intermediate variables

Moisture duration (or moist period) MP N. of hours
Number of sporulation events SPOn Number
Average temperature of MP TMP °C
Wetness duration (or wet period) WP N. of hours
Average temperature of WP TWP °C
Vapour pressure deficit VPD kPa
External variables

Day/night - 0 (daylight)/1 (night time)
Air temperature T °C
Relative humidity RH %
Rain R mm
Leaf wetness LW min

1DM, downy mildew.

https://www.frontiersin.org/journals/plant-science
www.frontiersin.org
https://www.frontiersin.org/journals/plant-science#articles


Brischetto et al. Weather-Driven Model to Predict P. Viticola

Frontiers in Plant Science | www.frontiersin.org 5 March 2021 | Volume 12 | Article 636607

relative humidity (RH, %), rainfall (R, mm), leaf wetness (LW, 
min), and wind speed (m/s).

To ensure the presence of P. viticola in the vineyard, six 
vine shoots regularly located along two adjacent vine rows 
were inoculated with a suspension of P. viticola sporangia on 
14 May 2015, 19 May 2016, and 18 May 2017. The inoculation 
method was described by Brischetto et  al. (2020).

Sampling of Airborne Sporangia
A volumetric spore sampler (VPPS-2000 Lanzoni, Bologna, 
Italy) placed at 1.5  m above the soil surface and between the 
two artificially inoculated rows was used to sample the airborne 

sporangia of P. viticola from 11 May to 14 September 2015 
(127  days), 11 May to 30 September 2016 (143  days), and 18 
May to 28 September 2017 (134  days). The air was aspirated 
through the spore sampler at a flow rate of 10 litres per minute. 
The airflow was directed toward a Melinex transparent tape 
(34  cm long and 1.4  cm wide) mounted on a cylinder that 
rotated at 2  mm  hr−1. The tape was coated with a silicone 
film to allow the deposition of spores and was replaced every 
7 days. The collected tape was cut into seven 48-mm segments, 
each of which was mounted in glycerin jelly with fucsina 
(Lanzoni s.r.l., Bologna) on a microscope slide and was protected 
with a cover glass. Each segment corresponded to 1 sampling day; 

A D

B

C

E

FIGURE 2 | Contour plots showing the relationships between temperature and wetness duration or relative humidity and the following elements used in the model 
(see Figure 1): (A) sporulation rate, SPOR; (B) mortality rate of sporangia attached to sporangiophores on downy mildew (DM) lesions, MOR’; (C) mortality rate of 
sporangia detached from sporangiophores, MOR”; (D) minimal requirements for infection; and (E) infection rate, INF. Equations were obtained from the following 
sources: (A) the model of Lalancette et al. (1988a) for describing the sporulation of P. viticola on grape leaves, in which the numbers of sporangia per cm2 of leaf 
were rescaled by dividing by the number at 20°C and 24 h of a wet period; (B,C) the models relating temperature and relative humidity, expressed as vapour 
pressure deficit, as used by Brischetto et al. (2020) for the sporangia attached to or detached from sporangiophores; (D) the model of Magarey et al. (2005) with the 
following parameters estimated from data of Blaeser and Weltzien (1979) and Caffi et al. (2016), with R2 = 0.87 for estimated vs. observed data: shortest wetness 
duration at optimal temperature = 2 h; minimal, optimal, and maximal temperature for infection = 4.0, 21.0, and 30.2°C, respectively; and (E) the model of Caffi et al. 
(2016) for infection of grape leaves by P. viticola.
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the ith sampling day began at 10:00  h of the day ith-1 and 
ended at 09:00  h of the ith day. P. viticola sporangia m−3 of 
air on each sampling day (total number of sporangia, SPT, 
m−3 air day−1) were counted using a microscope (20x 
magnification; Brischetto et  al., 2020).

Assessment of DM Infection
The occurrence of infection was assessed by counting the DM 
lesions formed on grape leaves that were exposed to sporangia 
in the vineyard and that were then incubated in the laboratory 
under optimal conditions for infection, as explained in Brischetto 
et  al. (2020). In brief, at 2- or 3-day intervals at 10:00  AM, 
20 random leaves without visible DM symptoms were collected 
in the two rows of vines where P. viticola had been inoculated 
and the spore sampler operated. Over the 3  years of the study, 
leaves were collected on 108 dates (35, 37, and 36 dates in 
2015, 2016, and 2017, respectively). After each sampling, 20 
leaf fragments of approximately 8 cm2 were excised (1 fragment 
per leaf) with a scissors. Leaf fragments were placed abaxial 
side up in Petri dishes on wet blotting-paper, and were sprayed 
with sterile-distilled water so as to form a uniform film of 
water. After they were sealed with Parafilm to maintain a 

saturated atmosphere, the Petri dishes were incubated at 23°C 
with a 12-h photoperiod. After 24  h (which is sufficient for 
the sporangia to cause infection; Unger et  al., 2007), leaf 
fragment surfaces were dried with sterile filter paper (OIV, 
2009) and incubated again under the same conditions.

