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Cotton is a significant economic crop. It is vulnerable to aphids (Aphis gossypii Glovers)
during the growth period. Rapid and early detection has become an important means to
deal with aphids in cotton. In this study, the visible/near-infrared (Vis/NIR) hyperspectral
imaging system (376–1044 nm) and machine learning methods were used to identify
aphid infection in cotton leaves. Both tall and short cotton plants (Lumianyan 24) were
inoculated with aphids, and the corresponding plants without aphids were used as
control. The hyperspectral images (HSIs) were acquired five times at an interval of
5 days. The healthy and infected leaves were used to establish the datasets, with each
leaf as a sample. The spectra and RGB images of each cotton leaf were extracted from
the hyperspectral images for one-dimensional (1D) and two-dimensional (2D) analysis.
The hyperspectral images of each leaf were used for three-dimensional (3D) analysis.
Convolutional Neural Networks (CNNs) were used for identification and compared with
conventional machine learning methods. For the extracted spectra, 1D CNN had a fine
classification performance, and the classification accuracy could reach 98%. For RGB
images, 2D CNN had a better classification performance. For HSIs, 3D CNN performed
moderately and performed better than 2D CNN. On the whole, CNN performed relatively
better than conventional machine learning methods. In the process of 1D, 2D, and
3D CNN visualization, the important wavelength ranges were analyzed in 1D and 3D
CNN visualization, and the importance of wavelength ranges and spatial regions were
analyzed in 2D and 3D CNN visualization. The overall results in this study illustrated
the feasibility of using hyperspectral imaging combined with multi-dimensional CNN to
detect aphid infection in cotton leaves, providing a new alternative for pest infection
detection in plants.

Keywords: Aphis gossypii Glover, machine learning, aphid infection, hyperspectral imaging, convolutional neural
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INTRODUCTION

Cotton is rich in cellulose and is the largest source of natural
textiles (Ma et al., 2016). It has important applications in the
medical field and an important position in the global economy
(Rather et al., 2017). However, cotton plants are vulnerable to
pests during the 6-month growth period (Wilson et al., 2018).
Aphids (Aphis gossypii Glovers) are one of the most invasive
pests in cotton plants (Wang et al., 2018). Aphids can reproduce
rapidly within a few days, hiding in the lower surface of leaves
and the core of young leaves. The small size and fast reproduction
of aphids are the main obstacles in the control process of cotton
pests. Besides, the back color of the juvenile aphids is similar
to the plant color, which is not easy to be distinguished. The
mature aphids have migratory and strong mobility. Once small-
scale aphid pests occur in the cultivation area, the scale of the
pests is likely to spread rapidly in a short time, and the cotton
yield and quality will be reduced accordingly (Chen et al., 2018a).

Aphids are not only common in cotton crops, but also in
traditional crops (Chen et al., 2019; Szczepaniec, 2018; Thorpe
et al., 2016). Armstrong et al. (2017) studied sugarcane aphids and
found suitable resistance genes in sugarcane. Hough et al. (2017)
quantified the effect of temperature on the growth of soybean
aphid populations. Kafeshani et al. (2018) used Taylor’s power
law and Iwao’s patchiness to evaluate the spatial distribution of
aphids on two citrus species (Satsuma mandarin and Thomson
navel). Related scholars studied aphids from the perspectives
of physiology and biochemistry, aiming to reduce the impact
of aphids on crops. Combined with the experience of the
Australian cotton industry, the excessive use of pesticides in the
early stages would lead to high resistance in the offspring of
aphids (Herron and Wilson, 2017). Therefore, quickly identifying
and obtaining information on aphids, formulating efficient
management strategies, and reducing the frequency of pesticide
use are vital steps to increase crop yields and reduce aphids’
resistance to pesticides.

