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Climate change is a threat to global food security due to the reduction of crop

productivity around the globe. Food security is a matter of concern for stakeholders

and policymakers as the global population is predicted to bypass 10 billion in

the coming years. Crop improvement via modern breeding techniques along with

efficient agronomic practices innovations in microbiome applications, and exploiting

the natural variations in underutilized crops is an excellent way forward to fulfill

future food requirements. In this review, we describe the next-generation breeding

tools that can be used to increase crop production by developing climate-resilient

superior genotypes to cope with the future challenges of global food security. Recent

innovations in genomic-assisted breeding (GAB) strategies allow the construction of

highly annotated crop pan-genomes to give a snapshot of the full landscape of genetic

diversity (GD) and recapture the lost gene repertoire of a species. Pan-genomes

provide new platforms to exploit these unique genes or genetic variation for optimizing

breeding programs. The advent of next-generation clustered regularly interspaced short

palindromic repeat/CRISPR-associated (CRISPR/Cas) systems, such as prime editing,

base editing, and de nova domestication, has institutionalized the idea that genome

editing is revamped for crop improvement. Also, the availability of versatile Cas orthologs,

including Cas9, Cas12, Cas13, and Cas14, improved the editing efficiency. Now, the

CRISPR/Cas systems have numerous applications in crop research and successfully

edit the major crop to develop resistance against abiotic and biotic stress. By adopting

high-throughput phenotyping approaches and big data analytics tools like artificial

intelligence (AI) and machine learning (ML), agriculture is heading toward automation or

digitalization. The integration of speed breeding with genomic and phenomic tools can

allow rapid gene identifications and ultimately accelerate crop improvement programs. In

addition, the integration of next-generation multidisciplinary breeding platforms can open

exciting avenues to develop climate-ready crops toward global food security.

Keywords: food security, climate change, next-generation breeding, genomics, genome editing, CRISPR/Cas,

abiotic stress, crop improvement
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GLOBAL SCENARIO OF CLIMATE
CHANGES AND FOOD SECURITY

Food security is the biggest challenge in feeding the continuous
up-surging population. The dream of a world without hunger is
only possible if agricultural productivity increases in a sustainable
manner (Tilman et al., 2011). About two billion people are facing
extreme micronutrient deficiencies, and over 815 million are
suffering from chronic hunger. Recent evidence has revealed
the increased number of undernourished people (Figure 1A) in
the developing countries of Western Asia and Africa since 2014
(FAO, IFAD, UNICEF, WFP, and WHO, 2018). The situation is
more deteriorated by the outbreak of severe acute respiratory
syndrome coronavirus 2 (SARS-CoV-2), which severely affects
the food supply chain, and its impact on global food security is
yet to be understood. It is forecasted that this food crisis will
upsurge people with acute hunger from 135 to 265 million by
2020 (Henry, 2020). The availability of food largely relies on
economic growth, which is still crucial in dealing with both
hidden and chronic hunger and poverty in underdeveloped and
developing countries (Gödecke et al., 2018). Still, it might not be
adequate to lessen malnutrition and hunger as there are many
factors affecting global food security.

The two big challenging factors to food security are
climate changes and population growth. The world’s population
is growing rapidly, which increases the food demand and
exerts more pressure on agricultural land and other resources
(Abberton et al., 2016). It is projected that the population will
cross eight billion mark at the end of 2030 and is anticipated
to exceed 9.7 billion before the end of 2050 (Ray et al., 2013).
Agricultural productivity needs to boost to meet 49% more
food requirements by 2050 to avoid extreme hunger fears1. An
annual increase of 1.1–1.3% of the major cereal crops from the
current pace is required to tackle the hunger and severe food
shortage by 2050 (Fischer et al., 2014). The failure to enhance
crop yield will badly affect the developing countries and can lead
to famines and social discomfort. Also, there are many factors,
like economic, agronomic, societal, and climatic factors, which
adversely hampered crop productivity. It is a huge task for plant
breeders and policymakers to cope with this massive assignment
of global food safety and security (Ray et al., 2013).

Climate change is a leading aspect threatening agricultural
yield worldwide. However, it is impossible to envisage the exact
costs of damages caused by climate changes, in a broader
perspective the crop yields will be greatly reduced. Climate
change elevates the global temperature (Figure 1B) that changes
geographical orders of rainfall and instigates greater concerns
to agricultural production. These changes cause global warming,
and an increased CO2 level is anticipated to affect the nutritive
quality of numerous cultivars while many varieties may become
unsafe because of chemical alterations in the cells. The extreme
events of climate change increase the loss of agricultural land
and accelerate biotic and abiotic stresses (Raza et al., 2019). The
future projection and impacts of climate changes are uncertain

1FAOSTAT (2020). Available: http://www.fao.org/faostat/en/#data (accessed July

30, 2020).

(Allen et al., 2019), which lead to crop adaptability under diverse
range of climate stress, i.e., a tough breeding goal. The dilemma
becomes even bigger because the fluctuations in annual rainfall
and temperature negatively affect crop growth and encourage the
attacks of crop pathogens (Heeb et al., 2019). It was reported
that 10–25% yield of major staple crops, including wheat, maize
and rice, was reduced due to per degree rise in temperature
(Deutsch et al., 2018). This is due to an increase in temperature
accelerating the metabolic activities of insects and enhancing
insect’s food consumption rate. Likewise, the elevated level of
CO2 makes soybeanmore susceptible to insect pathogens (Zavala
et al., 2008). The major stress events that occurred due to climate
change in the last two decades are illustrated in Figure 1C.

The reported rise in productivity of major staple crops, such
as wheat, rice, maize, and soy, sharing two-thirds of total calories
consumed by people is very less, although there has been a
significant increase in the crop yield in recent years (Figure 2;
FAO, 2017; Kim et al., 2019a). Meanwhile, the actual increase
in population is much quicker than forecasted before, with
the updated figure being over 9.9 billion by 2050 (Change,
2020). These current climate and population growth trends are
supposed to further hamper the crop yield, thus extending the
gap between food demand and food production. These challenges
will greatly decide the future scenario of global food security.

A novel agricultural model, including the integrated systems
of modern breeding, different agronomic practices, and plant
microbiome analysis, is needed. Microbiomes or plant-associated
microbes can offer crucial ecosystem facilities, which can boost
crop growth and help to mitigate abiotic stresses and pathogen
attacks (Arif et al., 2020). Climate-smart agriculture is gaining
interest to develop climate-resilient crop varieties by adopting
the next-generation breeding approaches that can withstand
multidimensional stresses, including salinity, waterlogging, heat,
cold, drought, and insect-pests attack.

In the present review, we argue that climate change and
the unchecked growing population may reverse the progress
achieved at present toward the sustainability goal of zero hunger.
The current pace of crop production is insufficient to meet
future demands. We highlight significant breakthrough in
the plant breeding history. We advocate the next-generation
breeding as a reasonably practical way forward to mitigate the
impacts of climate changes and develop climate-ready crops
for better resilience and improved yield. Indeed, there is a
need for a comprehensive strategy, including an integrated
multidisciplinary strategy (seed production, pathology,
agronomy, post-harvest approaches, agriculture extension,
and different breeding practices); still breeding is an obvious
point for moving ahead. Hence, we discuss the fascinating
technologies of genomic-assisted breeding (GAB) with a focus on
advances in crop pan-genome assemblies and their application
for crop improvement. We pay specific attention to cutting-
edge genome editing tools like clustered regularly interspaced
short palindromic repeat/CRISPR-associated (CRISPR/Cas)
systems and spotlight their expanding toolbox. Furthermore,
we discuss plant phenomics and their major bottlenecks that
need to be overcome to bridge the gap between genomics and
phenomics and focus on high-throughput phenotyping for crop
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FIGURE 1 | Displaying the annual prevalence of undernourishment and food insecurity percentage during 2014–2019 in (A). Source: Food and Agriculture

Organization (FAO) (http://www.fao.org/faostat/en/#data/FS/visualize). Illustration of changing trends in the world’s temperature annually from 2000 to 2020 in (B).

Source: FAO (http://www.fao.org/home/en/). (C) depicted the total number of climatic events that occurred from 2000 to 2020 around the world. The climatic events

include drought, extreme temperature, flood, storm, wildfire, and insect attack. Source: Emergency Disaster Database2.
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FIGURE 2 | Graphical representation of the total production of major crops in the world (2010–2017). Source: Data retrieved from FAOSTAT1.

improvement. We also highlight the next-generation phenomics
approaches, including artificial intelligence (AI) and machine
learning (ML), that can revolutionize the digital agriculture.
Finally, we describe speed breeding and propose the integration
of next-generation breeding technologies to expedite the crop
production for food security.

PLANT BREEDING THE SAVIOR

Approximately 10,000 years ago, plant breeding emerged as
a central approach for plant domestication by exploiting wild
relatives to select the desired traits through a continuous
selection process over several generations for crop improvement
(Purugganan and Fuller, 2009). Many important crops are
cultivated extensively all around the world, which have been
developed through a breeding process. Some of the major
milestones achieved in the plant breeding history are spotlighted
in Figure 3. For example, in the pre-genetic era, many agronomic
traits were incorporated blindly into different crop species
(Purugganan and Fuller, 2009). The discovery of Mendel
laws of inheritance and the continuous detection of genetic
elements provide new insight into plant breeding. After 100
years of constant research, the scientists are allowed to identify
the genomic regions, which are named later as genes that
regulate the agronomic traits in plants (McCouch et al., 2013).
In the 1960’s, the Green Revolution remarkably increased
the yield potential of some major crops, including rice and
wheat, to meet the growing food demands (Pingali, 2012).
Although it has brought an enormous benefit for agriculture and
humanity but also a lot of negative environmental consequences
because of the unchecked application of synthetic fertilizers

2EM-DAT (2020). Available: https://www.emdat.be/ (accessed March 29, 2020).

and pesticides. Additionally, the Green Revolution encouraged
intensive breeding that resulted in the reduction of genetic
diversity (GD) and the loss of several unique genes. This led to
an increased attack of various insect-pests pathogens and the
reduction of plant vigor to withstand extreme heat, drought
salinity, and flooding conditions (Tilman et al., 2002). However,
plant breeding has been under immense pressure after this period
to maintain constant agricultural yield with limited resources
of water, land, and fertilizers. To tackle these problems, plant
scientists need to elucidate the unique genetic resources to
produce superior cultivars having better stress resilience and
increased grain yield.

