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Annual and perennial populations commonly occur for the same submerged aquatic
angiosperm species, yet relationships between population types and sediment
characteristics are poorly understood. In the current study two Ruppia sinensis habitats
with annual and perennial populations were surveyed in the Yellow River Delta (YRD).
Biomass and seasonal seed bank size were used to evaluate population status and
potential recruitment capacity. Sediment geochemical parameters including moisture,
sulfide, Chl a, carbohydrate, OM, TOC, TN, and TP were measured to compare
sediment nutrient composition and variability. The results revealed a higher biomass
and larger seed bank in the annual R. sinensis population compared with the perennial
population. The P levels in sediments between the two R. sinensis populations were
similar; while the N level in the sediment of the annual population was significantly
higher than the perennial population, which might support the recruitment of vegetative
shoots when a large amount of seeds germinated during wet periods. The annual
population exhibited greater resilience after habitat desiccation, with the population
recovering rapidly once water appeared. The results of this study add to the knowledge
of R. sinensis populations and their sediment geochemical characteristics, and can be
used as a reference for Ruppia population conservation and management.

Keywords: submerged aquatic vegetation, Ruppia, population traits, sediment geochemical characteristics,
sediment carbon cycling, sediment nutrients

Abbreviations: ANOVA, analysis of variance; OM, organic matter; PCA, principal component analysis; TN, total nitrogen;
TOC, total organic carbon; TP, total phosphorus; YRD, Yellow River Delta.
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INTRODUCTION

The Yellow River Delta (YRD) is the broadest, and best conserved
wetland ecosystem in temperate China (Han et al., 2006). Rich
salt-tolerant plants are found in this area, with Phragmites
australis, Suaeda salsa, and Tamarix chinensis being the dominant
species (Zhang et al., 2013; Yu et al., 2016). Increasing
anthropogenic activities, have resulted in the coastal wetlands of
the YRD changing from natural wetlands to farmlands, and salt-
culture ponds (Yu et al., 2012). These changes result in diverse
sediment characteristics. For instance, the topsoil of Deyeuxia
angustifolia wetlands contains more labile fraction organic
carbon than an upland forest and two farmlands in the Sanjiang
Plain of northeast China (Zhang et al., 2006). Meanwhile, the
redistribution of local plants, including aquatic plants, have also
caused shifts in the nutrient composition and chemical processes
in the sediment, due to the close relationship between plants and
sediment composition. For instance, Thalassia testudinum leaves
are capable of inducing CaCO3 precipitation and increasing
habitat sediment carbon storage (Enríquez and Schubert, 2014).

Ruppia, a genus of submerged marine angiosperms,
commonly inhabit shallow systems, such as coastal lagoons
and saltmarshes (Verhoeven, 1979; Mannino and Sara, 2006;
Strazisar et al., 2015). Similar to other seagrass species, Ruppia
species act as nursery areas for a variety of fishes and birds
(Congdon and Mccomb, 1979; Rodriguez-Perez and Green,
2006; Mannino et al., 2015), provide food, increase water clarity
by enhancing sedimentation (Barbier et al., 2011), and are key
sites for global carbon storage (Fourqurean et al., 2012; Jiang
et al., 2018). The high environmental adaptability of Ruppia not
only leads to it being widely distributed around the world (Aedo
and Casado, 1988; den Hartog et al., 2016; Martinez-Garrido
et al., 2017), but also to high phenotypic plasticity, which
characterizes the taxonomic confusion of this genus (Aedo and
Casado, 1988; Yu and den Hartog, 2014). Yu and den Hartog
(2014) recently updated the distribution and taxonomy of Ruppia
in China and named two new species, R. brevipedunculata and
R. sinensis, based on genetics and morphological characteristics.
R. sinensis is widely distributed in abandoned salt pans and
salt-culture ponds of the YRD (Gu et al., 2019) and forms
dense, monospecific beds like other Ruppia species (Verhoeven,
1979; Mannino and Sara, 2006). Even though R. sinensis has the
potential to be used as a phytoremediation species, little is known
about the population characteristics of this species (Gu et al.,
2020), and it is often ignored when researchers investigate plant
distributions and calculate carbon storage (Zhang et al., 2013; Yu
et al., 2016).