At present, the classification of pests and diseases based
on imaging technology has been widely used. This technology
is mainly based on pest morphology, plant texture, and
morphological changes. Wang et al. (2017b) used the convolution
neural network (CNN) to classify RGB images of crop pests
containing 82 common pest types in a complex farmland
background. Sunoj et al. (2017) used three cameras (digital
single-lens reflex camera, consumer-grade digital camera, and
smartphone) to take the RGB images of the front side of the
leaves under infection by soybean aphids, and classified aphids
according to the shape parameters. Deng et al. (2018) extracted
features from RGB images of pests in complex environments,
and input the features into Support Vector Machine (SVM)
for recognition.

Spectroscopic technologies have been used as effective
alternatives for pest and pest infection detection. Some scholars
have used spectroscopy to study the degree of damage of
insect pests to plants, and identify the pest infection. Moscetti
et al. (2015) used near-infrared (NIR) spectroscopy to detect
and remove olive fruits damaged by fruit flies. Canário et al.
(2017) used spectral technology to identify tomato plants in the

early stage of infection by whitefly. Basati et al. (2018) used
visible/near-infrared (Vis/NIR) spectroscopy to detect wheat
samples infected by pests.

Hyperspectral imaging technology combines imaging and
spectroscopy techniques to detect the two-dimensional (2D)
geometric space and one-dimensional (1D) spectral information
of the target, and can quickly and non-destructively analyze the
research object (Gao et al., 2019). Hyperspectral imaging has
been widely used in plant science. It can be used to evaluate
important parameters of plant health, such as nutrients, plant
biomass, biological stress, and abiotic stress (Thomas et al.,
2018). Plant diseases and pest detection is a significant research
field of hyperspectral imaging. Previous studies have proved that
hyperspectral imaging can identify the outbreak and dynamics
of plant diseases and pests (Moghadam et al., 2017; Huang
et al., 2018). In the application of hyperspectral imaging in pest
detection as a branch of plant science research direction, the
current main research includes pest identification (Liu et al.,
2016) and pest infection degree classification (Lu and Ariana,
2013). Identification and segmentation of insect infected areas
are one of the vital steps in pest detection. Related scholars
have already identified and segmented infected areas (Tian et al.,
2015). Hyperspectral images (HSIs) can provide a huge number
of features, including spectral features and spatial features.
As high-dimensional data, HSIs have a large amount of data
information. How to mine valuable information has become a
difficult problem.

Deep learning (DL) is currently a more concerning data
processing method, and it has a wide range of applications
in hyperspectral image processing (Signoroni et al., 2019). DL
methods combined with spectral features of HSIs have been
widely used in plant science, such as plant disease classification
(Han and Gao, 2019). In addition, it is a new trend to
select key wavelength images from HSIs and extract spatial
features for disease segmentation (Feng et al., 2020). Although
the performance of DL is better than conventional machine
learning methods, DL methods based on spectral features or
spatial features use less valuable information, ignoring the
spatial features, or spectral features of HSIs. There is still room
for improvement in the performance of DL. Previous studies
have proved that the performance of DL methods based on
spectral-spatial features is fine. A conventional method is to
fuse separately extracted spectral features and spatial features
(Zhao and Du, 2016; Wang et al., 2017a). Another method is
to use three-dimensional (3D) CNN, whose 3D convolution
kernel directly combines local spectral-spatial features (Wang
et al., 2019a). At present, there are various DL architectures that
combine the spectral-spatial features of HSIs, such as Resnet and
DenseNet (Paoletti et al., 2019; Zhong et al., 2018).