Generally, in classical breeding, elite crop varieties have
been selected via hybridization and a continuous screening
process (Purugganan and Fuller, 2009). The fundamental features
of basic plant breeding lead to the incorporation of GD
through intercrossing of the plants with novel agronomic
features with wild relatives or crop landraces and select the
best genotypes having outstanding characters (Lavarenne et al.,
2018). Investigations of wild populations can offer greater GD
to introduce the desired traits to develop new crop varieties,
which provide an excellent roadmap for crop improvement.
For example, the introduction of diverse genetic recombination
through hybridization among species may offer an exceptional
chance to combat climate stresses (Becker et al., 2013). However,
conventional breeding strategies for crop improvement are of
limited use because of genetic drag, genetic erosion, hybridization
bottlenecks, and laborious selection process (Abberton et al.,
2016). It could take 10–20 years to develop a crop variety
with desired traits, which make it a complicated and time-
consuming endeavor (Fischer et al., 2014). On the other
hand, modern breeding approaches like genetic engineering to
produce genetically modified (GM) crops gained a significant
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FIGURE 3 | Representations of the key milestones achieved by conventional and modern plant breeding.

progress in the last three decades to overcome the hurdles
posed by conventional breeding techniques. For example, in
1994, “Flavr Savr” transgenic tomato having an improved shelf
life has been approved by Food and Drug Administration
(FDA) in the USA. After that, a series of GM crops like
glyphosate-resistant soybeans, Bt cotton, Bt maize, and Bt
Potato, etc., have been approved for commercial use in the
USA (James, 1997). A total of 529 transgenic events reported
in 33 crops have been commercialized (ISAAA database, 2021).
About 91% of the total area coverage under GM crops are
offered by USA, Canada, Brazil, Argentina, and India. USA is
the largest grower of GM crops in the world and cultivates
different improved varieties of maize (43), soybean (25), potato
(43) cotton (32), and canola (22). Asian countries, such as
China (canola, cotton, maize, and soybean), India (soybean
and cotton), Pakistan (maize and cotton), and Bangladesh (Bt
Brinjal), grow only a considerable number of GM crops on
a limited area (ISAAA database, 2021). In spite of all these
achievements, there are numerous serious concerns associated
with GM crops, such as biosafety for human consumption,
resistance breakdown in several pathogens, hazardous impacts
on nontarget organisms, and the cost of commercialization. Also,
all the European countries banned all kinds of GM organisms
in their country, which make this a controversial technique
for crop improvement. Owing to public safety concerns and
unwillingness to accept GM crops, we need alternative next-
generation breeding technologies to increase the genetic gains
in plant breeding and develop intelligent models to bridge the

gap between genotype and phenotype for the next-generation
crop improvement.

FAST-FORWARD GAB

Modern plant breeding approaches have revolutionized plant
breeding and are emerged as a powerful alternative to
conventional breeding. Plant genomics is extremely vital to
accelerate breeding programs and crucial to improve crop
performance, including trait identification and the discovery
of genetic variations within the crop genome, that regulate
crop performance and increase stress resilience (Bevan et al.,
2017). Plant genomics is an important player of omics science
that deals with the whole plant genomes for determining the
structure and assessing the function of genomes. It is important
to draw the information inside the genome by defining a
specific arrangement of DNA sequences, which help to probe
the genomic evolution and interpret molecular phylogenetic
relationships (Varshney, 2016). It also assists in elucidating the
function of genes and their interaction that govern the plant
growth and functions under diverse agroclimatic conditions
(Unamba et al., 2015).

Fast-forward genotyping and phenotyping platforms have
facilitated multitrait association studies via genome-wide
association studies (GWAS) to accurately explore the genetic
make-up of crop traits. Quantitative trait loci (QTL) analysis
through mapping agronomically important traits enabled to
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dissect the relationship between genotype and phenotype. Gene
cloning and characterization, haplotype-based breeding, allele
mining for stress tolerance, and tapping natural variations
have open new avenues toward GAB (Leng et al., 2017). In the
coming year, large data sets of genomics can offer wealth of
information about the plant genomes, and GAB would become
an instrumental practice to accelerate breeding to design future
crops (Varshney et al., 2021).

Exclusive understanding of plant genomes is essential for
next-generation sequencing- (NGS-) based trait mapping that
has allowed rapid gene identification. Current advances in
genome sequencing techniques have transformed plant breeding
by providing access to huge plant genomes and open a new era
of genomics (Bassi et al., 2016). The advanced NGS techniques
enable to explore the diverse and multidimensional spectrum
of genetic variations that can be linked to elucidate complex
phenotypes (Unamba et al., 2015).

There are numerous genomic markers that can be utilized
for the identification of plant genes through positional cloning
(Bassi et al., 2016). For example, single-nucleotide polymorphism
(SNP) cost-efficient, accurate, and ubiquitous in crop genomes
and has been used on a large scale to screen thousands of
crop germplasm (Voss-Fels and Snowdon, 2016). Although SNPs
are the chief molecular markers to study the phenotypic and
GD among different crop breeds, but they can also be very
crucial for probing a wide range of variations linked with some
important stress tolerance and agronomic characters (Saxena
et al., 2014). Sequencing techniques can capture SNP accurately
but are unable to generate long reads sufficient to represent
the diversity. To overcome these issues, optical mapping can be
executed for generating long readmaps having a greater variation
and complex regions (Golicz et al., 2016a). Crops like wheat
and maize have larger genomes, genotyping by sequencing (GBS)
coupled with NGS have been widely used for multiplexed sample
sequencing (Arthur and Bennetzen, 2018). Fixed SNP genotyping
arrays can be used instead of NGS-based techniques because
they are economical and precise, and require less data analysis.
Recently, some genotyping platforms and crop breeding chips
have been complied, which could be used in GAB (Rasheed et al.,
2017).

A comprehensive knowledge of genes and their regulating
pathways that control the dynamic traits, such as quality, yield,
and stress tolerance, would increase our knowledge to develop
next-generation crop varieties. However, the less availability of
genomic information and lack of significant understanding are
not completely accredited to the inadequate genomic innovations
but also depend on the environment–genotype interactions
and phenotypic pitfalls (van Bezouw et al., 2019). In the last
two decades, a significant development has been achieved in
the genomic technologies that accelerate breeding programs
(Varshney et al., 2017). Advanced multidisciplinary breeding
platforms are required to mitigate the climate changes and
accelerate the genetic gains for achieving the target demands
of crop yield (Bevan et al., 2017). Upon the integration of
fast-forward genomic technologies, such as genomic selection
(GS), NGS, SNP-mediated marker-assisted selection, and GWAS,
together with holistic phenotyping and more sophisticated

bioinformatics, data analysis, and decision support tools
(Varshney et al., 2018) can drive the next-generation breeding.

THE PAN-GENOMES AND IN-DEPTH
EXPLORATION OF NATURAL VARIATION

Crop domestication and natural evolution have severe impacts
on crop genomes resulting in the impairment of major loci
regulating important agronomic traits and ultimately reduce GD
(Warschefsky et al., 2014). Also, the selection of superior lines for
abiotic/biotic stress tolerance to improve crop yield has worsened
the condition, directing to the elimination of novel stress-tolerant
genes that were abundantly present in the gene pool of crop wild
relatives (CWRs; Brozynska et al., 2016). Due to the reduction
in GD, the crops are now more vulnerable to adverse climatic
stresses, and there is an urgency to transfer all the intentions
toward CWRs that contain a rich-gene pool of stress-responsive
genes (McCouch et al., 2013).

Although the principal focus on studying GD is carried out
by detecting the structural variations (SVs) within the genome
by employing SNPs, the SVs has been considered as a principal
source of GD and may include presence/absence variants (PAVs),
copy number variants (CNVs), and some other diverse variations
such as chromosomal translocation, inversion, and transversions
(Wang et al., 2015). CNVs occur in the distinctive form of copies
among individuals while PAVs occur in one genome and are
absent in another (Saxena et al., 2014). PAVs and CNVs are
commonly present within species in the plant genomes and play a
key part to understand plant genetics (Hirsch et al., 2014). A few
studies showed that the genetic variations that are mainly studied
via SNPs/InDels are insufficient to depict the whole genomic pool
of a species (Saxena et al., 2014). Furthermore, the re-sequencing
technologies are centered only on a single-reference genome
that has inadequate capability to detect the entire spectrum of
large SVs, like CNVs and PAVs, and thus providing insufficient
information for crop GD (Tao et al., 2019).

Hence, there is a need to develop multireference genomes to
investigate the genome composition of all individuals, including
cultivated, landraces, or wild progenitors. With the advancement
in NGS technologies, a huge wave of pan-genomic studies have
been launched, which open a new roadmap to determine crop
evolution and adaptation across the genus, and study deep
insights into genome functions with the possible application
for crop breeding (Hirsch et al., 2014; Zhao et al., 2018a).
Pan-genomics provides an excellent platform to study the GD,
compares multiple genomes simultaneously, and recaptures the
whole genetic repertoire of a species (Zhao et al., 2018a).

Crop Pan-Genomes
The term pan-genome was firstly opted to describe the bacterial
genome, and it depicts the whole gene stock of different
individuals present in a species. Pan-genomes are comprised
of two regions, including the core genome that represents the
core genes present in all individuals and dispensable genome
consisting of accessory or variable genes, particularly shared
by few group members and missing in remaining individuals
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(Tettelin et al., 2005). The core genes tend to be conserved
and perform important functions while the dispensable genome
provides a greater GD and is supposed to carry the stress-
responsive genes in a species. In addition, the dispensable
genome is a key component to regulate the phenotypic variation
related to agronomic traits, and is crucial for increasing
agricultural productivity. It is also a major contributor to the
domestication and adaptive evolution of species (Tranchant-
Dubreuil et al., 2018; Jayakodi et al., 2021). In recent years,
pan-genomes concepts have moved toward crop plant research,
and pan-genomes of some major crops have been constructed
(Hurgobin et al., 2018).

The resources of crop pan-genomes rather than single-
reference genomes will accelerate molecular breeding and
provide a multidimensional understanding of genomic variations
(Golicz et al., 2016a,b). SVs and PAVs are vital to understanding
the variable genes, which have been revealed to control the genes
related to stress, like biotic stress, tolerance in soybean (McHale
et al., 2012), Brassica oleracea (Bayer et al., 2019), muskmelon
(González et al., 2013), and phosphor uptake capacity of rice
(Schatz et al., 2014). In general, pan-genomes explore new trends
to study GD, which will play a key part in probing genomic
variations and offer a speedy approach to scanning complex gene
sets for crop improvement (Tao et al., 2019).

Pan-genomes of rice (Schatz et al., 2014; Zhao et al., 2018a),
tomato (Gao et al., 2019), soybean (Li et al., 2014; Liu et al.,
2020b), sunflower (Hübner et al., 2019), maize (Hirsch et al.,
2014), Brassica rapa (Lin et al., 2014), Brassica napus (Hurgobin
et al., 2018; Song et al., 2020), B. oleracea (Golicz et al., 2016b),
Sesamum indicum (Yu et al., 2019), wheat (Montenegro et al.,
2017), Brachypodium distachyon (Gordon et al., 2017), and
Cajanus cajan (Zhao et al., 2020) have been mapped to open new
horizons for the crop improvement studies. A detailed summary
of the currently reported pan-genomes is summarized in Table 1.