Annual or perennial life cycle strategies are commonly
found in seagrass populations (Moore and Short, 2006). Sexual
and asexual reproduction commonly occur in all seagrass
populations, including annual and perennial populations (Sato
et al., 2016; Entrambasaguas et al., 2017; Xu et al., 2018).
Moreover, the life cycle strategy for seagrass individuals is
considered to be genetically fixed, and annual and perennial
seagrasses can be mixed within populations. Environmental
factors, such as underwater photon flux density and the presence
of water, have been recognized as major factors controlling

seagrass survival, and may result in a seagrass population being
perennial or annual (Kim et al., 2014; Mannino and Graziano,
2014). In perennial populations, the vegetative shoots of seagrass
appear throughout the year and succession primarily relies on
clonal reproduction (Verhoeven, 1979; Malea et al., 2004; Xu
et al., 2018). In contrast, annual seagrass populations are absent
during unfavorable conditions (e.g., freezing or desiccation) and
re-establishment is completely dependent on seed germination
(Verhoeven, 1979; Strazisar et al., 2013a,b). Many studies have
suggested that these two kinds of shoots, perennial and annual,
could be found in both perennial and temporary Ruppia
populations. Ruppia populations with vegetative shoots present
throughout the year are considered to be perennial populations.
Populations exhibiting an annual life history complete their life
cycle within a few months, and survive as seeds before producing
the next generation of plants (Verhoeven, 1979; Brock, 1982;
Malea et al., 2004; Mannino and Graziano, 2014). Many studies
have compared the morphological variations in different Ruppia
population types. Longer roots and bigger leaves are found in
R. maritima and R. cirrhosa perennial populations, while more
flowers are found in annual populations (Malea et al., 2004;
Mannino and Graziano, 2014).

Sediment nutrition is vital for seagrasses and population
strategy may affect sediment nutrition status. Phosphorus,
nitrogen, sulfur, and carbon can be measured in the sediment
to reveal the relationships between vegetation and sediment
nutrition. Nitrogen and phosphorus are considered to be the
two most important elements related to vegetative growth (Liao
et al., 2008; Ailstock et al., 2010; Qu et al., 2018), and their
concentrations in the sediment are strongly linked to seagrass
biomass development and rapid recruitment (Menendez, 2009;
Strazisar et al., 2013a,b). The reproductive organs of vegetative
plants are often phosphorus-rich (Kerkhoff et al., 2006), while
there are higher nitrogen requirements in photosynthesizing leaf
tissue (Feller et al., 2008). Sulfide is considered toxic to seagrass.
For instance, a direct link between high sediment sulfide levels
and mortality of T. testudinum has been noted (Carlson et al.,
1994). Total organic carbon (TOC), organic matter (OM), and
carbohydrates are the three parameters used to describe the
carbon sink in the sediment. TOC represents the quantity of
buried organic carbon, whereas the compositional features of
OM identify the source of organic matter (Geraldi et al., 2019;
Kaal et al., 2020a,b). Carbohydrates are an important source
of organic matter in the aquatic environment (Burdige et al.,
2000), which mainly come from the microbial degradation of
organic matter such as photosynthetic organisms and provides
an index to assess recent sediment conditions (Bianchelli et al.,
2016; Artifon et al., 2019).

In the current study, we selected two R. sinensis populations
considered to be annual and perennial in the YRD. We
recorded the seasonal changes of these two populations, and
investigated their sediment characters, including inorganic
nutrient concentrations and physical parameters. This study
aimed to (1) elucidate the main factors resulting in R. sinensis
populations being differentiated as annual or perennial and (2)
assess the effect of R. sinensis absence on habitat sediments. The
results of this study could serve as simple records for Ruppia
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populations in YRD, further our understanding of annual and
perennial Ruppia characteristics and provide more information
to inform Ruppia management.