Although DL can handle high-dimensional data, redundant
features in HSIs are a huge challenge. HSIs contain much
information irrelevant to the research target, which increases
the computational burden, reduces the analysis efficiency,
and interferes with the analysis results. Thus, dimensionality
reduction (band selection and feature extraction) is a critical
measure for the application of HSIs in various fields.
Dimensionality reduction can be divided into linear and
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non-linear methods. Conventional linear methods include
principal component analysis and factor analysis, which can
extract features and select bands through correlation coefficients.
The main non-linear dimensionality reduction methods are
Isomap and Auto-Encoder, which can extract features (Kozal
et al., 2013). DL, as a non-linear dimensionality reduction
method, its convolutional layer can transform HSIs into low-
dimensional features (Zhang et al., 2020a), and the constructed
DL architectures (e.g., attention-based CNN) can select the
optimal band subset (Cai et al., 2020; Lorenzo et al., 2020).
Although DL can achieve better results in many cases, it is
meaningful to identify the part of the input data that has a
greater contribution to the research target due to a large amount
of input data, so as to reduce the input of useless information
(or information with low contribution) in the future research.
DL visualization, which can interpret research results, is an
effective way to find important features of research goals
(Yosinski et al., 2015; Zhou et al., 2016). The saliency map is a
DL visualization method, and its principle is to reflect the main
contribution area of the input data through the gradient of the
backpropagation (Simonyan et al., 2013). 2D CNN based on
DL and DL visualization methods have made rapid progress in
plant phenotypic stress, involving plant diseases and pests (Singh
et al., 2018). Hyperspectral imaging, which can perform 1D
analysis, 2D analysis, and 3D analysis, can provide spectral (1D)
information, spatial (2D) information, and spectral-spatial (3D)
information. At present, 1D CNN combined with hyperspectral
imaging can be used for plant disease detection (Han and Gao,
2019). 3D CNN has been partially researched in plant disease
detection (Nagasubramanian et al., 2019). However, there are
few studies using 1D, 2D, and 3D CNN for the same plant using
hyperspectral imaging, especially pest detection. Meanwhile, the
use of DL visualization to find high contribution regions of input
data is usually ignored.

This study aimed to explore the application of multi-
dimensional CNN in aphid infection identification. In this study,
hyperspectral imaging and DL were used to diagnose leaves in
cotton plants infected by aphids (A. gossypii Glovers). Using
HSIs containing a single leaf, the spectra, and RGB images
were extracted. CNN models using 1D analysis in extracted
spectra, 2D analysis in extracted RGB images, and 3D analysis
in hyperspectral images were established, and compared with
conventional machine learning methods (Logistic Regression,
LR; Support Vector Machine, SVM; Nearest Neighbors, NN;
Decision Tree, DT). At the same time, the results of 1D, 2D,
and 3D CNN were visualized. Important wavelength ranges
were discovered through the 1D and 3D CNN visualization, and
important infection regions were discovered through the 2D and
3D CNN visualization.

MATERIALS AND METHODS

Sample Preparation
Cotton plants were cultivated in greenhouses, which in the North
Second District of Shihezi University, Shihezi City, Xinjiang
Uygur Autonomous Region, China (86◦3′34′′ E, 44◦18′58′′ N).

The cotton plants (Lumianyan 24) were planted on October 15,
2019. During the cultivation process until the seedling stage of
the cotton plant, cotton plants were cultivated under two different
light intensities and the same medium. It resulted in 20 high
and 20 short cotton plants. Half of the cotton plants of each
morphology type were inoculated with aphids, and the other half
of the cotton plants without aphids were used as the control
group. In the plant cultivation process, the leaves in cotton plants
would not curl up and deform under the infection of aphids,
which was suitable for shooting. At the same time, the blade size
of leaves was similar, which was conducive to modeling. During
the plant cultivation, the highest temperature of the culture
environment was 28.5◦C, the lowest temperature was 15.5◦C,
and the average temperature was 20.85◦C. The highest relative
humidity was 56%, the lowest relative humidity was 32%, and the
average relative humidity was 44.475%.

As shown in Figure 1, RGB images taken from the overhead
view of infected cotton plants and healthy cotton plants are
shown. Some areas of cotton leaves infected by aphids are white.
The reason is that the area is covered with aphid secretions, which
is a carbohydrate that reflects most of the light.

Hyperspectral Image Acquisition and
Preprocessing
The research object of this study was healthy leaves and infected
leaves and the HSIs were taken from December 5, 2019 to
December 25, 2019, with an interval of 5 days. For each sampling
and shooting time, cotton plants were destructively sampled, and
the front of the leaves was shooted. To reduce the interference of
biochemical factors such as the open state of leaves, the shooting
time was fixed at around 14:00 (UTC/GMT+ 08:00).