In recent years, several visualization platforms have been
designed for crop pan-genomes analyses like GET_HOMO
LOGUES (Contreras-Moreira et al., 2017), PanViz (Pedersen
et al., 2017), SplitMem (Marcus et al., 2014), RPAN (Sun et al.,
2017), Pantools (Anari et al., 2019), ppsPCP (Tahir Ul Qamar
et al., 2019), seq-seq-pan, ITEP (Jandrasits et al., 2018), EUPAN
(Hu et al., 2017), PGAP-X (Zhao et al., 2018b), PanGP (Zhao
et al., 2014), Micropan (Snipen and Liland, 2015), and PGAP
(Zhao et al., 2012). These visualization tools permit analyzing
the pan-genomes for retrieving the genes in databank, enabling
access to PAV, gene annotation, gene expression, and genomic
sequence information (Danilevicz et al., 2020). The design
of advanced visualization tools is needed to allow a robust
integrated examination of pan-genomes for future applications
in crop improvement. A more detailed description of these
analytical platforms is summarized in Table 2.

Pan-Genomes and Crop Improvement
The crop pan-genomes studies enable us to catch up with
the genes that are lost in reference genomes during crop
domestication. Availability of the crop pan-genome that
comprises all its CWRs, landraces, and cultivated varieties gives a
well-defined system to gather all the information about genotypic

and phenotypic variations and permit the identification of
missing genes within the reference genomes (Danilevicz et al.,
2020). Superior knowledge about accessory genome would help
to screen the elite cultivars for abiotic and biotic stresses
harboring stress-responsive genes (Bayer et al., 2019). Pan-
genomes offer a great opportunity to understand the role of GD
in genomic-based crop improvement. Fully annotated hexaploid
wheat pangenome of 18 elite lines showed 140,500 ± 102
genes and 36 million intervariatel SNPs. The functional analysis
of dispensable genes revealed their association with important
agronomic traits (Montenegro et al., 2017). Similarly, several
SNPs controlling the nine agronomic traits and variable genes
for disease resistance have been identified in the pigeon pea
pangenome that can be very useful for crop improvement (Zhao
et al., 2020).

For example, SVs of 25 maize inbred lines have been studied
and found a similar order among heterotic set and PAVs showing
that SVs can be crucial for the identification of parentage for
hybrid development (Darracq et al., 2018). The yield-related
traits have been subjected to a rigorous selection during breeding,
and the desired alleles for improved productivity have been
identified in major crops like soybean (Concibido et al., 2003),
rice (Thalapati et al., 2012), and wheat (Huang et al., 2003). Díaz
et al. (2012) studied the genes controlling the flowering time
in wheat and discovered that the genes show CNV. Similarly,
FLC gene family regulates flowering in B. oleracea having
variations in the CNV and found four core genes and two
variable genes (Golicz et al., 2016b). The Sub1A gene regulating
the submergence tolerance has been identified in rice under
submergence (Schatz et al., 2014).

Several biotic stress-responsive genes have revealed the PAVs
in a large number of species (Cook et al., 2012). Recently,
Dolatabadian et al. (2020) analyzed the pan-genome of 50 B.
napus genotypes to characterize the disease-resistant genes. The
pan-genome analysis unveiled 1,749 resistance genes, fromwhich
753 are dispensable and 996 are core gene while 368 genes
are not detected in the reference genome. Furthermore, SNPs
studies revealed 15,318 unique hotspots within 1,030 resistance
gene orthologs and identified 106 putative QTLs related
to blackleg resistance (Dolatabadian et al., 2020). Sunflower
pangenome identified 61,205 genes across a diverse range of wild
and cultivated species. Functional annotation of biotic stress-
related genes showed an allelic variation for disease resistance
including downy mildew (Hübner et al., 2019). The resistance
gene orthologs vary among different cultivars, and capture 59
candidate genes that are linked with the Fusarium wilt, clubroot,
and Sclerotinia-resistant QTLs in B. oleracea pan-genome (Bayer
et al., 2019). The progressive information gathered from these
studies can be used to develop improved crop cultivars. The
workflow of pan-genome assembly and its exploitation for crop
improvement is illustrated in Figure 4.

A Breakthrough Is Still Needed
Numerous pitfalls remain to be dealt with in achieving
economical, robust, and perfectly annotated pan-genome
assembly. First, the main prerequisite for pan-genomic analysis
is the accessibility to a well-annotated reference genome.

Frontiers in Plant Science | www.frontiersin.org 7 July 2021 | Volume 12 | Article 620420

https://www.frontiersin.org/journals/plant-science
https://www.frontiersin.org
https://www.frontiersin.org/journals/plant-science#articles


Razzaq et al. Next-Generation Breeding

TABLE 1 | Summary of major crop pan-genomic studies.

Crop Year Accessions Ploidy

level

Genome size Assembly

method

Outcrossing Total

pan-genes

Core % Accessory % References

Glycine max 2020 26 Tetraploid 1011.6Mb de novo - 57,492 50.1 49.9 Liu et al., 2020b

Cajanus cajan 2020 89 Diploid 622Mb Iterative 20% 55,512 86.6 13.4 Zhao et al., 2020

Brassica napus 2020 8 Tetraploid 1,033Mb de novo - 105,672 56 42 Song et al., 2020

Helianthus annuus 2019 493 Diploid 3.6 Gb de novo - 61,205 95 5 Hübner et al., 2019

Solanum

lycopersicum

2019 725 Diploid 950Mb de novo 0–5% 40,369 74.2 35.8 Gao et al., 2019

Sesamum indicum 2019 5 Diploid 554Mb de novo - 15,409 58.21 41.79 Yu et al., 2019

Oryza sativa 2018 3010 Diploid 430Mb Map-to-pan 1–2% 48,098 48.5–58.3 41.7–51.5 Wang et al., 2018

Oryza sativa/Oryza

rufipogon

2018 66 Diploid 430Mb de novo 1–2%/

10–56%

42,580 61.9 38.1 Zhao et al., 2018a

Brassica napus 2017 53 Tetraploid 1.1 Gb Iterative 28–30% 94,013 62.26 37.74 Hurgobin et al.,

2018

Triticum aestivum 2017 18 Hexaploid 17 Gb Iterative 1% 140,500 57.70 42.30 Montenegro et al.,

2017

Brassica oleracea 2016 10 Diploid 650Mb Iterative 30% 61,379 81.3 18.7 Golicz et al., 2016b

Zea mays 2014 503 Tetraploid 2.4 Gb Pan-

transcriptomics

95% 41,903 39.12 60.88 Hirsch et al., 2014

Glycine soya 2014 7 Tetraploid 1 Gb de-novo 5% 59,080 48.60 51.40 Li et al., 2014

However, the major drawback in transferring the adjoining
sequences is the short genomic reads that cause hindrance in
repetitive region assembly. Novel techniques like single-molecule
sequencing can offer longer reads but have low accuracy. With
the advent of highly sophisticated algorithms tools, the assembly
of long reads has become easy and robust, which result in
the assembly of high-quality genomes. The incorporation of
long reads can help in resolving the highly complex polypoid
genomes and repetitive motifs that are quite challenging to
read short sequences, and this strategy can be useful for the
assembly of pan-genomes. Another crucial aspect for the pan-
genome analysis is the useful association among phenotypes and
functional data sets. Only accurate functional data will create a
linkage map between trait diversity and pan-genome.

Second, the size and complexity of several genomes pose
a big hurdle for developing the visualization tools for pan-
genomic interpretations. To tackle this, scientists have come
up with cloud-based solutions to assist the availability of
pan-genome visualization tools. The cloud-based system could
harness the multi-omics approaches and established a huge
platform for data sharing, pan-genomic analysis, and developing
the standardized protocols for the pan-genome studies. Third,
the presentation and storage of large data sets of pan-genome
results are also challenging tasks. Databases can store a large

number of pan-genomic data, including transposable elements,
noncoding RNAs, indels, and SNPs. Developing a coordinate
system like SuperGenome requires to be upgraded to address
the challenges related to presentation and storage. Fourth, the
information collected from the pan-genome needs GWAS/QTL
analysis and re-sequencing to unravel the candidate genes for
crop improvement. Thus, overcoming these hurdles to develop
inclusive genomic resources would beneficial to expand the pan-
genomic assemblies to other crop species. Furthermore, the

applications of ML and deep learning (DL) in pan-genomic
research may facilitate to cross the barriers of pan-genome
construction and visualization as ML tools can autonomously
detect the sequence reads in huge data sets. Also, a complete
information flow reflecting gene-transcriptome-metabolome-
epigenome-phenome can provide an excellent platform to study
a phenotypic variation within different microenvironments. As
the omics tools continue to attain more precision and sensitivity
for analytical investigation, the era of crop “pan-omics” is not far
away. The upcoming future is expecting to see the data science
explosion, where “Crop Pan-omes” studies will be one of the key
players in giving a new direction to future agriculture.

THE ERA OF PLANT GENOME EDITING

To date, classical breeding is speedier in comparison to 50 years
ago but still inadequate to accelerate the agricultural production
with respect to the global demands (Breseghello and Coelho,
2013; Voss-Fels et al., 2019). In addition, mutation breeding
and transgenic technology can be applied to introduce novel
genes for crop improvement, but GMOs are banned in many
countries because of public health safety and regulatory concerns.
It normally takes 10–12 years to design a crop cultivar through
conventional, mutational, and transgenic breeding (Razzaq et al.,
2019b).

The rise of first-generation genome engineering nulceases,
like transcriptional activator-like effector nucleases (TALENs)
and zinc finger nucleases (ZFNs), brought a revolution in plant
research and accelerated the plant research (Lloyd et al., 2005;
Cermak et al., 2011). Genome editing has been applied to
generate insertion/deletion (indels), substitution, replacement,
and overcome all the concerns of nonspecific, cross species,
and unstable integration of foreign DNA into the host cell
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TABLE 2 | List of some important tools for pan-genomic analysis.