MATERIALS AND METHODS

Study Site
The Yellow River Delta (YRD) is a wetland ecosystem in the
warm temperate zone of China covering an area of approximately
5400 km2 (Yu et al., 2016). The YRD is considered a carbon sink
hotspot due to the large amounts of particulate carbon that are
transferred here (Zhao et al., 2020). Yu and den Hartog (2014)
identified a new species, R. sinensis, which is widely distributed
in the YRD (36◦55′–38◦16′, 117◦31′–119◦18′, Li et al., 2009). In
this study, we selected two R. sinensis populations located 45 km
apart (Figure 1), comprising an annual (Site 1) and perennial
population (Site 2), respectively. Site 1 was a 1,200 m2 ditch,
which was near the YRD Nature Reserve (37◦ 45′ 55.83′′ N; 118◦
58′ 13.03′′ E). The water level at Site 1 fluctuates seasonally,
becoming dry in winter. Site 1 has an annual R. sinensis
population. Site 2 occurred around a brackish water pond (37◦
59′ 52 N; 118◦ 36′ 33′′ E) and was approximately 5,000 m2

in area. The salinity at the two sites ranged from 7.2–11.6 to
9.3–16.7 psu, respectively, and there was little anthropogenic
influence at either site.

Environmental Parameters and
R. sinensis Populations
We investigated the two R. sinensis populations over a period of
2 years. This observation period included an unusual extreme
desiccation event from March 2018 to May 2018 (Figures 1b,d),
which resulted in both survey sites drying up. Environmental
data including temperature and precipitation, were downloaded
as daily records from Tianqi.2345.com1. Precipitation and
evaporation are two of the main factors impacting the water levels
of these two closed, natural R. sinensis habitats. Temperature
is an indirect parameter that indicates water evaporation at the
survey sites. The quantity of precipitation was used as an indirect
parameter to indicate water input. Water temperature is closely
related to air temperature in these shallow water systems. Thus,
air temperature was used to represent the seasonal temperature in
R. sinensis habitats, and weather records indirectly indicated the
precipitation at the study sites. The mean monthly temperatures
of the two sites were calculated to represent seasonal temperature
changes. The weather records were divided into four categories:
light rain or snow (precipitation < 10 mm/24 h, value = 1),
showers or thunderstorms (value = 2), moderate rain or snow
(10 mm/24 h < precipitation < 28 mm/24 h, value = 3), and
heavy rain or rainstorm (precipitation > 25 mm/24 h, value = 4).
We then quantified the monthly precipitation for each of these
four precipitation categories.

The vegetative status of both R. sinensis populations were
observed from October 2016 to July 2018 (observations were
recorded in October and December 2016; March, May, June,

1http://tianqi.2345.com/wea_history/70617.htm

August, October, and December 2017; and March, May, and
July 2018). We randomly sampled four R. sinensis cores
(diameter = 10.5 cm, depth = 10 cm, sample interval = 5 m)
from May to August 2017 to compare the biomass of the two
populations. The recruitment capacity of the two populations was
assessed using seed bank size. To do this, we surveyed dynamic
seed bank changes at the two sites using four replicate core
samples (diameter = 6 cm, depth = 20 cm).

Sediment Sample Collection
Sediment cores at two different depths (deep and shallow)
were collected from the two sites. Four deep sediment cores
(diameter = 4 cm, depth = 60 cm, sample interval = 2 m)
were collected at each site in May 2017 and 2018, respectively,
to investigate the vertical sediment characteristics in the two
R. sinensis populations. For each deep sediment core, the upper
40 cm was analyzed, which was cut into 2 cm segments (a
total of 20 subsamples) using a cutting ring and packaged into
ziplock bags. The seasonal differences in the sediments at the
two sites were investigated through four shallow sediment cores
(diameter = 6 cm, depth = 35 cm, sample interval = 2 m) collected
at five sampling periods, May, October, and December 2017, and
May and July 2018. Each shallow core (upper 20 cm) was divided
into 5 cm segments (a total of 4 subsample) and packaged into
ziplock bags. All of the sediment samples were transported to
the laboratory within 2 days (stored on ice to avoid the water in
the samples evaporating during transportation), where they were
stored at−20◦C prior to sample analysis.