In this study, the Vis/NIR hyperspectral imaging systems were
composed of four modules, including an imaging module, an
illumination module, a lifting module, and a software module.
The imaging module was SOC 710VP camera (Surface Optics
Corporation, San Diego, CA, United States). The camera had a
push broom and dual CCD detectors. When the sample was taken
at a fixed position, the SOC 710VP hyperspectral camera used
the internal translation push-broom mechanism to scan samples.
The HSI size was 128 wavebands × 520 pixels × 696 pixels, each
pixel contained the full spectrum in the range of 376–1044 nm
with the spectral resolution of 5 nm. The lighting module was
composed of two halogen lamps with a power source of 75 W.
The lifting platform module placed the shooting object, and the
imaging module could fully capture the shooting object by lifting.
The software module was used to control HSI acquisition. The
shooting integration time of the hyperspectral camera was 25 ms,
the aperture value was F1.4, and the shooting height was 86 cm.
During the HSI acquisition process, the imaging conditions and
system parameters were kept unchanged. After HSI acquisition,
the original HSIs were calibrated to reflectance images according
to Equation 1.

Ic =
Ir

2Ig
(1)
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FIGURE 1 | (A) An image taken from the overhead view of healthy cotton plants. (B) An image taken from the overhead view of cotton plants infected by Aphis
gossypii Glovers.

Where Ic is the reflectance image, Ir is the original image,
and Ig is the gray (combined with 50% black and 50% white)
reference image.

The Savitzky–Golay smoothing filter (the kernel size was
5 × 5 × 5, the polynomial order was 3, the filter calculated the
filtered value at the central node of the kernel) was used to reduce
the random noise on the reflectance HSIs. The 3D data cube of a
cotton leaf HSI is shown in Figure 2.

Data Set Construction
In this study, a total of 256 HSIs of infected leaves and
healthy leaves were collected. Considering that wavelengths
under 450 nm and over 1000 nm have more noise, as a limitation
of the sensor (Malenovsky et al., 2006). Only the wavelengths in
the range of 461–988 nm were studied.

The software provided by SOC was used to synthesize RGB
images at wavelengths of 461, 548, and 698 nm in HSIs.

In HSIs, the area containing a single leaf was regarded
as a region of interest (ROI). The pixel-wise spectra (461–
988 nm) in the ROI were extracted and averaged to represent
the sample. Due to the average spectra contains redundant and
collinear information, and the use of the first derivative can
suppress background information (Jin and Wang, 2016). The first
derivative spectra of the average spectra were used.

Data Analysis Methods
Conventional Machine Learning Methods
Logistic regression (LR) is a generalized linear regression analysis
model (Stoltzfus, 2011). LR uses the Logistic Sigmoid function
to convert the output into a probability value to predict the label.
The basic LR model deals with binary classification problems. For
the LR model, the regularization parameter C is used to solve the
model fitting problem. In this study, the optimization range of C
was in [10−5–105].

Support Vector Machine (SVM) is a common classification
algorithm used for supervised learning (Jian et al., 2016). The
principle of SVM is to find the hyperplane with the largest

interval in the feature space. SVMs are currently divided into
linear SVM, polynomial SVM, radial basis function (RBF) SVM,
and sigmoid SVM. The SVM using the “linear” kernel function is
essentially a linear classifier, similar to LR. To compare with LR,
the kernel optimization range was in (“polynomial,” “sigmoid,”
“RBF”) in SVM. For the SVM model, the regularization
parameter C and the kernel coefficient γ are used to solve the
model fitting problem. In this study, the optimization range of
C and γ were all in [10−5–105].

Nearest Neighbors (NN) is a widely used pattern recognition
method (Zhang et al., 2018). The principle of NN is to find
training samples that meet the first K shortest distances of
distance test samples and predict the label based on these
training samples. In this study, the optimization range of
K was in [1, 30].

Decision Tree (DT) is a supervised learning method for
classification (Wang et al., 2019b). Its purpose is to create a model
that can learn simple decision rules from data features. DT uses
the rules to predict the label of a test sample. DT learns data
through if-then-else decision rules and estimates the label of the
predicted sample. The deeper the decision tree, the more complex
the decision rules and the better the fit to the training samples.
For the DT model, the parameter max_depth is used to limit
the depth of the tree. In this study, the optimization range of
max_depth was in [1, 30].