Leaf fragments were observed daily for 4  days with a 
stereomicroscope at 10x magnification to detect DM lesions. 
These DM lesions were considered to have occurred in the 
field and were assumed to be  in the latency stage at the time 
of leaf collection, because the incubation period at 23°C is 
4  days (Goidànich, 1964). The number of DM lesions per 
each sampling day (NLL) was expressed per leaf fragment, 
i.e., per 8  cm2 of leaf.

Data Analysis
A Bayesian analysis of SPT values was used to evaluate the 
model ability to determine the periods in which the sporangia 
of P. viticola were present in the vineyard (Yuen and Hughes, 
2002). For this purpose, every day of the study period was 
categorised as a day on which significant numbers of sporangia 
were observed (O+) or were not observed (O−); sporangia 
were considered to be  present in significant numbers when 

A

B

C

FIGURE 3 | Example of model output for a 48-h period across 3 days. (A) Data for temperature (T, °C, line), relative humidity (RH, %, dotted line), rain (R, mm; 
bars), and leaf wetness (LW, as presence or absence, dotted trapezoid). (B) Sporulation rate on DM lesions during a sporulation period beginning in the dark at the 
time when SPO = 1. (C) Infection rate during an infection period beginning at the time when INF = 1.

https://www.frontiersin.org/journals/plant-science
www.frontiersin.org
https://www.frontiersin.org/journals/plant-science#articles


Brischetto et al. Weather-Driven Model to Predict P. Viticola

Frontiers in Plant Science | www.frontiersin.org 7 March 2021 | Volume 12 | Article 636607

there were >0.2 sporangia m−3 air day−1, with 0.2 being the 
25th percentile of the SPT distribution observed during the 
study. The peaks of sporangia were also considered, being days 
with >87.9 sporangia m−3 air, with 87.9 being the 90th percentile 
of the SPT distribution. Similarly, every day was categorised 
as a day on which sporangia were predicted to be  present 
(P+) or absent (P−) based on whether the dose of available 
sporangia D” was higher than or equal to zero, respectively. 
All possible combinations of predicted vs. observed days with 
or without sporangia were organised in a 2  ×  2 contingency 
table, where P−O− (sporangia were not predicted to be present 
and no significant numbers of sporangia were sampled) and 
P+O+ (sporangia were predicted to be  present and they were 
sampled in significant numbers) were the correct estimates, 
while P+O− and P−O+ were the incorrect estimates. To assess 
the practical advantages of using the model, the posterior 
probabilities that a predicted sporulation period resulted or 
did not result in a real one were determined as P(O+P+) and 
P(O−P−), respectively (Madden et al., 2007), and were compared 
with the corresponding prior probabilities, P(O+) and P(O−), 
respectively.

Data on the number of DM lesions on leaves (NLL) sampled 
from the vineyard on the 108 sampling days of the study 
period were used to evaluate the model ability to predict the 
occurrence of P. viticola infection on grape leaves, as well as 
the relative severity of these infections. Each day was categorised 
as a day on which P. viticola infection was predicted or not 
based on whether the switch variable INF was equal to one 
or zero, respectively (see example in Table  2), and the relative 
severity of infection (SEV) predicted by the model was noted. 
Afterward, days on which there were latent infections, i.e., 
infections not yet visible because the incubation period was 
not over, were calculated. For this purpose, the daily percentage 
of incubation progress was calculated for each infection as a 
function of temperature and relative humidity by using the 
equation of Orlandini et al. (2008); the incubation was considered 
not finished when the incubation progress was <100%. In each 
day, the number of infections that were still in incubation 
and the corresponding cumulative values of SEV were calculated 
(Table  2). These cumulative severities of the days in which 
leaves were sampled from the vineyards were then used for 
comparison with real values.

For comparison, sampling days on which the asymptomatic 
leaves taken from the vineyard showed DM lesions after 
incubation in the laboratory (i.e., NLL  >  0) were considered 
as days on which leaves held latent infections (O+); similarly, 
days on which the field collected leaves did not show any 
P. viticola symptom after incubation were considered as days 
on which leaves were infection free (O−; see example in Table 2).