Deep Sediment Core Analysis
Sulfide content, Chlorophyll a (Chl a), moisture content,
carbohydrate, OM, TOC, total nitrogen (TN), and total
phosphorus (TP) were measured in every second segment of the
deep sediment cores (10 segments from each deep sediment core).
Sediment grain size was determined by pooling five segments,
i.e.,10 cm/sample, with three replicates. The sulfide content
was determined using the iodometric method (National Marine
Environmental Monitoring Center (NMEMC), 2007), and Chl
a was analyzed fluorometrically following the Welschmeyer
method (Welschmeyer, 1994). Pigments were extracted with 90%
acetone over a period of 36 hours in the dark at 4 ◦C. The samples
were centrifuged at 3,000 rpm for 15 min and the supernatant was
used to determine the Chl a content. The rest of the sediment
samples were freeze-dried. The moisture content (MC; %) of the
sediment samples was determined using the following equation:

MC =
MW −MD

MW
× 100%

where MW represents the fresh weight (g) of the initial
sediment, and MD represents the weight (g) of the dried
sediment. The dried sediment samples were sieved through
a 250-µm sieve, after being ground by hand with a mortar,
to remove coarse debris and stones. A number of analyses
were then conducted to determine the physical and chemical
properties of the sediments. Carbohydrates were analyzed using
the phenol-sulfuric acid method (Gerchako and Hatcher, 1972)
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FIGURE 1 | Study sites in the Yellow River Delta. (a) high water levels at Site 2 in August 2017; (b) extreme desiccation period at Site 2 in March 2018; (c) high
water level at Site 1 in May 2017; and (d) dry season at Site 1 in December 2017.

and expressed as glucose equivalents. OM was determined as the
difference between the dry weight of the sediment and the residue
left after combustion at 450◦C for 4 h (Parker, 1983). Before TOC
analysis, the sediment samples were treated with an excess of
10% HCl to remove carbonates that could interfere with TOC
measurement (Hedges and Stern, 1984). TOC and TN content
was then measured using a VARIO EL III elemental analyzer.
TP was measured using the method modified for particulate TP
determination (Zhou et al., 2003). The grain sizes were measured
using the 10 cm sections of sediment examined through a Laser
Particle Size Analyzer. The sediment type was determined by
considering the proportion of clay (C) in the silt (S) as follows:

C/S =
Cr
Sr

where, Cr represents the clay accumulation rate in the sediment
sub-sample, and Sr represents the silt accumulation rate in the
sediment sub-sample. The sediment is considered to be clay when
C/S > 2, mud when 0.5 < C/S < 2, and silt when C/S < 0.5
(Folk et al., 1970).

Shallow Sediment Core Analysis
The shallow sediment cores were each divided into four 5 cm
segments. Each of these sub-samples was analyzed for moisture
content, carbohydrate, OM, TOC, TN, and TP using the same
analysis as described for the deep cores.

Statistical Analysis
A three-way analysis of variance (three-way ANOVA) was
employed to compare the general effects of population type

(sample site), sediment vertical distribution (sample depth), and
season (sample time) on the sediment indexes including moisture
content, TP, TN, OM, carbohydrate, TOC, Chl a, and sulfide.
When the interaction between sample time, sediment depth, and
site was significant, a one-way ANOVA with Tukey’s multiple
comparison was conducted to compare their effects (p < 0.05).
The general differences between the two sites and the monthly
differences of each site in terms of biomass (2017: May to August)
and seed density (2017: March, May; October, December; 2018:
May) were compared using a one-way ANOVA. The grain sizes
including medium diameter (D50) and the clay/silt ratio at every
sediment depth of the two populations were compared with one-
way ANOVA. Principal component analysis (PCA) was used
to assess the relationship between the sediment characteristics
and the variables investigated including sample time, sediment
depth, and sample site. PCA was performed using the “prcomp”
function in the R software program to determine the multivariate
ordination of the 11 sediment parameters for seasonal and
vertical sediment assessment, and PCA plots were constructed
using the FAC-TOEXTRA package (Kassambara and Mundt,
2017) in the R software program.