Convolutional Neural Network
Convolutional Neural Network (CNN) is a neural network based
on convolutional layers. The CNN model usually consists of
five parts as input, convolution, pooling, dense connection, and
output. There are differences in these five parts of the current
mainstream CNN models (Khan et al., 2019). Since Resnet
solves the problem of network degradation in DL, it becomes
the backbone network for subsequent research (Sanchez-Matilla
et al., 2020; Veit and Belongie, 2020; Zhang et al., 2020b). In this
study, Resnet-18 was used as the backbone network to construct
CNNs (He et al., 2016).
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FIGURE 2 | The three-dimensional data cube of a cotton leaf hyperspectral image.

For spectra, the network layers of Resnet-18 were adjusted.
The process of sliding windows of each network layer for 2D
analysis was adjusted to the process of sliding windows for
1D analysis. For RGB images, Resnet-18 was directly used.
For HSIs, the classification model suitable for 3D analysis was
designed. The residual blocks were used in the model. The
residual block allowed the training of the deep network to
proceed smoothly. The main reason was that the stack of the
residual block could effectively return the gradient, and the
skip connection was added based on the stack. Since HSIs had
three dimensions (depth, height, and width), and the amount
of data was large, the network structure based on 3D CNN
should not be complicated. Otherwise, there would be insufficient
computing power.

In this study, 3D CNN consisted of two convolutional layers,
two batch normalization layers, two max-pooling layers, two
residual blocks, a global average pooling layer, and a dense layer,
followed by a Softmax layer. Since the size of a larger convolution
kernel will improve the performance of the network, smaller size
of the convolution kernel will increase the convergence speed of
the network (Cai et al., 2018; Tan and Le, 2019). Considering the
convolution kernel size as a compromise, the convolution kernel
with the size of 9 × 3 × 3 was used as the first convolutional
layer, the convolution kernel with the size of 3 × 1 × 1 was used
as the second convolutional layer, and the number of channels
was 5 and 3 in turn. The Rectified Linear Unit (ReLU) was
used as the activation function of the convolution output. The
size of max-pooling layers was 3. The 1 × 1 × 1 convolutional
layer was used in the first residual block and not used in the
second residual block. The number of channels in two residual
blocks was 3 and 5 in turn. 3D CNN architecture is shown
in Figure 3.

The CNN models could be used for data dimensionality
reduction (Song et al., 2019). The CNN models non-linearly map
high-dimensional data to low-dimensional space. In this study,
the RGB images and hyperspectral images reduced by the CNN
models were used for modeling based on conventional machine

learning methods. The global pooling layer features in the CNN
models were used in the modeling process of conventional
machine learning methods.

Saliency Map of Convolutional Neural Network
The saliency map is a CNN visualization method that can reflect
the impact of each data element on the classification results.
In this study, the saliency map visualization method proposed
by Simonyan et al. (2013) was used. When the sample label
was correctly predicted, each element in the data would have
a corresponding contribution value, and the magnitude of the
contribution value reflected the importance of the elements.
The contribution value was visualized by saliency maps, which
could effectively observe the important regions of the sample
identified by CNN.

Given a data D0 of category c in the test set, after being
classified by the CNN model, the score value Sc will be obtained.
If the predicted category is consistent with the true category, the
weight can be calculated. The approximate calculation process is
carried out according to Equation 2.

w = abs
(

∂Sc
∂D
|D0

)
(2)

Where w is the absolute value of the derivative of score Sc
concerning data D0, and w is valid only when the predicted
category is consistent with the true category.

In the case of a HSI, the wavelength variable v of the pixel (i, j)
of the image I corresponds to the w element whose index is h(i, j,
v). To obtain the contribution value of a single category for each
pixel (i, j), the maximum value M of w on all wavelength variables
is used, as shown in Equation 3.