Tool Year Characteristics and functions Web link Platform References

Pantools 2019 A versatile tool for mapping the

metagenomic and genomic reads in both

prokaryotes and eukaryotes.

https://git.wur.nl/bioinformatics/pantools Window,

Linux Anari et al.,

2019

ppsPCP 2019 Detect presence/absence variations (PAV)

and assembled comprehensive

pan-genome

http://cbi.hzau.edu.cn/ppsPCP/ Linux
Tahir Ul

Qamar et al.,

2019

PGAP-X 2018 Analyze pan-genome profile curve, gene

distribution analysis, genomic region

variations, and comparative analysis of

genome structure.

http://pgapx.ybzhao.com Windows,

Linux Zhao et al.,

2018b

EUPAN 2017 It can be applied to analyze the eukaryotic

pan-genomes uses the R, C++, and Perl

languages.

http://cgm.sjtu.edu.cn/eupan/index.html Linux
Hu et al.,

2017

PanViz 2017 Robust pan-genome analysis and

visualization of variations in different

genomic regions.

https://github.com/thomasp85/PanViz Linux
Pedersen

et al., 2017

GET_HOMOLOGUES-

EST

2017 An R package software to categorized

core and dispensable sequences and

construct pan-genome matrices.

https://github.com/eead-csic-compbio/

get_homologues/releases

Linux
Contreras-

Moreira

et al., 2017

RPAN 2017 Rich source for rice genomic research and

breeding.

http://cgm.sjtu.edu.cn/3kricedb/ Linux
Sun et al.,

2017

Micropan 2015 External source free computational

pipeline and use R package for inclusive

pan-genome analysis.

https://cran.r-project.org/web/packages/

micropan/index.html

Windows,

Linux Snipen and

Liland, 2015

PanGP 2014 Pan-genome profiling analysis, develop

core genome, handle huge data set and

user friendly.

http://PanGP.big.ac.cn Windows,

Linux Zhao et al.,

2014

SplitMem 2014 Graphical algorithm online web tool, which

produced de Bruijn graph for pan-genome

visualization.

http://splitmem.sourceforge.net Linux
Marcus

et al., 2014

PGAP 2012 It can be used to perform pan-genome

profiling, gene cluster analysis, species

evolution analysis, gene enrichment, and

genetic variation analysis.

http://pgap.sf.net Linux
Zhao et al.,

2012

(Kim and Kim, 2014). Although, ZFNs and TALENs have been
extensively applied for site-specific plant genome editing in the
past but certain drawbacks, like cumbersome cloning and vector
construction protocols, large size, ineffective delivery methods,
repetitive nature, less specificity, and large off-target, limit their
use today (Puchta, 2017).

Broadening the CRISPR/Cas Toolbox
Clustered regularly interspaced short palindromic
repeat/CRISPR-associated system is the most fascinating
and ground-breaking technology for genome editing (Jinek
et al., 2012). Continuous efforts are in progress to minimize the
drawbacks of the CRISPR/Cas systems in plants and to develop
next-generation genome editing tools.

The present classification of a CRISPR toolkit is incomplete
as new classes of variants are discovered continuously (Koonin
et al., 2017). A CRISPR/Cas system is still evolving and has yet to
fulfill its potential. Currently, there are two major classes (classes

1 and 2), six types, and more than 30 subtypes of the CRISPR
system according to their respective signature protein. The class
1 includes multiple Cas effector proteins to perform many tasks
and comprises type I, III, and IV with the corresponding proteins
like Cas3, Cas10, and Csf1 (Makarova et al., 2015). Whereas
the class 2 system with only single signature protein is the
most extensively adopted genome editing system and consists
of type II (Cas9), V [Cas12a (Cpf1), Cas12b, Cas12c, Cas12d
(CasY), Cas12e (CasX), Cas12g, Cas12h, Cas12i, Cas14a, Cas14b,
Cas14c], and VI [Cas13a (C2c2), Cas13b (C2c6), Cas13c-d]
systems (Koonin et al., 2017). Several Cas orthologs as depicted
in Table 3 have been discovered to overcome the bottlenecks in
the CRISPR/Cas system.

Naturally, Cas9 is found in Streptococcus pyogenes (SpCas9)
and contains three subunits: a Cas9 protein, CRISPR RNA
(crRNA), and trans-activating crRNA (tracrRNA) (Jinek et al.,
2012; Mali et al., 2013). Cas9 comprises two lobe-like structures: a
recognition domain (REC) linked with a nuclear domain (NUC).
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FIGURE 4 | The crop wild relatives (CWRs), landraces, and cultivated varieties of crops can be used to assemble the crop pan-genomes via three approaches such

as de novo assembly, de Bruijn graph, and iterative assembly. The core genome includes all the genes of individuals while the dispensable or assessor genome

contains all remaining genes, which are not necessary to present in all individuals. Pan-genomes can be used to identify different structural variations (SVs) in any

individual and detect novel genes that are lost in cultivated varieties during the breeding process. The elucidation of desired traits/genes can be used for crop

improvement by providing biotic/abiotic stress tolerance through haplotype-based breeding and de novo domestication.

The NUC lobe consists of two catalytic sites like HNH and RuvC
that target the protospacer adjacent motif (PAM) present at 3
bp upstream of the desired DNA region. The mechanism of
CRISPR/Cas9 editing initiates by designing 20-bp guide RNA
(gRNA) to form gRNA/Cas9 assembly and recognize PAM site to
produce double-standard breaks (DSBs) at a specific site (Cong
et al., 2013). CRISPR/Cas12a is considered as another important
Cas ortholog, which is also called as Cpf1. It is an RNA-based
editing tool and presents some inimitable characters in contrast
to a CRISPR/Cas9 system. Cpf1 needs a T-rich spacer region at
5’-end having 42-nt crRNA and create DSBs with staggered ends

(Zetsche et al., 2015). For example, Cpf1-based genome editing
was performed in allotetraploid cotton, and the results indicated
zero off-target cleavage with 87% editing efficiency (Li et al.,
2019a). CRISPR/Cas9 and CRISPR/Lsh Cas13a have been applied
against RNA potyvirus to make disease-resistant plants and can
be applied against many other invading viruses (Aman et al.,
2018). CRISPR/Cas14a is a highly ideal tool to target the plant
single-standardDNA viruses like Nanoviridae andGeminiviridae
families. It has the ability to develop viral-resistant crops by
allowing unrestricted cleavage without any dependency on the
sequence (Khan et al., 2019).
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TABLE 3 | List of different Cas orthologs used for plant genome editing.

Cas type Organism PAM Size Cutting

site

gRNA Target Plant

species

Characteristics References

SpCas9 Streptococcus pyrogenes NGG 1,368 bp 5′-PAM 20 bp dsDNA Several

plants

Need long

crRNA+tracrRNA

Jinek et al., 2012

SpCas9 QQR1 Streptococcus pyrogenes NAAG 1,372 bp 5′-PAM 20 bp dsDNA - Altered PAM sequence Cong et al.,

2013

SpCas9 VRER Streptococcus pyrogenes NGCG 1,372 bp 5′-PAM 20 bp dsDNA Rice Altered PAM sequence Kleinstiver et al.,

2015

SpCas9-NG Streptococcus pyrogenes NG 1,372 bp 5′-PAM - DNA Rice Altered PAM sequence,

greater ability of base

editing and gene

regulation

Ren et al., 2019

SaCas9 Staphylococcus aureus NNAGRRT 1,053 bp 5′-PAM 21 bp DNA Rice and

citrus

Reduce off-targets and

excellent in vivo

genome editing

Kaya et al., 2016

FnCas9 Francisella novicida NGG 1,629 bp 5′-PAM 20 bp DNA - Reduce off-targets Hirano et al.,

2016

ScCas9 Streptococcus canis NNG 1,379 5′-PAM 20 bp DNA - Altered PAM sequence

and reduce off-targets

Chatterjee et al.,

2018

Nme Cas9 Neisseria meningitidis NNNNGATT 1,082 5′-PAM 24 bp DNA - Reduce off-targets and

need longer PAM

Lee et al., 2016

BlatCas9 Brevibacillus laterosporus NNNNCND 1,092 5′-PAM 20 bp DNA Maize Enhance specificity Karvelis et al.,

2015

St1Cas9 Streptococcus

thermophilus

NNAGAAW 1,121 5′-PAM 20 bp DNA Arabidopsis Reduce off-targets Steinert et al.,

2015

St3Cas9 Streptococcus

thermophilus

NGGNG 1,409 5′-PAM 20 bp DNA - Multiple domains and

induce dsDNA breaks

Cong et al.,

2013

HypaCas9 Streptococcus pyogenes NGG 1,368 5′-PAM 20 bp DNA Rice Increased specificity Chen et al.,

2017

eHypa-Cas9 Streptococcus pyogenes NGG 1,368 5′-PAM 20 bp DNA Rice Increased specificity Liang et al.,

2018

CjCas9 Campylobacter jejuni NNNNRYAC

or

NNNNACAC

984 5′-PAM 22 bp DNA - Greater mutation

frequency

Kim et al., 2017

xCas9 3.7 Streptococcus pyogenes GAT, GAA,

NG

1,368 5′-PAM - DNA Rice Altered PAM and

increased specificity

Zhong et al.,

2019

CasX Planctomycetes and Phyla

Deltaproteobacteria

TTCN 980 5′-PAM 23 bp DNA - Increased specificity Burstein et al.,

2017

AsCpf1 Acidaminococcus sp. TTTN 1,307 3′-PAM 24 bp DNA - Increase editing

efficiency

Yamano et al.,

2016

Cpf1 Francisella1 and Prevoltella TTTV - 5′-PAM 20 bp DNA Rice and

Arabidopsis

Need long sgRNA and

lacks HNH domain

Endo et al., 2016

FnCpf1 Francisella novicida TTTV and

TTV

- 5′-PAM 20 bp DNA Rice Enhanced efficiency

and altered PAM

Zhong et al.,

2018

Cas12a Acidaminococcus sp. TTTV 1,307 5′-PAM 20 bp DNA - Altered PAM Jeon et al., 2018

LbCas12a RR Francisella1 and Prevoltella CCCC and

TYCV

1,228 5′-PAM 20 bp DNA Rice Altered PAM Kleinstiver et al.,

2019

AsCas12a RVR Francisella1 and Prevoltella TATV 1,307 5′-PAM 20 bp DNA - Altered PAM Kleinstiver et al.,

2019

FnCas12a RVR Francisella1 and Prevoltella TWTV 1,300 5′-PAM 20 bp DNA Rice Altered PAM Zhong et al.,