RESULTS

Ruppia sinensis at the Two Study Sites
The R. sinensis at both study sites differed in terms of population
type (Table 1). The R. sinensis at Site 1 was an annual population,
with vegetative shoots dying off each winter when the habitat
became dry. Increasing precipitation and an accumulation of
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TABLE 1 | Seasonal changes in R. sinensis populations and water levels at two study sites.

Survey time Water level Biomass (g/m2) Seed density (seeds /m2)

Site1 Site 2 Site1 Site 2 Site1 Site 2

2016 October High High reproductive shoots reproductive shoots — —

December None Low 0 adult shoots — —

2017 March High High — — 109814 ± 15659* 4836 ± 1924

May High High 367.06 ± 54.84* 206.21 ± 61.66 59684 ± 19669* 5662 ± 433

June High High 439.51 ± 107.62 282.75 ± 138.40 — —

August High High 220.93 ± 65.49 151.25 ± 7.19 — —

October Low Low short shoots flowering and immature reproductive shoots 113470 ± 19810* 18519 ± 5819

December None Low 0 adult shoots 112703 ± 22736* 26008 ± 9247

2018 March None None 0 0 — —

May Low Low 29.22 ± 9.56 0 39278 ± 3148* 26362 ± 3134

July None None 0 0 — —

*Indicates significant differences between the two sites, p < 0.05; “—” represents no investigative data for the corresponding month; Water level “High” indicates water
level > 20 cm; “Low” represents ≤20 cm; “None” represents no flooding water.

FIGURE 2 | Ruppia sinensis growth status in May 2018.

TABLE 2 | Grain sizes at different sediment depths at the two study sites in the Yellow River Delta.

Depth D50 Clay / Silt Ratio Type of sediment

Site 1 Site 2 Site 1 Site 2 Site 1 Site 2

1-10 cm 24.07 ± 1.53 27.36 ± 4.57 3.61 ± 0.28 2.45 ± 0.51 Clay Clay

11-20 cm 31.09 ± 5.00 33.58 ± 0.82 2.42 ± 0.88 1.80 ± 0.08 Clay Mud

21-30 cm 26.43 ± 1.40 37.85 ± 2.36 3.41 ± 0.52 1.39 ± 0.23 Clay Mud

31-40 cm 27.62 ± 1.86 25.20 ± 4.28 3.88 ± 0.32 1.59 ± 0.81 Clay Mud
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FIGURE 3 | Moisture content, total phosphorus (TP) and total nitrogen (TN) in different sediment layers in different seasons at the two sites in the Yellow River Delta.
The dotted lines represent the seasonal mean values of all parameters. Different letters represent significant differences between different seasons in the sediment
(p < 0.05).

water in the habitat facilitated seed germination and the start
of a new growing cycle. Although the surface water at Site 2
froze over in December 2017, the vegetative shoots survived,
and green R. sinensis shoots could be observed under the ice
layer. There was no significant difference in monthly population
biomass between the two R. sinensis populations from May to
August 2017 (psite 1 = 0.174, psite2 = 0.346). Although the monthly
biomass at Site 1 was higher than at Site 2, these differences
were not statistically significant, with the exception of May 2017
(pMay2017 = 0.03, Table 1). The seed densities at Site 1 were
significantly higher than at Site 2 (p < 0.05, Table 1). An
unexpected desiccation event occurred in December 2017, which
caused the R. sinensis habitats at both sites to dry up until April
2018, with a small amount of water recorded in May 2018. Once
water was present, the R. sinensis seeds at Site 1 germinated
quickly, and several seedlings were observed. In contrast, no
seedlings were observed at Site 2 when the water level increased
(Figure 2). Both sites dried up again in July 2018 and all the
vegetation died.