M = maxv
(
wh(i,j,v)

)
(3)

In this study, another interpretation method was visualized for
the saliency map. As shown in Equation 4, the cumulative
contribution C of wavelengths in the test set is calculated, and
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FIGURE 3 | 3D CNN architecture.

the L1-norm is used to normalize by column.

C =

∑
j ∈ (1, 2, . . . S)Mj

||
∑

j ∈ (1, 2, . . . S)Mj||1
(4)

Among them, Mj is the saliency map of the jth sample, and the
number of samples is S.

To compare with the spectral wavelengths and observe
the wavelengths in the hyperspectral images with the high
contribution rate, the L1-norm visualization method proposed by
Nagasubramanian et al. (2019) was used in this study.

Model Evaluation
To better evaluate the performance and stability of the models,
the training set, validation set, and test set of HSIs in each
shooting period were divided according to the ratio of 3:1:1.
The division of spectral data set, RGB image data set, and

TABLE 1 | The division of data set.

Data Set Type Training Validation Test

First derivative spectra 75/78a 26/25 24/28

RGB images 75/78 26/25 24/28

Hyperspectral images 75/78 26/25 24/28

aThe number of category samples is expressed as: the number of healthy
samples/number of infected samples.

HSI data set is shown in Table 1. The first derivative spectra,
RGB images, and HSIs of all samples had a one-to-one
correspondence in each set. In each set, the number of samples
of each class was almost equal, with slight differences due to
the number of leaves in different cotton plants. Due to the
small amount of data in different periods, it was impossible
to explain the best period to detect infection. However, the
number of healthy samples and infected samples in general
could be used to model and explore important wavelengths
and regions.

Batch normalization could speed up model convergence and
shorten the model building time (Ioffe and Szegedy, 2015). In
this study, batch normalization was used for all sample sets
before training.

Bayesian optimization algorithm (BOA) was used in the
parameter optimization process of conventional machine
learning methods (Pelikan and Goldberg, 1999). The
classification accuracy was used to evaluate the performances
of each model, which was calculated as the ratio of the number
of correctly classified samples to the total number of samples.
The training set was learned by the models, and the model
parameters were optimized by BOA 200 times. The models with
the highest prediction accuracy in the validation set were saved
and evaluated in the test set.

In this study, for CNN models, the batch size was 10 and
the epoch was 200 while training the models, the optimization
algorithm was set to SGD, the initial learning rate was set to 0.1,
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FIGURE 4 | (A) Vis/NIR average spectra (461–988 nm) and standard deviation for healthy leaves and infected leaves. (B) First derivative spectra of average spectra.

and the learning rate was gradually adjusted to 0.01 during the
training process. The CNN models were trained from scratch
and initialized using the Xavier method. During the training
process, the CNN models with the best fit in the validation set,
and the lowest loss value were selected, and the test set was used
to evaluate the models.

Software and Hardware
In this study, Python scripting language (version 3.7.6, 64 bit)
was used for numerical calculations. Conventional machine
learning methods were implemented on the python library
package scikit-learn (version 0.23.1). The CNN models were
built on the MXNet (version 1.5.0) framework (Amazon,

Seattle, WA, United States). All data analysis procedures
were implemented on a computer with 16 GB of RAM,
the NVIDIA GEFORCE GTX 1080Ti GPU, and the Intel
Core i7-9700K CPU.

RESULTS

Spectral Profiles
In this study, the first derivative spectra were used to build
the models. Figure 4A shows the Vis/NIR average spectra
(461–988 nm) and standard deviation for each class of leaves.
Figure 4B shows the first derivative spectra of average spectra.
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For the Vis/NIR average spectra, the reflectance of healthy
leaves was slightly higher. There was a large overlap in
the standard deviation areas of the reflectance of healthy
leaves and infected leaves. For the first derivative spectra of
average spectra, there was no difference between healthy leaves
and infected leaves, except around 720 nm. In general, the
spectra of different types of samples cannot provide clear
enough discrimination. Therefore, other classification methods
should be considered.