2018

MbCas12a RR Francisella1 and Prevoltella TCTV and

TYCV

1,373 5′-PAM 20 bp DNA - Altered PAM Tóth et al., 2018

Cas13 (C2c2) Leptotrichia shaii Not needed 1,440 - 28 bp ssRNA - Cleaved RNA Abudayyeh

et al., 2016

AacC2c1 Alicyclobacillus

acidoterrestris

T-rich PAM 1,227 5′-PAM 20 bp DNA - Bi-lobed

endonucleases

Liu et al., 2017

Cas14 Archaea - 400–700 - - ssDNA - Restrictive sequence

not required for ssDNA

cleavage

Harrington et al.,

2018
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Engineering Crops for Improved Stress
Resilience
A tremendous progress in plant genome engineering has
been achieved by exploiting the CRISPR/Cas system for crop
improvement (Li et al., 2013; Shan et al., 2013). CRISPR/Cas
technology is revolutionizing the plant breeding due to its
immense application to develop climate-resilient crops (Puchta,
2017). There are numerous studies reported for improved
agronomic traits and stress tolerance to abiotic/biotic stresses
(Table 4). For example, drought is the most damageable abiotic
stress causing severe loss to crop production. A CRISPR/Cas9
system was used to produce the knockout mutants of SlLBD40
in tomato subjected to drought stress. The mutant lines showed
improved water-holding capacity as compared to the SlLBD40
overexpressing line. The results demonstrated that the SlLBD40
gene negatively regulates drought stress in tomato (Liu et al.,
2020a). CRISPR/Cas9 was employed to study the effect of SlNPR1
mutants under drought stress and revealed that the knockout
tomato lines were highly susceptible to drought stress (Li et al.,
2019b). Ogata et al. (2020) applied CRISPR/Cas9-mediated frame
shift mutations to develop the rice mutant lines for the OsERA1
gene under drought stress. The results showed an increase
in tolerance to drought and positively induce primary root
development under normal conditions. Ramírez Gonzales et al.
(2021) provided the evidence about the StCDF1–StFLORE locus
that regulates the water homeostasis and vegetative growth in
potato by disrupting the StFLORE using a CRISPR/Cas9 system.
Loss of function of this gene resulted in enhanced drought
tolerance. Pan et al. (2020) reported that the gene ZmSRL5 is
very vital for a cuticular wax structure, which protects the maize
plant from different stresses. Loss of functional mutant progenies
of maize showed that the ZmSRL5 gene involved in drought
response by keeping the structure of cuticle wax intact.

Salinity tolerance in important crop species can also be
attained by exploiting CRISPR/Cas9-mediated genome editing.
CRISPR/Cas9 technology was executed to generate OsRR22
mutant lines of rice, which exhibit enhanced salt tolerance at the
seedling stage (Zhang et al., 2019). Regulatory domain editing
of multidomain proteins is another important aspect that can
be used to engineer the negatively regulated domains associated
with abiotic stresses. Tomato hybrid proline-rich protein 1
(HyPRP1) domain was targeted successfully by using multiplex
genome editing via CRISPR/Cas9, which is a negative regulator
for salinity stress. The results revealed that the elimination
of this domain produces tomato with high salinity tolerance
(Tran et al., 2020). Ullah et al. (2020) disrupted the HDA710
gene through CRISPR/Cas9, and the mutant lines displayed
reduced abscisic acid sensitivity and increased salinity tolerance
in rice. A large number of transcription factors are involved in
the salinity tolerance mechanism including NAC transcription
factors. A CRISPR/Cas9 systemwas used to develop the knockout
mutants of the OsNAC041 gene in rice. The study indicated
a direct function of the OsNAC041 gene under salt stress and
can offer an excellent potential to target other NAC genes for
rice-resistant breeding (Bo et al., 2019). Similarly, another NAC
gene GmNAC06 was targeted by using CRISPR/Cas9-based gene
editing and overexpression technology in soybean, and the results

demonstrated that the GmNAC06 gene improved the salinity
tolerance by alleviating ROS effects, accumulating glycine betaine
and proline, and maintaining ionic homeostasis (Li et al., 2021).

Wang et al. (2020a) executed CRISPR/Cas9-mediated genome
editing tomutate theOsNAC006 gene in rice and themutant lines
showing a high susceptibility to heat and drought stress. Likewise,
CRISPR/Cas9 was applied to develop the mutant alleles for the
OsDST gene, and the result exhibited a reduction in stomatal
density while increasing tolerance against drought, salinity, and
osmotic stress without damaging the rice grain yield (Santosh
Kumar et al., 2020).

Clustered regularly interspaced short palindromic
repeat/CRISPR-associated gene editing also provide a great
opportunity to combat against plant pathogens and invading
organisms efficiently. Such a resistance to bacterial blight disease
was improved in rice by editing the promoter region of Xa13
gene. The knockdown progenies were transgene-free edited
plants and showed an increase in resistance to bacterial blight (Li
et al., 2020a). In a similar report, the AvrXa7 gene was the target
for bacterial blight resistance in basmati rice (Zafar et al., 2020).
A CRISPR/Cas9 system was developed by two independent
groups to manipulate the Os8N3 and OsSWEET14 gene in
rice. The results showed that the mutations were transferred in
successive progenies, and homozygous knockouts demonstrated
an increased resistance to Xanthomonas oryzae pv. oryzae
without any yield in plenty (Kim et al., 2019b; Zeng et al.,
2020). Ortigosa et al. (2019) designed a CRISPR/Cas9 system to
develop bacterial speck-resistant tomatoes. In this experiment,
SlJAZ2 functional ortholog, which was found in stomata, was
edited, which provide resistance to bacterial speck-causing agent
Pseudomonas syringae pv.

Clustered regularly interspaced short palindromic
repeat/CRISPR-associated genome editing can also be applied
to cope with the different plant viruses. Mehta et al. (2019)
developed a CRISPR/Cas9 interference system to target AC2 and
AC3 genes and to have an engineered resistance against African
cassava mosaic virus. This system is very useful to cope with the
Geminiviruses attack in plants. The resistance against soyabean
mosaic virus has been achieved by targeting the genes involved in
metabolic pathways of isoflavone, including GmF3H1, GmF3H2,
and GmFNSII-1 using the multiplex CRISPR/Cas9 system
(Zhang et al., 2020).

Martínez et al. (2020) examined the role of the tomato PMR4
gene against powdery mildew by mutating it via a CRISPR/Cas9
tool. The mutant lines exhibited a higher susceptibility to fungal
infection as compared to the normal plants. This evidence can be
useful to characterize and analyze S-genes under different fungal
pathogens. CRISPR/Cas9 was used to produce the knockouts
for nCBP-1 and nCBP-2 genes to study the resistant mechanism
against cassava brown streak virus. The knockouts lines displayed
little symptoms and reduced disease severity in contrast to
control lines (Gomez et al., 2019).

Recent Innovations in CRISPR/Cas System
Without any doubt, the next-generation CRISPR/Cas technology
continuously opens up new avenues in plant breeding research.
Some breakthrough strategies were reported for the CRISPR/Cas
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TABLE 4 | Applications of clustered regularly interspaced short palindromic repeat/CRISPR-associated (CRISPR/Cas) system to engineered abiotic/biotic stress

tolerance.

Crop Gene Stress Target result Vector delivery References

Abiotic stress

Tomato SlLBD40 Drought Knockout A. tumefaciens Liu et al., 2020a

Rice OsERA1 Drought Knockout Agrobacterium tumefaciens Ogata et al., 2020

Tomato SlNPR1 Drought Knockout Agrobacterium tumefaciens Li et al., 2019b

Potato StFLORE Drought Knockout Agrobacterium tumefaciens Ramírez Gonzales et al., 2021

Maize ZmSRL5 Drought Knockout Agrobacterium tumefaciens Pan et al., 2020

Rice OsRR22 Salinity Knockout Agrobacterium tumefaciens Zhang et al., 2019

Tomato HyPRP1 domain Salinity Knockout Agrobacterium tumefaciens Tran et al., 2020

Rice HDA710 Salinity Knockout Agrobacterium tumefaciens Ullah et al., 2020

Rice OsNAC041 Salinity Knockout Agrobacterium tumefaciens Bo et al., 2019

Soybean GmNAC06 Salinity Knockout A. rhizogenes Li et al., 2021

Rice OsNAC006 Multiple Knockout Agrobacterium tumefaciens Wang et al., 2020a

Rice OsDST Multiple Knockout Agrobacterium tumefaciens Santosh Kumar et al., 2020

Biotic stress

Rice Xa13 Bacterial blight Knockout Agrobacterium tumefaciens Li et al., 2020a

Rice AvrXa7 Bacterial blight Knockout Agrobacterium tumefaciens Zafar et al., 2020

Rice Os8N3 Xanthomonas oryzae Knockout Agrobacterium tumefaciens Kim et al., 2019b

Rice OsSWEET14 Xanthomonas oryzae Knockout Agrobacterium tumefaciens Zeng et al., 2020

Tomato SlJAZ2 Bacterial speck Knockout Agrobacterium tumefaciens Ortigosa et al., 2019

Cassava AC2, AC3 African cassava mosaic virus Interference Agrobacterium tumefaciens Mehta et al., 2019

Cassava nCBP-1 and nCBP-2 Cassava brown streak virus Knockout Agrobacterium tumefaciens Gomez et al., 2019

Soybean GmF3H1, GmF3H2

and GmFNSII-1

Soybean mosaic virus Knockout Agrobacterium tumefaciens Zhang et al., 2020

Tomato PMR4 Powdery mildew Knockout Agrobacterium tumefaciens Martínez et al., 2020

system that removes certain constraints prevailing in genome
editing as shown in Figure 5. Recent advancement in the
CRISPR/Cas toolbox results in the improvement of several novel
features, like target specificity, broader target range, minimizing
off-targets, precise nuclease activity, various PAM sites, and
efficient delivery methods (Koonin et al., 2017). It is the preferred
editing system for carrying out other genetic modifications such
as probing mutation patterns (Jia et al., 2018), the introduction
of exogenous genes (Collonnier et al., 2017), gene regulation (Qi
et al., 2013), and cell imaging (Xue and Acar, 2018).

For example, Maher et al. (2020) reported a protocol to
remove all the barriers caused by the laborious and time-
consuming protocols of tissue culture. They have developed
de novo meristem induction by transferring all the editing
machinery into the somatic cells to produce the shoots having
targeted manipulations (Maher et al., 2020). Ren et al. (2019)
developed a didirectional promoter (BiP) system to express
gRNA and Cas9 cassettes in the opposite direction to enhance the
editing effectiveness of about 75.9–93.3% in rice. Decaestecker
et al. (2019) constructed a CRISPR-TSKO system to produce
tissue-specific knockout mutants to overcome the pleiotropic
effect of a mutated gene. This will open up new possibilities for
crop improvement to target a tissue-specific gene (Decaestecker
et al., 2019). The editing efficiency of Cas nucleases is greatly
influenced by the preferred PAM sites as it has a limited range to

target the GC-rich region. Recently, Ren et al. (2021) designed a
PAM-free editing tool by developing the CRISPR-SpRY toolbox
in rice. It can resolve the PAM sites’ limitations to target a
wide range of specific sequences in the DNA molecule. Uranga
et al. (2021) engineered potato virus X to construct a vector
delivery system for multiple gRNAs and achieved 80% indels
mutation rate in targeting the Nicotiana benthamiana genes.
Also, the virus-free lines can be screened from the progeny
developed via infected seeds or tissues that demonstrate greater
biallelic mutations.