Relationship Between Sediment
Nutrients and R. sinensis Growth
The environmental conditions of the two study sites, including
temperature (evaporation) and rainy value (precipitation),
were similar (Supplementary Figure 1). The highest mean
temperature in this area during the study period was 28.5◦C in

July, while the lowest mean temperature was −2◦C in January
(Supplementary Figure 1A). The two sites had similar mean
annual rainfall levels of 192 and 193 mm, respectively. The
monthly precipitation at the two sites showed significant seasonal
differences (Supplementary Figure 1B), with May to July being
the three wettest months. In general, the sediment grain sizes at
both sites were similar, indicating similar water storage capacities
at the two sites (Table 2), though there was a slight difference
in their vertical composition. The moisture content of the top
5 cm of the sediments was closely correlated with the appearance
of water (Figure 3) and there was significant seasonal variation
at both sites (Supplementary Table 1, p < 0.001). In 2017, the
surface sediment contained more water than the deeper layers.
In contrast, the deeper layers of sediment were wetter than the
surface sediment in 2018, which was the dry year (Figure 3).

Similar levels of TP were found at both sites (p = 0.466,
Supplementary Table 1), although they showed slight seasonal
variations. In general, TN in the sediment at Site 1 was higher
than the sediment at Site 2 (Figure 3, p < 0.001). In 2018 TN
was lower than 2017 levels at both sites (Figure 4, p < 0.001).
TN in the surface sediment of Site 1 was higher than that of the
other sediment layers; however, this pattern was not observed at
Site 2 (Figure 3). Higher levels of TN were recorded during the
vigorous growth period of R. sinensis, which occurred at both
sites in May 2017 and at Site 1 in May 2018 (Figure 3). This
changing trend was closely correlated with the appearance of
R. sinensis (Table 1). Highest levels of sulfides were found at a
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FIGURE 4 | Vertical distributions of moisture content, total phosphorus (TP),
and total nitrogen (TN) in the deep sediment cores from the two study sites in
May 2017 and May 2018.

depth of 6–10 cm at both sites, and sulfide levels in sediments
deeper than 14 cm were not statistically different to the top 2 cm
(Figure 5, p < 0.001), indicating that 6–14 cm was the most
suitable sediment layer for sulfide accumulation.

The Relationship Between R. sinensis
Shoot Decomposition and Sediment
Composition
Both Chl a and sulfide were measured in the deep sediment cores
from both sites. Sediment layers deeper than 18 cm had low Chl
a values at both sites (Figure 5, p < 0.001). During the regular

FIGURE 5 | Vertical distributions of Chl a and sulfide in the deep sediment
cores from the two study sites in May 2017 and May 2018.

year (2017), the Chl a level in the sediment at Site 1 was higher
than at Site 2, which was correlated with the biomass differences
between the two sites (Table 1). The Chl a levels in the sediment at
Site 2 in 2017 were significantly higher than 2018; however there
was no significant annual variation at Site 1. This may have been
due to the disappearance of R. sinensis at Site 2 in 2018, while
the R. sinensis population at Site 1 recovered rapidly. (Figure 5,
psite1 = 0.139, psite2 = 0.012). There were seasonal changes in
the three sediment carbon parameters (carbohydrates, TOC, and
OM), and these changes differed between the two sites (Figure 6).
While seasonal changes in OM content were observed at both
sites, Site 1 had higher OM values than Site 2, corresponding
with the presence of the R. sinensis population in May 2017
and 2018. No particular sediment layer exhibited a distinctive
OM content, which indicated that its vertical distribution in
these two sites was relatively balanced (Figure 7). The TOC
at Site 1 was generally higher than Site 2. In contrast to OM,
seasonal changes in TOC at both sites showed no significant
seasonal differences, except for the sharp decrease in TOC when
the water dried up in July 2018 at Site 1 (Figure 6). Moreover,
the significant annual differences in TOC were only observed in
the surface sediment, above 6 cm (Figure 7). In most seasons,
there were higher levels of carbohydrates in the surface sediment
(0-5 cm) of Site 1 than the deeper sediment layers (5-20 cm)
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FIGURE 6 | Organic matter (OM), total organic carbon (TOC), and carbohydrate content in different sediment layers in different seasons at the two study sites. The
dotted lines represent the seasonal mean values of all parameters. Different letters represent significant differences between different seasons (p < 0.05).

(Figure 6, p < 0.001). Carbohydrate levels at Site 1 showed
significant seasonal differences, which were twice as high as Site 2
(Supplementary Table 1, p < 0.001). The highest carbohydrate
level at Site 1 was observed in May 2018, when water was
present again and new R. sinensis seedlings were growing. No
significant changes in carbohydrate values were found at Site
2 at this point.