In a first analysis, a receiver operating characteristic (ROC) 
curve (Hanley, 2005) was created, in which cumulative values 
of SEV were considered as possible predictors of P. viticola 
infection of the grape leaves sampled from the vineyard. The 
ROC curve displayed the proportion of cases (leaf samples) 
correctly classified as carrying a latent infection, i.e., true 
positive proportion (TPP, or sensitivity), vs. the proportion of 
cases wrongly classified as non-infected, i.e., false negative 

proportion (FNP, or 1-specificity), across a range of cut-offs 
of cumulative SEV. The ROC curve represents the trade-off 
between sensitivity and specificity and was used to identify 
the best cut-off, corresponding to the highest overall accuracy 
of the test, i.e., the highest ratio between the number of cases 
assigned to the correct category and the number of cases that 
actually belonged to that category (Zweig and Campbell, 1993). 
The overall accuracy was expressed as the area under the 
ROC curve (AUROC), and its 95% confidence interval was 
calculated. The larger the AUROC (in the range 0.5–1), the 
better the performance of the binary classifier system in 
distinguishing between the two groups (infection/no infection). 
The value of p was calculated as the probability that the AUROC 
is different from the null hypothesis, i.e., that AUROC  =  0.5 
(the ROC curve coincides with the 1st diagonal) and that the 
variable under study does not distinguish between the two 
groups. The optimal cut-off point was determined by calculating 
the square of the distance between the point (0 and 1) on 
the upper left hand corner of the ROC space and any point 
on the ROC curve, as d2  =  (1-sensitivity)2  +  (1-specificty)2 
(Kumar and Indrayan, 2011).

In a second analysis, sampling days were categorised as 
days on which the model predicted there were latent infections 
(P+) and days on which no latent infections were predicted 
(P−; see the example of Table  2), by using the best cut-off 
value obtained from the ROC curve. Model predictions (either 
P+ or P−) were compared with the observations in the vineyard 
(that also were either O+ or O−). Data were organized in a 
2  ×  2 contingency table and were subjected to a Bayesian 
analysis (Yuen and Hughes, 2002) as described for sporulation. 
In this case, P−O− defines days on which infections were 
not predicted to be  present and no DM lesions appeared on 
field collected leaves, and P+O+ defines days on which infections 
were predicted to be present and DM lesions appeared on leaves.

In a third analysis, a binary logistic regression (or logit 
model) was used to predict the odds of having a DM infection 
(the binary dependent variable, Y) based on the cumulative 
values of SEV (the continuous independent variable, X) in 
the following form: P(Y) = 1/(1+exp(−(B0+B1×X))). The odds 
are defined as the probability that a particular cumulative 
SEV value results in an infection divided by the probability 
that it does not result in an infection. Three logit models 
were fit in which the binary variable Y was set to 0 or 1 
based on different thresholds of NLL as follows: NLL  >  0, 
>2, and >5 lesions per leaf piece (8  cm2). These thresholds 
were defined based on the data distribution (see Results 
section). All possible combinations of observed vs. predicted 
data were organised in a two-by-two contingency table, and 
were subjected to a Bayesian analysis (Yuen and Hughes, 2002) 
in order to calculate sensitivity, specificity, and accuracy of 
the model predictions.

The relationships between the numbers of sporangia from 
the spore sampler (SPT), as ln(SPT+1), and the variable D”, 
and between the cumulative SEV and NLL, as ln(NLL+1), 
were assessed by determining Pearson’s correlation coefficients.

All statistical analyses were carried out using SPSS software 
(IBM SPSS Statistics, version 25).
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TABLE 2 | Example of calculations for the comparison of the Plasmopara viticola infections predicted by the model and observed on grape leaves from the vineyard.

Day1 Model output Reality Model vs. reality

Occurrence (and 
severity) of 
infection2

Incubation progress (%) for infection on day3 N. of infections 
(and cumulated 

severity)4

Prediction of 
infection5

N. DM lesions on 
leaves6

Observation of 
infection7

i+4 i+5 i+6

i 0 0
i+1 0 0
i+2 0 0 P− 0 O− P−O−
i+3 0 0
i+4 1(0.137) 18 1(0.137)
i+5 1(0.298) 38 20 2 (0.435) P+ 0 O− P+O−
i+6 1(0.281) 58 40 20 3 (0.716)
i+7 0 79 61 40 3 (0.716)
i+8 0 98 80 60 3(0.716)
i+9 0 91 70 2(0.579) P+ 1.7 O+ P+O+
i+10 0 83 1(0.281)
i+11 0 96 1(0.281)
i+12 0 0 P− 0.1 O+ P−O+
i+13 0 0