Base Editing

Production of the precise point mutations in plant genomic base
editing is an emerging strategy to disrupt a single base using
CRISPR/nCas9 (Cas9 nickase) attached with cytidine deaminase.
An efficient system called base editor 3 (BE3) has been developed
for cotton to create the targeted base substitutions with the
mutation rate of 26.67–57.78% (Qin et al., 2020). A novel adenine
base editor (ABE) was designed by Li et al. (2018a) to produce
herbicide-resistant wheat and rice plants. ABE was enabled G
to C and A to T point mutations with 59.1% successful rate
in regenerated lines (Li et al., 2018a). Sretenovic et al. (2020)
engineered the iSpyMacCas9 tool for the targeted mutation at
A-rich PAM sites that substitute A to G and C to A base. The
constructed vector system is well-suited for gateway cloning and
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FIGURE 5 | Diagrammatic illustration of the base editing, clustered regularly interspaced short palindromic repeat/CRISPR-associated 9 (CRISPR/Cas9) and Cpf1

mechanism, and de novo domestication. (A) In the CRISPR/Cas9 mechanism, Cas9 protein is guided and activated with the help of CRISPR RNA (crRNA) and

trans-activating CRISPR RNA (tracrRNA), respectively, to produce double-standard breaks (DSBs) in DNA. The single-guide RNA (sgRNA) (blue) is developed with the

grouping of tracrRNA and crRNA and identifies the 20-nucleotide (orange) target sequence. This makes a complex of Cas9-sgRNA, which moves along the target site

and cuts double-standard DNA 3 bases upstream of protospacer adjacent motif (PAM) through HNH and RuvC domains. The DSBs are reconstructed via

nonhomologous end-joining (NHEJ) or homology-directed repair (HDR) pathway. (B) Shows the Cpf1 mechanism that recognize the 24-nucleotide target sequence

(blue) of crRNA and cleaves five nucleotides opposite to T-rich (TTTN) spacer at 5
′

end. (C) Representing the base editing in which dead Cas9 (dCas9) is associated

with cytidine deaminase (brown). It is directed by sgRNA (blue) for base substitute at target sequence (orange) distal to PAM site at 3’ end. (D) depicted the de novo

domestication process in wild plant using multiplex genome editing. Multiple guide RNA (gRNA) can be used to edit more than one gene simutanelously linked to

some agronomic traits.
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also very compatible for all types of gRNA. This platform can be
used to improve other editing systems like CRISRP activation,
CRISPR interference, homology-directed repair (HDR) system,
and prime editing. Plant virus can also be used for a fast and
an efficient delivery of CRISPR/Cas machinery for virus-induced
editing. While the APOBEC3-Cas9 fusion-induced deletion was
designed to cleave 5′-deaminated C bases in rice and wheat
protoplasts (Wang et al., 2020b).

Prime Editing

Recently, prime editing is emerged as an ideal toolbox that
can remove all the previous hurdles and produces insertion,
deletions, and base substitutions without generating DSBs
(Marzec et al., 2020). Xu group developed the first prime-
editing system in rice by designing the plant prime editors
(pPE2) toolkit to induce mutations at different genomic regions
with a frequency of 0–31.3% (Xu et al., 2020a). After this
study, a huge wave of genome editing using prime editing
have been conducted in different crops (Hua et al., 2020). For
example, a prime editor system was optimized by promoter and
codon to introduce insertion, deletions, and point mutations
in wheat and rice protoplast (Lin et al., 2020), generate single
and multiple base edits in rice (Xu et al., 2020b) having the
mutation rate of 21.8 and 26%, respectively. In later experiment,
Lin et al. (2021) designed two prime-editing gRNAs, which led
to an increase in editing efficiencies from 2.9-fold to 17.4-fold
in rice. Furthermore, the prime-editing system was executed
to target both endogenous and exogenous genes to produce
homozygous and heterozygous mutated lines with minimum off-
targets and developed herbicide-resistant lines of rice through
base substitutions (Butt et al., 2020; Li et al., 2020b).

De novo Domestication

De novo domestication is another important breeding pipeline
benefited by the powerful technology of CRISPR/Cas. De novo
domestication can be used to exploit the GD and has a great
potential to introduce desriable traits in CWRs (Razzaq et al.,
2021).De novo domestication of four wild cultivars of tomato was
performed bymutating the four genes SlWUS, SlCLV3, SP5G, and
SP through CRISPR/Cas9-mediated multiplex genome editing
to develop improved tomato fruits (Li et al., 2018b). Similarly,
Zsögön et al. (2018) executed de novo domestication of wild
tomato by disrupting the six genes related to useful agronomic
traits using multiplex editing, which controls the nutritional
and yield-related traits. The engineered wild progenies showed
500% increase in the accumulation of lycopene compared to the
cultivated species. Also, they exhibited a 3-fold greater fruit size
and 10-fold extra fruit number as compared to their wild parents
(Zsögön et al., 2018). Recently, Yu et al. (2021) established an
efficient transformation system in allotetraploid rice. The de
novo domestication strategy was used for improving the six
agronomically important traits in allotetraploid rice. De novo
domestication using next-generation genome editing tools can
provide an alternative strategy to explore the GD of CWRs for
crop improvement.

Beyond Editing

Apart from genome editing, the CRISPR/Cas toolbox can be
applied to regulate gene expression and epigenome editing. A
newly fine-tuning gene expression regulation system has created
to control the translation process in plants. A CRISPR/Cas9
system with the modified protocol is used to edit the upstream
open reading frames to produce transgene-free mutated plants.
This approach can be utilized to study the functions of several
genes and facilitate rapid crop improvement programs (Si et al.,
2020). Another genome editing system named as Cas12b has
been designed for site-specific genome manipulation in plants.
It is considered as the third most exceptional CRISPR tool after
Cas12a and Cas9 system. It also has an excellent potential for
gene regulation through transcriptional activation and repression
mechanism in plants (Ming et al., 2020). Nuclease-dead Cas9
(dCas9) allows programmable regulation of multiple genes
via transcriptional effectors without damaging the target site.
CRISPR/dCas9 has vast applications, such as DNA-free genome
engineering, live-cell chromatin imaging, chromatin topology,
epigenome editing, and gene regulation, in plants (Moradpour
and Abdulah, 2020).

Technological Barriers and Public
Concerns for CRISPR Technology
The major drawback in the applications of CRISPR-mediated
engineering for plant breeding is not experimental or technical
but consumer acceptance, public concerns, and strict regulatory
affairs for the approval of edited crops. Technological
improvement in genome editing tools would develop the similar
traits just like the traits produced during conventional breeding
in nature. However, CRISPR/Cas systems could be applied to
incorporate foreign genes into the host genome, but this can
easily be captured. Therefore, genome-edited crops developed
through the CRISPR/Cas system should not be regarded as GM
crops. Also, the use of CRISPR/Cas technology is still under strict
constraints due to the ban imposed by European countries and
cumbersome regulatory protocols adopted by USA, Australia,
and Canada to ensure the biosafety of genome-edited crops.
All these regulatory barriers will overcome only with a strong
political determination and consensus among all stakeholders
of different countries to consider the CRISPR-edited plants
as non-GMOs.

There are still remaining certain bottlenecks that need to be
fixed to exploit the full potential of the CRISPR/Cas system
(Figure 6). For example, SpCas9 has a larger size, greater off-
target mutations, and can only detect the NGG PAM sequence
that limits its use. The emergence of other Cas orthologs like
Cpf1, Cas13a, and Cas14 (a,b) can solve this problem due to their
small size, broader PAM sites, and reduced off-target effects. The
establishment of tissue culture-free, transient CRISPR system like
prime editing is required to make this technology in a more
robust and simpler way. The use of nonhomologous end-joining
(NHEJ) inhibitors or HDR boosters can improve the HDR
efficiency but yet to be reported in plants. In future, the next-
generation CRISPR systems can offer sustainable agriculture
production by overcoming the technical and regulatory barriers.
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FIGURE 6 | Limitations of the CRISPR/Cas system and a future way forward to develop ideal editing systems.

NEXT-GENERATION PLANT
PHENOTYPING PLATFORMS

Plant trait phenotyping has been vital for successful crop

domestication since thousands of years. The word “phenome”

implies the whole phenotypic profile of any plant, and

a phenotype is the blend of evident genomic expression
with respect to its environment (Houle et al., 2010). Plant

phenomics has unfolded within an evolving niche to a

blooming investigative platform. It can be defined as the

multidimensional application of advanced tools and procedures
applied for capturing the detailed data on plant growth,
function, structure, and behavior in a given environment. It
deals with the acquisition, organization, and evaluation of huge
phenotypic data sets, and the design of intelligent models for
the prediction of plant growth in multiple scenarios (Houle
et al., 2010). Plant phenotyping is a crucial approach to
study the relationship of plants with their environment, and
can conduct at various grades of resolution from genome
to the whole plant under diverse climatic conditions, from
field to systematic controlled environments. However, for
every level spotlight on specific traits, the final objective
is to connect the information from bottom up to develop
elite crop varieties (Walter et al., 2015; Araus et al., 2018).
So, the plant phenomics tools are indispensable in modern
breeding and provide an excellent way forward to develop
next-generation crops.

High-Throughput Phenotyping: A Step
Toward Digital Agriculture
In recent years, state-of-the-art advanced phenotyping has
emerged as a joint venture of multidisciplinary research groups
to facilitate the launching of high-throughput phenotyping to
expedite the next-generation breeding programs to ensure food
security (Fasoula et al., 2020). High-throughput phenotyping
allows high resolution imaging of thousands of plants for a better
understanding of the insights of plant phenomics and genetics
(Roitsch et al., 2019). It is the most promising technology
that successfully incorporates plant science, engineering,
math, information science, and computation with highly
sophisticated tools of AI and ML to uncover diverse and
intractable phenotypes of larger genotypes that are important
to develop the best crop cultivars (Furbank et al., 2019). At
present, several state-of-the-art phenotyping centers have been
established in Europe, Australia, and USA as described in
Table 5.

High-throughput plant phenomics operates within three
approaches; firstly, the identification of a target trait regulating
a unique stress response for precise, reproducible, accurate,
and rapid data acquisition. The second and the third step
based on a cutting-edge computer vision system enable
the estimation and imaging examination of data and the
computational analysis to forecast a biological response,
respectively (Esposito et al., 2020). These hi-tech computer
systems can lead current agriculture to digital agriculture,
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TABLE 5 | List of major globally available high-throughput phenotyping facilities.