Sediment Assessment Index
The analysis results of the deep sediment cores with eight
sediment assessment parameters (TOC, OM, carbohydrate,
TN, Chl a, sulfide, moisture content, and TP) and three
classifying parameters (time, depth, and site) explained 64.4%
of the variation in the first two components (Figure 8A).
The first component (PC1) represented 47.3% of the variance,
while the second component (PC2) represented 17.1% of the
variability and was dominated by different sample sites. Sulfide
levels were closely related to the moisture content of the
sediment (Figure 8A). Sampling site, which represented the
different population types, was the highest contributing factor

for variation in sediment characteristics in the deep cores
with an annual sampling interval (Supplementary Table 2).
In addition, in both shallow and deep cores, TOC contributed
more than OM and carbohydrates when explaining the variation
(Supplementary Table 3).

DISCUSSION

Ruppia sinensis is a commonly distributed seagrass in the YRD.
Information relating to population types and the relationships
between sediment characteristics and vegetative status are
essential for population management. Similar to R. cirrhosa and
R. maritima (Malea et al., 2004; Mannino and Graziano, 2014),
annual and perennial traits occurred in the two R. sinensis
populations in the YRD in the current study. Temperature and
light availability are two key environmental parameters impacting
the phenology of seagrass (Qin et al., 2020; von Staats et al., 2021).
The presence of water in the habitat is another important factor
that impacts the life cycle of this aquatic plant (Malea et al., 2004).

Frontiers in Plant Science | www.frontiersin.org 8 April 2021 | Volume 12 | Article 634199

https://www.frontiersin.org/journals/plant-science
https://www.frontiersin.org/
https://www.frontiersin.org/journals/plant-science#articles


fpls-12-634199 April 13, 2021 Time: 22:11 # 9

Gu et al. Ruppia in the Yellow River Delta

FIGURE 7 | Vertical distribution of organic matter (OM), carbohydrate levels, and total organic carbon (TOC) in the deep sediment cores from the two study sites in
May 2017 and May 2018.

In our previous study, around 70% of R. sinensis seeds collected
from Site 2 germinated immediately under optimal germination
conditions, and the dormancy of the remaining seeds could be
broken by low temperatures (Gu et al., 2018). However, after
an unusual desiccation event in 2018, R. sinensis seeds at Site
1 germinated immediately when surface water appeared, while
no seedlings appeared at Site 2 (Figure 2). It appears that
annual populations have higher stress resilience and a quick
re-establishment capacity compared with perennial populations.

Although perennial populations of other Ruppia species are
more reliant on clonal growth for population regeneration, both
annual and perennial populations flower and produce seeds in
the reproduction season (Mannino and Graziano, 2014). The
larger seed densities of the R. sinensis annual population in
the current study suggested that this population placed more
reproductive energy into producing seeds than the perennial
population (Table 1). However, similar to Ruppia habitats in
the Everglades-Florida Bay ecotone (Strazisar et al., 2016), TP
in the YRD was limited, and was not the main factor resulting
in the two different R. sinensis life cycles. The TN levels in the
sediment at Site 1 were higher than Site 2, which likely benefited

the growth of shallow shoots, increasing the capacity for clonal
growth within the population (Feller et al., 2008). In addition,
the higher biomass of R. sinensis at Site 1 might also result in
more TN input after decomposition of plant material at the end
of the life cycle. The higher nutrient levels in the sediment of
the annual R. sinensis population might support the recruitment
of vegetative shoots when a large amount of seeds germinated
during wet periods. In contrast, the nutrient conditions in the
sediment of the perennial population were relatively stable.