1Day of model simulation.
2Infection occurrence (=1) or not (=0) on day i, and its severity (in brackets) based on model output.
3Calculation of incubation progress begins on each day “i” in which infection is predicted; the percentage of incubation progress on each day is calculated as a function of temperature and relative humidity by using the equation of 
Orlandini et al. (2008).
4Number of infections that are incubating on each day and corresponding cumulative values of severity.
5Days are categorised as P+ (days on which the model predicts that there are latent infections) or P− (days on which the model predicts that there are no latent infections).
6Average number of downy mildew (DM) lesions per leaf piece (8 cm2) on asymptomatic leaves collected in the vineyard.
7Days are categorized as O+ (days on which the leaves hold latent infections) or O− (days on which leaves are infection free).
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RESULTS

Weather Conditions
Weather conditions differed among the three sampling years (with 
one season per year, from 1 May to 30 September). The hottest 
and driest year was 2015 with an overall average daily temperature 
of 24.4°C, a minimum (min) of 13.6°C, and a maximum (max) 
of 31.7°C. The average daily RH was 63%, and total rainfall 
during the spore sampling season was 155  mm, which was 
distributed over 32 rainy days (Figure  4A). A total of 295  h of 
leaf wetness and an average VPD  =  12.12 were registered 
(Figure  4B). The coolest and wettest year was 2016, and May 
and June in particular were characterised by frequent and intense 
rain, with prolonged wet periods. Total rainfall was about two 
times higher in 2016 than in 2015 (364  mm of rain on 43 rainy 
days in 2016), and the average RH was 68%. The average temperature 
was 22.4°C (min  =  12.9°C and max  =  28.8°C; Figure  5A). A 
total of 499  h of leaf wetness and an average VPD  =  9.82 were 
registered in 2016 (Figure  5B). The 2017 season was quite dry 
with 314  mm of rain on only 25 rainy days and an average 
RH  =  58%. The average temperature was 23.9°C (min  =  14.4°C 
and max  =  30.8°C; Figure  6A). In 2017, there were only 177  h 
of leaf wetness and an average VPD  =  13.25 (Figure  6B).

Evaluation of the Sporulation 
Compartment
Numbers of the airborne sporangia of P. viticola collected by 
the spore sampler reflected the weather conditions, i.e., they 

were higher in 2016 than in 2015 or 2017 (Figure  7). In 
2015, a total of 1,230 airborne sporangia were detected on 
116 of the 127  days of the sampling period (91% of the days). 
On most days in 2015, however, fewer than 10 sporangia m−3 
air day−1 were detected, but peaks occurred on 25 May (188 
sporangia m−3 air), 24 August (125 sporangia m−3 air), and 5 
September (246 sporangia m−3 air; Figure  7A). In 2016, a 
total of 14,485 airborne sporangia were detected on 122 of 
the 143  days of the sampling period (85% of the days). There 
were several peaks in 2016 (Figure  7B). In 2017, a total of 
193 airborne sporangia were detected; airborne sporangia were 
detected on only 72 of the 134  days of the sampling period 
(54% of the days), and there were no peaks (Figure  7C).

Over the total study period, sporangia were, therefore, present 
in the vineyard air on 310 of the 404  days (76.7% of the days); 
significant numbers were present on 276  days (68.3% of the 
days; Figure  7). The model predicted the presence of viable 
sporangia on 290 days and the absence of sporangia on 114 days. 
On 266 days, predictions concerning the presence of significant 
numbers of sporangia were correct, with TPP  =  0.78 and 
TNP = 0.41, giving an overall model accuracy of 0.66 (Table 3); 
on the remaining 138  days, the model predictions were wrong, 
with FNP  =  0.22 and FPP  =  0.59. Based on these data, the 
posterior probability that there were sporangia when predicted 
by the model was P(P+O+) = 0.74, and the posterior probability 
that there were sporangia when not predicted by the model 
was P(P−O+)  =  0.33 (Table  3). Therefore, there were 62 of 
404  days (15.3% of the days) in which sporangia were present 

A

B

FIGURE 4 | Weather conditions in 2015 during spore sampling periods in the vineyard. (A) Air temperature (T, °C, full line), relative humidity (RH, %, dotted line), 
and rainfall (mm, grey bars). (B) Leaf wetness (LW, hours, grey area) and VPD (hPa, full line).
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A

B

FIGURE 5 | Weather conditions in 2016 during spore sampling periods in the vineyard. (A) Air temperature (T, °C, full line), relative humidity (RH, %, dotted line), 
and rainfall (mm, grey bars). (B) Leaf wetness (LW, hours, grey area) and VPD (hPa, full line).