Phenotyping system Country University/Institute/Collaboration Weblink

International Plant Phenotyping

Network (IPPN)

Different partner

countries

- https://www.plant-phenotyping.org/

European Plant Phenotyping

Network 2020 (EPPN)

Collaboration of

22 European

countries

- https://eppn2020.plant-phenotyping.eu/EPPN2020_start

North American Plant

Phenotyping Network (NAPPN)

United States - http://nappn.plant-phenotyping.org/

WSU Plant Phenomics United States Washington State University http://phenomics.cahnrs.wsu.edu/

Nebraska Innovation Campus

(NIC)

United States University of Nebraska–Lincoln https://ard.unl.edu/phenotyping/nebraska-innovation-campus-

greenhouse

Controlled Environment

Phenotyping Facility (CEPF)

United States Purdue University https://ag.purdue.edu/cepf/

Plant Imaging Consortium (PIC) United States Arkansas State University http://plantimaging.cast.uark.edu/

Center for Advanced Algal and

Plant Phenotyping

United States Michigan State University https://prl.natsci.msu.edu/research-tech/center-for-advanced-

algal-and-plant-phenotyping/

SLANTRANGE United States - https://slantrange.com/company/

Austrian Plant Phenotyping

Network (APPN)

Austria (Vienna

BioCenter)

University of Innsbruck, University of

Vienna, University of Natural

Resources and Life Sciences

https://appn.at/plant-phenotyping-forum/

Australian Plant Phenomics

Facility (APPF)

Australia Australian National University, The

University of Adelaide,

Commonwealth Scientific and

Industrial Research Organization

(CSIRO)

https://www.plantphenomics.org.au/

McGill Plant Phenomics Platform

(MP3)

Canada McGill University http://mustang.biol.mcgill.ca/mcgill_mp3_summary.html

Eastern Canadian Plant

Phenotyping Platform (ECP3)

Canada McGill University https://www.mcgill.ca/macdonald/research/canada-foundation-

innovation-grants/eastern-canadian-plant-phenotyping-platform-

ecp3

Green Crop Network (GCN) Canada McGill University https://www.greencropnetwork.com/

Biotron Experimental Climate

Change Research Centre

Canada The University of Western Ontario https://www.uwo.ca/sci/research/biotron/

German Plant Phenotyping

Network (DPPN)

Germany Helmholtz Zentrum München https://dppn.plant-phenotyping-network.de/

Jülich Plant Phenotyping Centre

(JPPC)

Germany Jülich Forschungszentrum https://www.fz-juelich.de/ibg/ibg-2/EN/_organisation/JPPC/

JPPC_node.html

Lemnatec Germany Bavarian State Research Center for

Agriculture

https://www.lemnatec.com/

PhenomUK United Kingdom University of Nottingham https://www.phenomuk.net/

Plant Growth Facility (PGF) United Kingdom Cranfield University https://www.cranfield.ac.uk/facilities/plant-growth-facility

National Plant Phenomics Centre

(NPPC)

United Kingdom Aberystwyth University https://www.plant-phenomics.ac.uk/

National Plant Phenotyping

Infrastructure (NaPPI)

Finland University of Helsinki and University

of Eastern Finland

https://www.helsinki.fi/en/infrastructures/national-plant-

phenotyping

Nordic Plant Phenotyping

Network (NPPN)

Denmark University of Copenhagen https://nordicphenotyping.org/

Phenospex Netherland - https://phenospex.com/products/plant-phenotyping/planteye-

f500-multispectral-3d-laser-scanner/?gclid=CjwKCAjw-YT1

BRAFEiwAd2WRtgmWQ35a0QpZBB57eVxotF5zV7NlmYMjPQi6

COEOoRR-zQk6MVT4GhoCkUQQAvD_BwE

Netherlands Plant

Eco-phenotyping Centre (NPEC)

Netherlands Wageningen University & Research

and Utrecht University

https://www.worldfoodinnovations.com/activities/facilities/

netherlands-plant-eco-phenotyping-centre

Czech Plant Phenotyping

Network (CZPPN)

Czech Republic Palacký University Olomouc http://www.czppn.com/

Phenome Networks Israel - https://phenome-networks.com/es/

(Continued)
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TABLE 5 | Continued

Phenotyping system Country University/Institute/Collaboration Weblink

Weighing, Imaging & Watering

Machines (WIWAM)

Belgium - https://www.wiwam.be/?gclid=CjwKCAjw-

YT1BRAFEiwAd2WRtqXp5W2FVAAYMBGYTqM_

oAonzekRfhxkX7ZmSK3MHWMBmjg4E-0aUxoC7DwQAvD_BwE

Tree Phenotyping Platform (TPP) Sweden Umea University https://www.upsc.se/tree-phenotyping-platform-at-upsc.html

PHENOME- French Plant

Phenotyping Network (FPPN)

France INRA https://www6.angers-nantes.inrae.fr/bia_eng/BIA-highlights/

Major-projects/PHENOME

which uses AI and ML approaches to determine several factors
like crop diseases, weeds identification, irrigation requirements,
pesticide control, crop yield, and quality prediction (Zhang et al.,
2017). There are numerous vital phenotypes that need to be
investigated in order to dig out mysterious plant functions,
or candidate phenotypes related to abiotic/biotic stresses and
several agronomic traits. These multigenic traits must be spilt
into constituent traits that can be observed, assessed, and
evaluated via high-throughput advanced tools (Roitsch et al.,
2019).

Tools like imaging, robotics, sensors, and software platforms
have revolutionized the crop phenomics. The most common
phenotyping platforms are unmanned aerial vehicles (UAVs),
such as satellites, drones, phenotyping towers, environmental
sensor networks, phenomobiles, autonomous ground vehicles,
air crafts, helicopters, zeppelins, and field scanning platforms,
which are currently used on a large scale (Liebisch et al., 2015).
Non-invasive sensor-based phenotyping tools included; laser
triangulation or red-green-blue (RGB) imaging system to
determine the phenotypes of size, color, morphology, structure,
texture, and growth of plant canopies. The hyperspectral and
multispectral sensors can be used to measure moisture content,
pigments composition, nitrogen content, and biophysical
parameters. The thermal sensors were used for canopy
temperature measurements to understand root physiology
phenotypes. Light detection and ranging (LIDAR) provide the
three-dimensional (3D) data for plant structural phenotypes
(Araus et al., 2018).

Similarly, the automated image-based high-throughput
phenotyping deals with the remote sensing and quantification
of a large number of plant traits by capturing and analyzing the
images at regular intervals with great accuracy (Jimenez-Berni
et al., 2018). Image-based phenotyping is mainly non-destructive,
enabling the desire traits to be assessed regularly during plant‘s
life (Bao et al., 2019). At present, 3D imaging technology is
getting attention in modern phenomics, including laser-based
scanning and image-based approaches, which can produce
3D models to extract volumetric and spatial plant traits
simultaneously (Paulus et al., 2014). For example, multiview
stereo (MVS) is an excellent and a cost-effective 3D phenotyping
platform for multiview imaging of plants at organ level (Hui
et al., 2018). Nguyen et al. (2015) designed a 3D imaging system
mounted with 10 digital high-resolution cameras supported by
an illumination source to increase the surface imaging of plants.
In another study, a 3D stereo-imaging unit was developed to
visualize the traits related to plant height and rape seedling leaf

area by installing two RGB cameras in an imaging chamber
having a bright illuminous system (Xiong et al., 2017).

The emergence of field-based phenotyping provides a way
forward to grab the full leverage of genetic gain and overcome
the hurdles in breeding programs as it is the end-phenotypic
expression of any genetic factor in relation to its environment
(Singh et al., 2016; Araus et al., 2018; Bao et al., 2019).
Field-based phenotyping platforms generally encompass ground
wheeled, UAV, robotic-assisted system, tractor-driven, and cable-
suspended phenotyping units, connected with high-performance
sensors and cameras (Roitsch et al., 2019). These tools have been
employed to estimate crop adaptability in natural conditions
and can determine the canopy photosynthesis rate, leaf area
index, plant height, performance, biomass, and disease symptoms
(Jimenez-Berni et al., 2018). Recently, a cost-effective field-based
high-throughput system MVS-Pheno is designed to monitor the
shoot size of maize and offers exceptional ability to study large
plant populations under diverse ecological zones (Wu et al.,
2020). Similarly, a robotic field-based phenotyping system, which
provide side-view stereo imaging, was developed to capture the
plant height of sorghum at regular intervals of time (Bao et al.,
2019).

Pitfalls in Plant Phenomics
In modern breeding, genotype-to-phenotype is a major
drawback, which hinders the advanced breeding programs
mediated by high-throughput genomic and phenomic tools
(Harfouche et al., 2019). The connection between genome-
environment-phenotype offers an excellent understanding to
study the high-throughput data indicating that the plant stress
mechanism is far more challenging due to multidimensional
impacts of environmental changes on phenotypic plasticity
and eventually widening of the genotype–phenotype gap (Gosa
et al., 2019). Currently, modern crop improvement platforms
heavily rely on advanced GAB and meticulous assessment of
plant traits to define experimental lines and map the desired
genes (Yang et al., 2020). The integration of genomic data with
high-throughput phenotypic data to extract biologically fruitful
information is a key to success in modern breeding (Harfouche
et al., 2019).

However, despite a recent progress in genomic tools, the
phenotyping technology did not grow at a competing rate to
integrate the phenotypic data with genomics. The failure to
capture phenotypic data effectively has a major pitfall, which
hampers crop improvement programs (Harfouche et al., 2019;
Wu et al., 2020; Yang et al., 2020). Due to the lack of phenomics
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data, our ability to measure phenotypic traits lags behind the
existing capability to draw genomic data. Hence, the bottleneck is
moving from genomics to phenomics (Großkinsky et al., 2018).
There are some critical bottlenecks in plant phenotyping like
the less efficient assessment of captured trait data that could
result in poor identification of candidate genes and to capture the
allelic variations for traits. Phenotyping of germplasm required a
control range of conditions in replicated trails, which was costly
and labor intensive (Junker et al., 2015). Accurate phenotyping in
natural environment is also a big pitfall in many crop breeding
schemes due to the highly heterogeneous natural conditions.
Additionally, traditional phenotyping technologies are laborious,
subjective, tedious, often causing damage to plants, and keeping
record end-point phenotype (Naik et al., 2017). Therefore, an
ample advancement in plant phenomics is needed for crop
improvement in the long run, which will improve screening
ability, fast-tracking of the genetic gains, accurate scanning of
plant health status, and filling the hole between genotypic and
phenotypic variations (Wu et al., 2020).