Detritus from aquatic macrophytes is one of the most
important endogenous sources of nutrients in wetlands (Wu,
2009). The Chl a content of sediments is a good representation
of the abundance of primary producers such as living algae
and undegraded macrophyte tissues (Mannino and Sara, 2006;
Pusceddu et al., 2009). Low Chl a levels below depths of
18 cm in the sediments could imply limited presence of algal
and R. sinensis detritus at this depth. However, in the shallow
sediment layers, higher Chl a values were found when more
R. sinensis was growing, which may be a result of more R. sinensis
detritus settling in sediment and more suitable conditions for
algae growth at this time. Moreover, a previous study indicated

Frontiers in Plant Science | www.frontiersin.org 9 April 2021 | Volume 12 | Article 634199

https://www.frontiersin.org/journals/plant-science
https://www.frontiersin.org/
https://www.frontiersin.org/journals/plant-science#articles


fpls-12-634199 April 13, 2021 Time: 22:11 # 10

Gu et al. Ruppia in the Yellow River Delta

FIGURE 8 | Principal component analysis of sediment parameters in different seasons and their vertical distribution. (A) Eight sediment parameters in deep sediment
cores with annual differences and different vertical distributions in two different years; and (B) six sediment parameters in shallow sediment cores with seasonal
changes and vertical distribution at the two sites.

that Ruppia not only provided organic carbon directly to the
biogeochemical cycle but also provided physical support for
the attachment of other macrophytes, which also amplified the
production and diversity of the system (Mannino and Sara,
2006). Sediment sulfide content was also closely related to organic
deposition. A sharp decrease in R. sinensis biomass occurred
at both sites after the dry spell, which may have resulted in a
decrease in sediment sulfide levels. The results of the current
study also showed a peak in the vertical sulfide gradient at a depth
of 6 cm, indicating that the sediment conditions at this depth
were suitable for sulfide accumulation (Figure 5).

The organic carbon from Ruppia detritus supports a complex
food web through bacterial decomposition (Mannino and Sara,
2006). Organic carbon also indicates the quantity of leaf
decomposition which increases nutrient supply for the survival
of vegetation (Fan et al., 2015). The three different carbon
parameters used in the current study showed slightly different
trends. OM decreased with the deposition of R. sinensis shoots,
and then increased significantly when surface water appeared
in May 2018, when R. sinensis seedlings germinated at Site 1.
Although there was a similar trend in OM at Site 2, there was
no germination of R. sinensis seeds. This variation indicated the
presence of algae, which emerged quickly when surface water
appeared and is also an important resource of sediment OM
(Figures 2, 7). TOC content has previously been used to represent
OM (Sardans et al., 2017). However, even though the correlations
of these two parameters were similar (Figures 6, 8), the seasonal

changes in these two parameters were slightly different. A recent
study noted that the main components of available OM to biota
in aquatic ecosystems are carbohydrates, lipids, and proteins
(Dias et al., 2017). Meanwhile, carbohydrates are more closely
related to phytoplankton origin and vegetal detritus (Cotano and
Villate, 2006). The carbohydrate levels in the sediments of the two
survey sites differed more than OM and TOC (Figure 6). This
variation might be related to the appearance of vegetation, as the
highest carbohydrate level at Site 1 was recorded in May 2018,
when both algae and R. sinensis were rapidly growing. However,
the carbohydrate levels in the sediment at Site 2 were always
low (Figure 6).

In summary, the two different R. sinensis population types in
the YRD exhibited different resilience strategies under extreme
desiccation conditions. An annual R. sinensis population was
present at Site 1. Higher levels of TN were observed at
this site which could benefit R. sinensis seedling growth, and
promote population recovery when the water re-accumulated
after drying up in winter. The appearance of R. sinensis was
also accompanied by more algal growth. This not only increased
primary productivity, but also increased carbon deposition and
enriched the sediment. The appearance of water was the key
factor resulting in the two different R. sinensis population types,
which could be represented through sediment characteristics
such as water moisture content. Of the different carbon
parameters used to evaluate sediment carbon deposition in the
current study, TOC was the most indicative in explaining the
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differences between the different R. sinensis populations. There
were higher TOC levels recorded in the annual R. sinensis
population compared with the perennial population. The results
of this study provided a useful reference for the conservation and
management of both annual and perennial Ruppia populations.
This study also provided an example of the sensitivity of
different carbon parameters in assessing the relationships
between vegetation and sediment carbon.
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