A

B

FIGURE 6 | Weather conditions in 2017 during spore sampling periods in the vineyard. (A) Air temperature (T, °C, full line), relative humidity (RH, %, dotted line), 
and rainfall (mm, grey bars). (B) Leaf wetness (LW, hours, grey area) and VPD (hPa, full line).
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but had not been predicted in the vineyard. However, the 
sporangia sampled on these days represented only 2.9% of the 
total sporangia sampled in the study period (a total of 461 
sporangia of 15,907), and only one of 40 peaks was not predicted, 
with 246 sporangia m−3 air on 5 September 2015.

Numbers of sporangia from the spore sampler were correlated 
with the variable D” of the model, i.e., the availability of viable 
sporangia, with r  =  0.255 and p  <  0.001. In addition, the model 
was able to account for the among-years difference in the abundance 
of sporangia (Figure 8). The low correlation coefficient (r = 0.255) 
should be  analysed, considering that the model predicts the 
presence of viable sporangia while the counts from the spore 

sampler include both viable and non-viable; it follows that some 
of the sporangia captured by the sampler may not be  viable.

Evaluation of the Infection Compartment
In 46 of 108 cases, the asymptomatic leaf fragments taken from 
the vineyard showed typical DM lesions after incubation under 
favourable conditions in the laboratory, indicating that they held 
latent infections of P. viticola at the time of sampling; therefore, 
occurrence of P. viticola infection was observed on 42.6% of 
the sampling days. The average number of DM lesions (NLL) 
on these leaf fragments (8 cm2 wide) ranged from 0.05 to 37.60 
(Figure  9); the main percentiles of the distribution of NLL 

A

B

C

FIGURE 7 | Numbers of the airborne sporangia of P. viticola sampled by the spore trapper (SPT; n/m3 air, grey area) and sporangial availability predicted by the 
model (bars) during (A) 2015, (B) 2016, and (C) 2017.
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data were 25th  =  0.6, 50th  =  2.2, 75th  =  4.8, 90th  =  27.5, and 
95th  =  36.3, which showed a relevant positive skewness (1.92) 
and kurtosis (2.41). The use of the 50th and 75th as thresholds 
for distinguishing between intermediate and severe DM infections, 
gave that intermediate and severe infections were observed in 
23 (21.3%) and 11 (10.2%) of the 108 sampling days, respectively.

Numbers of DM lesions on leaves were significantly correlated 
with the cumulative values of SEV calculated by the model, 
i.e., the relative severity of infections, with r  =  0.599 and 
p  <  0.001. The ROC curve (Figure  10) generated by using 
different cut-off values of cumulative SEV for predicting the 
occurrence of infection on leaves was significantly different 
from the line of no-discrimination (the diagonal line in 
Figure  10) with p  <  0.001 and AUROC  =  0.814  ±  0.044, 
indicating that the model predictions were related to the binary 

prediction of infection. The optimal cut-off point was 0.065, 
for which sensitivity = 0.804, 1-specificity = 0.194, and d2 = 0.076.

The use of this cut-off point for determining the number 
of sampling days on which the model predicted infection (P+) 
or no infection (P−) provided an overall accuracy  =  0.81, 
sensitivity = 0.80, and specificity = 0.81 (Table 3). The likelihood 
ratio LR+ [= sensitivity / (1 - specificity)] was 4.16, and the 
likelihood ratio LR- [= (1 - sensitivity) /specificity)] was 0.24. 
The posterior probability of correctly predicting no infection 
was P(P−O−)  =  0.873, and the probability of missing a real 
infection was P(P−O+) = 0.127. Because the prior probabilities 
were P(O+)  =  0.426 and P(O−)  =  0.574, the use of model 
output made it possible to correctly predict infection and, to 
an even greater degree, to correctly predict no infection. 
Therefore, the classifier based on the model, specifically based 

TABLE 3 | Comparison between the presence of P. viticola sporangia and infection as predicted by the model (P) and observed in the vineyard (O).

P (+)1 P (−)1 Total Prior 
probability

Posterior probability Accuracy

Presence of 
sporangia

O (+)2 214 3TPP = 0.78 62 4FNP = 0.22 276 P(O+) = 0.68 P(P+O+) = 0.74 P(P−O+) = 0.33 0.187

O (−)2 76 5FPP = 0.59 52 6TNP = 0.41 128 P(O−) = 0.32 P(P+O−) = 0.26 P(P−O−) = 0.67 0.668

Total 290 114 404
Occurrence of 
infection

O (+) 37 TPP = 0.80 9 FNP = 0.20 46 P(O+) = 0.43 P(P+O+) = 0.76 P(P−O+) = 0.13 0.61
O (−) 12 FPP = 0.19 50 TNP = 0.81 62 P(O−) = 0.57 P(P+O−) = 0.24 P(P−O−) = 0.87 0.81
Total 49 59 108

1P+ and P− denote cases in which the model has predicted the presence or absence of viable sporangia, respectively, and cases in which the model has predicted the occurrence 
or absence of infection, respectively.
2O+ and O− denote cases in which significant numbers of airborne sporangia were or were not sampled by a volumetric spore sampler, respectively, and cases in which DM lesions 
were or were not found on grape leaves, respectively.
3TPP, true positive proportion.
4FNP, false negative proportion.
5FPP, false positive proportion.
6TNP, true negative proportion.
7Jouden index: TPP+TNP-1.
8Overall accuracy: number of correct prediction (O+P+ and O−P−)/total cases.