AI FOR AGRICULTURE

In this digital world, AI is the most expeditiously rising
technology in computer science and deals with the building
of intelligent machines that mimic the intelligence of human
mind (Harfouche et al., 2019). AI comprises ML algorithm
models like deep neural network (DNN), artificial neural network
(ANN), random forest (RF), support vector machine (SVM), and
advanced hi-tech technology such as internet of things (IoT).
AI is a mesmerizing hi-tech system with infinite applications in
agriculture and opens up new horizons for digital agriculture
(Montesinos-López et al., 2018). Systems are being designed
to help the agricultural scientists for a better understanding
of the plant behavior under diverse climatic conditions (Jeong
et al., 2016). Recently, Summit, the world’s most powerful
supercomputer has been launched, which has the capacity to
store 27,000 graphical processing units (GPUs) and unfolds an
exciting way forward. AI can be a game changer and is pivotal for
the next-generation crop revolution in the near future (Streich
et al., 2020).

Recently, next-generation AI has gained significant attention
in plant breeding to solve the problems related to abiotic/biotic
stresses, herbicide resistance, crop yield, and soil fitness by
developing the intelligent predictive models (Muraya et al.,
2017). The applications of AI in agricultural production can
be enormous because making AI-assisted spatial feature mining
approaches can offer an exceptional prospect to incorporate the
multi-omics results with high-throughput data sets captured via
modern phenomics tools (Bolger et al., 2019). Al needs efficient
and intelligent data mining that can assist breeders to accurately
predict the agronomic factors and can also forecast crop
performance under different conditions such as temperature,
humidity, and soil type (Großkinsky et al., 2018; Harfouche et al.,
2019).

Jiang et al. (2004) have developed more precise yield
predictingmodels and projected wheat yield usingmultiple linear
regression (MLR) and ANNmodels with satellite-assisted climate

and vegetation indices in North China. An UAV-mediated
phenotyping system aided by multispectral imaging and AI was
performed to estimate the phenotypic features on field crops
(Ampatzidis and Partel, 2019). Hemming et al. (2019) carried out
AI to successfully control a greenhouse as compared to manually
controlled greenhouse for vegetable production.

ML and Big Data Analytics
Machine learning is an emerging and a promising application
of AI, which can be defined as the state-of-the-art computer-
based systems that make the machine more intelligent to learn
automatically and improve its ability without being stringently
computed (Singh et al., 2016). Advanced ML algorithms have
revealed a great potential in making highly precise and efficient
pipelines for data analysis to enhance the breeding performance
and ultimately crop productivity (Singh et al., 2018). For an
accurate trait detection, several ML approaches have been
employed, which can be divided into supervised/unsupervised
and generative/discriminative learning model (Ghosal et al.,
2018). In addition, many easily available programming languages
or packages like MATLAB, ImageJ, and Python have been made
to support or execute computer-based image pre-processing
(Schindelin et al., 2012). ML tools can be applied to breakdown
the multimodel data and identify the plant stresses and examine
plant-pathogen association and interaction of other stresses with
plants (Singh et al., 2018). One of the main benefits of ML tools
for plant biologists is to get a chance to discover data sets in order
to explore the patterns by analyzing the multitrait simultaneously
(Shakoor et al., 2017).

Recently, an economical and a high resolving power image-
based phenotyping system coupled with ML was designed to
capture the root images of hundreds of plants to study the
root system architecture traits in soybean (Falk et al., 2020).
Likewise, root phenotyping of mature plants was performed via
ML algorithms (RFs and SVM) to screen the most distinguishing
root traits (Zhao et al., 2016). Additionally, sensor tools with
ML algorithms can be applied to forecast crop yield under field
conditions (Pantazi et al., 2016) and the plant growth trends for
future predictions (Lee et al., 2018). An accurate ML model was
developed to predict the photosynthesis activity in crops, and
the result showed that the spectra-based phenotyping technique
has the ability to improve photosynthesis capacity (Heckmann
et al., 2017). ML has been employed for the early detection
of various plant diseases. For example, ANNs and RFs tools
were used to envisage the risk assessment of wheat Stagonospora
nodorum blotch (Mehra et al., 2016). A realtime pipeline for
phenotyping using ML was established to estimate the severity
of abiotic and biotic stress in soybean. This system can be assisted
to enhance the genetic gains by allowing the automatic stress trait
identification and stress scouting applications (Naik et al., 2017).

ML-Assisted GS
Genomic selection enables the quick screening of elite germplasm
and expedites the crop breeding cycle (Crossa et al., 2017).
Currently, GS depends on innovations in ML tools and retrieval
of large genotyping data sets related to agronomically important
phenotypic traits for genomic prediction (Tong and Nikoloski,
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2021). So, GS models are the core elements of ML that intend to
design and examine the model performance through an array of
training data. In GS models, the genotyping data such as SNPs
are the input, and the predicted phenotypic trait is the final
output. The leverage of exploiting ML, especially DL to analyze
the GS is that it may obtain highly complex interactions and
deliver greater predictability (González-Camacho et al., 2012).
There are several examples of DL application for GS in crop
improvement programs because CNNs are very accurate in
predicting phenotypic traits (Pérez-Enciso and Zingaretti, 2019).

Deep learning techniques have been used in a multitrait
situation, for example, wheat population exhibited that the
prediction of multitrait DL is the same as a single-trait model, but
somewhat superior when analyzing in relation to univariate DL
models (Montesinos-López et al., 2019a,b). González-Camacho
et al. (2016) demonstrated that the probabilistic neural network
(PNN) is a promising strategy for GS in crop breeding by testing
the wheat and maize population to predict the genotypes related
to good or bad groups. The results showed that PNN models
are more efficient than multilayer perceptron (MLP) models. Liu
et al. (2019) study soybean to predict five traits employing CNN
models and revealed better performance. A CNN-based DeepGS
method was developed to study the grain-related yield in wheat
population (Ma et al., 2018).

SPEED BREEDING

The world is attracted by the most fascinating technology of
speed breeding. The scientist from the University of Queensland
inspired by the NASA to grow the wheat plants in space under
artificial lights. Watson et al. (2018) successfully developed the
protocols for different plant species under a speed breeding
system. Speed breeding is a powerful strategy to shorten the
crop generation time and expedite the breeding programs for
crop improvement (Watson et al., 2018). Speed breeding mimics
daily dawn and dusk, and plants are subjected to an extended
photoperiod of about 22 h by using a combination of different
light sources. It provides an extended day length with optimal
light intensity coupled with controlled temperature to increase
the photosynthesis activity, which results in quick flowering and
early seed development to reduce generation time (Ghosh et al.,
2018).

Speed breeding is revolutionizing the agriculture and can
be executed to accelerate the crop breeding activities such
as crossing, back crossing, rapid gene identification, mapping
population, pyramiding of traits, and developing transgenic
pipelines (Hickey et al., 2019). In conventional breeding, only 1–
2 generations per season of any crop can be achieved but in speed
breeding up to four generations of B. napus and six generations
of Hordeum vulgare, Triticum aestivum, Pisum sativum, Cicer
arietinum, and B. distachyon (Watson et al., 2018). Furthermore,
it can provide a robust, an efficient, and an economical platform
to carry out the crop improvement project in an integrated
way from genomics to phenomics. It may include the candidate
genes discovery through GAB approaches such as pan-genome
assembly, GS, and GBS to multiplex gene editing, or metabolic
pathway editing for desired traits followed by high-throughput

phenotyping to visualize the results. The integration of speed
breeding with next-generation metabolomic tools can also be
used for a rapid risk assessment of gene-edited crops in multiple
generations in a robust manner (Razzaq et al., 2019a). Hence,
speed breeding technology will offer an exciting way forward for
crop improvement by integrating it with next-generation OMICS
tools to accelerate the crop breeding programs.

OUTLOOK

Human population explosion and adverse climatic changes are
posing extreme challenges for promising global food security.
Next-generation breeding technologies offer a robust platform to
develop high yielding and climate-resilient crops. GAB has made
a significant impact on plant research, and ground-breaking
pan-genome techniques permit to capture the full landscape
of genetic variations. Hence, we are expecting a genomic
data explosion as third-generation sequencing combined with
the pan-genome concept will possibly construct large gene
repertoires of landraces, cultivated plants, and CWR. The
development of super-pangenomes, a combination of different
pan-genomes, depicts the whole genetic profile of any specific
genus and will help for pangenome-led haplotype breeding for
crop improvement. The assembly of plant pan-omes will allow to
study the genetic variation in single cell level and will provide
huge data sets from genome to phenome for a quick and an
accurate phenotypic identification. The integration of pan-omes
with speed breeding and genome editing will accelerate the
trait-specific breeding. Applications of AI such as DL in super
pangenomes construction will help to retrieve huge data sets. The
potential of DL in combining the sequencing data will enable to
construct the models for GS and trait prediction.

Next-generation CRISPR systems, like de novo domestication,
tissue-specific editing, prime editing, and fine tuning of gene
expression, are now giving plant scientists an unprecedented
prospect to manipulate the plant genomes with more accuracy
and precision. The potential of an CRISPR/Cas system to edit
the plant organelles like chloroplast and mitochondria is yet to
be explored because of the unavailability of delivery vectors that
can enter into these organelles. In the near future, chloroplast
and mitochondria can be targeted by transferring multiple
gRNAs to achieve cell-based editing. Also, some breakthroughs
like the delivery of CRISPR/Cas machinery being the biggest
drawback in genome editing are still needed. The RNP or
carbon nanotubes- (CNTs-) based delivery system is transferred
directly into inflorescence tissues, pollen grains, and apical
meristems, or it is sprayed to already grown plant to get express
edits in the field or under speed breeding chambers (Hickey
et al., 2019). Performing the genome editing under the speed
breeding condition will provide a controlled system to speed up
the crop breeding cycles with a minimum cost and will be a
technological breakthrough to get non-transgenic plants without
tissue culturing. It will tag as non-GMOs with more public
acceptance and avoid the strict regulatory affairs.

The exciting phenotyping platforms inspired by AI, like
robotics, 3D imaging sensors, and their integration with
other OMICS date, are taking plant science to new heights.
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FIGURE 7 | Integration of next-generation breeding pipelines for crop improvement.

Withmultiscale, multidimensional, andmultidomain phenomics
knowledge, we promptly require the next-generation approaches
of swarm intelligence, hybrid intelligence, AI, data fusion, andDL
to establish big data handling methods.

To conclude, a powerful unified strategy is needed to tackle
the current challenges by integrating the multidisciplinary
next-generation strategies and scientists to work under
one umbrella and carry out mega projects to boost up
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the crop production in a rapid way as proposed in
Figure 7.

The multidisciplinary tools from genomics to phenomics
should be carried out in a well-integrated manner to overcome
the current hurdles in plant research. By employing the
integrated next-generation approaches, future crop breeding can
attain irreversible success to ensure food security and will fulfill
the food demands of rapidly increasing population in decades
to come.
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