FIGURE 8 | Average values of sporangial availability predicted by the model (white bars) and average ln-transformed values of airborne sporangia (n/m3 air) 
observed (grey bars) in the 3-year experiment. Whiskers represent SEs.
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on SEV, performed better for negative than for positive predictions 
of P. viticola infection. Nevertheless, nine cases with real infection 
were missed by the classifier; these missed infections, however, 
involved only 14 DM lesions, which represented only 4.4% of 
the total number of lesions observed (308 lesions).

The binary logistic regression described relationships between 
model output and observed infection of grape leaves in the 
vineyard as a binary outcome (yes, O+; or no, O−) for three 
levels of disease severity, i.e., the occurrence of any infection 
(i.e., NLL  >  0), a moderate infection (NLL  >  2.2), or a severe 

infection (NLL  >  4.8); thresholds for moderate and severe 
infections (i.e., NLL  =  2.2 and 4.8 lesions/8  cm2 of leaf) were 
selected as the values defining the 50th and 75th percentiles of 
the observed NLL distribution, respectively (Table  4 and 
Figure  11). This means that, for example, with a predicted 
SEV of 0.5, the probability of having any infection, an intermediate 
infection, or a severe infection decreases from P(O+)  =  0.505 
to 0.206 and 0.073, respectively, i.e., the infection would likely 
be  mild; with a predicted SEV of 2.0, the probability of any 
infection, an intermediate infection, or a severe infection 

A

B

C

FIGURE 9 | Relative severity of infection (SEV) predicted by the model (line) and number of DM lesions (NLL) on grape leaf fragments (8 cm2; grey bars) that were 
sampled in the vineyard during (A) 2015, (B) 2016, and (C) 2017.
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decreases from P(O+)  =  0.967 to 0.735 and 0.546, respectively, 
i.e., the infection would likely be  severe.

DISCUSSION

In the present work, a mechanistic model was developed to 
predict the occurrence and severity of secondary infections of 
P. viticola on grapevines based on environmental conditions. 
The model is weather-driven and involves the main processes 
of the secondary infection cycles in the grapevine-DM pathosystem, 
i.e., sporulation, dispersal and deposition, and infection.  
These processes were quantitatively represented by previously  

developed equations (Lalancette et al., 1988b; Magarey et al., 2005; 
Brischetto et  al., 2020) and recent research findings (Kennelly 
et  al., 2007; Caffi et  al., 2013a). The model also considers 
equations accounting for the mortality of sporangia as used in 
Brischetto et al. (2020); to our knowledge, this is the first model 
that explicitly considers the survival of P. viticola sporangia. 
Only a few of the models that have been developed for predicting 
secondary infections by P. viticola account for the survival of 
sporangia. In developing the PLASMO model, Orlandini et  al. 
(2008) included an equation for the survival of sporangia (Rosa 
et  al., 1993) as a function of temperature and relative humidity 
as reported by Blaeser and Weltzien (1978); the parameters of 
the equation, however, were not specified, which precludes the 
use of the equation by other researchers. Equations for the 
survival of sporangia were also mentioned in VitiMeteoPlasmopara 
(Bleyer et  al., 2008) and RIMpro-Plasmopara (Trapman, 2013), 
but these equations were not explicitly described.

The model developed in the current research was evaluated 
against the data collected in a 3-year vineyard study of the 
dynamics of the airborne P. viticola sporangia and the occurrence 
of infection on leaves exposed to that inoculum (Brischetto 
et  al., 2020). These data were not used in model building and 
represented different conditions of temperature, humidity, rain, 
and leaf wetness duration, as shown in Figure  3. Therefore, 
the evaluation can be  considered robust (Camase, 1996; 
Pascual et  al., 2003; Rossi et  al., 2010).

Concerning airborne P. viticola sporangia, the current study 
confirmed other reports that P. viticola sporangia are a common 
component of the airborne microflora of vineyards (Diaz et al., 
1998; Albelda et  al., 2005; Fernandez-Gonzalez et  al., 2009; 
Magyar et  al., 2009; Fernández-González et  al., 2011, 2019; 
Martínez-Bracero et  al., 2019; Rodríguez et  al., 2020). This is 
highly relevant to DM management: while the inoculum for 
primary infection is available only following a rain, the secondary 
inoculum is always present when P. viticola is established in 
the vineyard.

Even though P. viticola sporangia were frequently sampled 
from the air of the DM-affected vineyard in the current study, 
their concentrations changed within and among seasons. The 
model was able to interpret this variability with an overall 

FIGURE 10 | Receiver operating characteristic (ROC) curve showing the 
trade-offs between sensitivity and specificity for different cut-off values of 
cumulative values of relative serenity of infection (SEV) calculated by the 
model for predicting the occurrence of infection on leaves. The diagonal is the 
line of no-discrimination.

TABLE 4 | Coefficients and statistics of the binary logistic regression for predicting P. viticola infection of grape leaves as a function of the model output relative severity 
of infection (SEV).

Infection severity1 Coefficient2 S.E.3 Wald chi-square4 p5 Exp(B)6 Accuracy7

NLL > 0 B1 = 2.234 0.538 17.2 <0.001 9.340 0.75
B0 = −1.095 0.269 16.5 <0.001 0.335

NLL > 2.2
B1 = 1.581 0.397 15.9 <0.001 4.861 0.83
B0 = −2.142 0.354 36.6 <0.001 0.117

NLL > 4.8
B1 = 1.814 0.47 14.9 <0.001 6.137 0.91
B0 = −3.442 0.578 35.5 <0.001 0.032

1Infection severity for predicted infection is based on the number of DM lesions (NLL) observed on grape leaf fragments (8 cm2 wide).
2Coefficients of the logistic regression in the following form: P(Y) = 1/(1+exp(−(B0+B1×X))), expressed in log-odds units, where P(Y) is the probability of infection, and X is the 
predicted severity SEV.
3Standard error of coefficients.
4Wald chi-square value.
5Two-tailed value of p used in testing the null hypothesis that the coefficient is 0.
6Odds ratios for the coefficients (predictors) as the ratio of the probability of success in predicting infection over the probability of failure.
7Overall accuracy of the model expressed as the proportion of cases that were correctly classified by using the equation.
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accuracy of 0.66 over 1 (whit 1 over 1 would indicating the 
perfect agreement), which is quite low. The low model performance 
has two main explanations. First, the model predicts the 
sporulation dynamics for a DM lesion (or a cohort of DM 
lesions that is coeval) but does not consider the number of 
DM lesions that are present in the vineyard; the spore sampler 
data, in contrast, are obviously affected by the number of 
sporulating DM lesions. Second, the model predicts the presence 
of viable sporangia while the spore sampler, as noted earlier, 
collects both viable and non-viable sporangia, which cannot 
be  distinguished in spore counts. The real number of viable 
sporangia was not considered in this study because its 
quantification is difficult, i.e., it requires the collecting of sporangia 
and the testing of their viability by inoculating susceptible grape 
tissue, by staining sporangia with fluorochromes (Sergeeva et al., 
2002), or by using a spectrophotometer (Hong and Scherm, 
2020). Molecular methods have been developed for testing the 
viability of fungal spores (Vesper et  al., 2008; Cangelosi and 
Meschke, 2014; Al-Daoud et  al., 2017; Vilanova et  al., 2017), 
but they have not been tested with P. viticola. For practical 
purposes, i.e., for improving DM control, the model should 
be evaluated for its ability to predict periods with no sporangia 
(i.e., for negative prognosis) and periods with peaks of sporangia; 
if reasonably correct, these predictions would enable growers 
to identify periods with no/low risk or high risk, respectively. 
When used for negative prognosis, the model made it possible 
to increase the probability to predict no sporangia by two times 
compared to the prior probability, which were P(P−O−) = 0.67 
and P(O−)  =  0.32, respectively. In addition, fewer than 3% of 
the total sporangia found in this study were sampled when 
not predicted by the model, and this confirmed that the model 
may be  useful when used for negative prognosis. When the 
model was used for predicting peaks of sporangia, only one 
of 40 peaks was unpredicted; this occurred on 5 September 2015, 

when there were only 4  h in the dark, a maximum RH of 
75%, no leaf wetness, and an average temperature of 19°C. 
Based on the current knowledge, these conditions are not 
conducive for production of sporangia by P. viticola; therefore, 
the presence of these sporangia in the vineyard was unclear 
and not predictable. Our current understanding is that the 
sporulation of P. viticola is inhibited by light and occurs at 
night (Muller and Sleumer, 1934; Yarwood, 1937; Rumbolz 
et  al., 2002), and is triggered in darkness by a period of at 
least 3 h with RH ≥80%, rain, or leaf wetness (Caffi et al., 2013a).

Concerning the P. viticola infection on leaves, the comparison 
between model prediction and reality provided an overall 
accuracy of 0.81, with true proportions >0.8 for both positive 
and negative proportions. Overall, the results showed that the 
model was a useful predictor of infection and especially for 
negative prognosis, because the posterior probability for the 
infection not to occur when not predicted was 0.87. When 
used for negative prognosis, the model missed some infections 
(exactly 9 of 108), but these infections were mild and accounted 
for only 4.4% of the total DM lesions observed in the study.

Negative prognosis may be  very useful for controlling the 
disease during its secondary spread. The control of DM after 
fruit set, when secondary infections are dominant, is usually 
based on calendar applications (Gessler et  al., 2011), with 
fungicides applied every 7–10 days depending on the fungicide 
used, weather and especially rainy conditions, the growth of 
new leaves from lateral shoots (Caffi and Rossi, 2018), and 
plant growth in relation to ontogenic resistance of clusters 
(Kennelly et  al., 2001; Gadoury, 2015). In such a situation, a 
model able to identify periods in which the DM risk is nil 
or very low may be helpful for avoiding fungicide interventions 
when not needed or for lengthening the interval between two 
sprays. In other words, the model could help growers move 
from calendar-based to risk-based fungicide schedules.

FIGURE 11 | Probability of any (full line), intermediate (dashed line), or severe (dotted line) DM infection on grape leaves according to the binary logistic regression 
described in Table 4.
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Like the model developed by Caffi et  al. (2016), the model 
in the current study was developed with infection-of-leaves 
data and was validated by comparing model predictions with 
leaf infection in a vineyard. DM epidemics, however, are dual 
epidemics, i.e., they develop on two main organs, leaves and 
clusters, in the course of a cropping season (Savary et  al., 
2009). Grape rachises and berries are susceptible to P. viticola 
from inflorescence emergence to when they become resistant 
because of ontogenic resistance. Ontogenic or age-related 
resistance results from the loss of infection courts due to the 
conversion of stomata into lenticels and to the clogging of 
stomatal openings (Gindro et  al., 2012; Fröbel and Zyprian, 
2019); this occurs between 1 and 6 weeks post-bloom (Kennelly 
et al., 2005). Like DM lesions on leaves, DM lesions on berries 
and rachises produce secondary sporangia until the stomata 
lose functionality and do not further support sporulation; these 
sporangia may also contribute to the disease.

Models for DM developed in the past (Lalancette et  al., 
1988b; Blaise and Gessler, 1990; Hill, 1990; Magarey et  al., 
1991; Magnien et  al., 1991; Orlandini et  al., 1993; Ellis et  al., 
1994; Blaise et  al., 1999; Leroy et  al., 2013) did not account 
for the infection of clusters and for their contribution to the 
epidemic via production of sporangia, with the exception of 
the model of Bove et  al. (2020a). The latter model includes 
the role of clusters in the DM epidemic through a transmission 
coefficient that numerically links the two components, leaves, 
and clusters; that coefficient enables the model to simulate 
the level of cluster infection based on DM severity on the 
foliage at successive crop stages (Savary et  al., 2009). Weather-
driven models for DM epidemics developed to date have failed 
to explicitly consider infection of clusters because there are 
no published data on how infection of clusters is affected by 
temperature, wetness duration, and infection or disease severity. 
Research is, therefore, needed so that existing models can 
be modified to account for the dual nature of P. viticola epidemics.

As indicated in the previous paragraph, there are possible 
weaknesses in using leaf-based infection models to guide fungicide 
applications for protection of both leaves and clusters. 
Caffi et  al. (2011), however, demonstrated that the scheduling 
of fungicide applications based on a model for primary infection 
of leaves (Caffi et  al., 2009) efficiently controlled DM on both 
leaves and clusters. This would also likely be true for the present 
model for secondary infections, given that secondary infection 
cycles are more important than primary cycles late in the season, 
when ontogenic resistance greatly reduces the susceptibility of 
clusters to P. viticola, such that the disease develops only on leaves.

Based on the results of the current research, the model 
described and tested here could be  used to advise growers 
about the risk of secondary DM infections; this would enable 
growers to make informed decisions about crop protection, 
in compliance with the general rules of IPM and of Directive 
2009/128/CE on the sustainable use of pesticides (Rossi et  al., 
2012). Future field experiments may be useful for demonstrating 
the advantages of model-timed sprays vs. intensive calendar-
based spray programs.
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