Classification Models
For conventional machine learning models, the features of
the global pooling layer reduced by CNN models were used
for modeling and evaluation. The CNN models used for
dimensionality reduction were trained from scratch and could
completely predict the categories of all samples. For CNN models,
the images were resized to reduce the influence of sample shape
on DL. The resized RGB image size was 160 pixels × 160
pixels and the resized HSI size was 100 wavebands (461–
988 nm) × 160 pixels × 160 pixels. The classification results of
each model are shown in Table 2. The classification results of
some other conventional classification methods are reflected in
Supplementary Table 1.

For the first derivative spectra, the CNN model performed
best, with an accuracy rate of 98.08% in the test set. For RGB
images, LR and CNN model performed best, with an accuracy
rate of 84.62% in the test set. For HSIs, the CNN model performs
best, with an accuracy rate of 88.46% in the test set.

For the first derivative spectra, RGB images, and HSIs, CNN
performed best, and LR, SVM, and DT model perform worse in
turn, and the worst was the NN model.

For the performance of the same model in different datasets,
most models performed best in the first derivative spectra,
followed by HSIs, and the worst performance in RGB images.

Visualization of Convolutional Neural
Network
In this study, the test set used for 1D CNN was visualized by
Equations 2 and 3. The samples of healthy leaves and infected
leaves were normalized so that the sum of the wavelength
contribution value of each sample was 1. The normalized
results were displayed visually. As shown in Figure 5, the
row coordinates represent the wavelength, and the ordinate
represents the sample.

For all the samples in the test set, the wavelength with the
largest contribution was concentrated in the NIR wavelength
range of 750–950 nm, followed by the Vis wavelength
range of 460–660 nm.

The saliency maps of healthy leaves and infected leaves were
visually explained in Equation 4. The visualization results are
shown in Figure 6.

In Figure 6, the cumulative contribution value is very low in
the red-side spectral range of 660–750 nm. The most contributory
wavelength ranges were concentrated in 750–950 nm, followed
by 460–660 nm, which also explains the important wavelength
ranges of the saliency maps. The 460–600 nm wavelengths and

750–950 nm wavelengths of the spectral data set were respectively
intercepted, and 1D CNN was used for re-modeling. As a
result, in the performance of the test set, the accuracy of 460–
600 nm wavelengths was 71.15%, and the accuracy of 750–950 nm
wavelengths was 90.38%. The results confirmed the effectiveness
of the visualization method.

In this study, the RGB images and the HSIs were selected
from the test set of healthy leaves and infected leaves (one-to-
one correspondence between RGB image and HSI samples). As
shown in Figure 7, the saliency maps are visualized on the test
set, which includes the samples of two classes in five periods, and
the labels of all samples are correctly predicted.

Cotton leaves infected by aphids will attach aphid secretions.
Aphid secretion is a carbohydrate product secreted by A. gossypii
Glovers, which has a high reflection effect. The secretion of
aphids causes the leaves to turn white. At the same time, the
texture of real leaves under the infection of aphids is changed.
It could be seen from the RGB images that part of the infected
leaves was white.

In the saliency map of the 2D CNN, it was found that the pixel
area with the largest contribution value was concentrated on the
aphids’ secretions (leaf whiteness) and leaf textures in infected
leaves. 2D CNN looked for the presence of these areas that
affect classification in healthy leaves. And there was no whitening
in some areas of healthy leaves caused by aphid secretions.
Therefore, in the saliency map of 2D CNN, there were obviously
few areas with larger contribution values, and the leaf textures
were mainly displayed in healthy leaves.

In 3D CNN visualization, the pixel area with the largest
contribution values was always concentrated near the leaf
veins and leaf edges.

By using the method proposed by Nagasubramanian et al.
(2019), the visualization result of the wavelength contribution
rate of HSIs is shown in Figure 8.

The results showed that the 3D CNN model was not sensitive
to the 750–950 nm wavelengths in HSIs, and had excellent
sensitivity to the 460–600 nm wavelengths. In HSIs, the pixel area
with the largest contribution rate depends on the 460–600 nm
wavelengths. The 460–600 nm wavelengths and 750–950 nm
wavelengths of the HSI set were respectively intercepted, and 3D
CNN was used for re-modeling. As a result, in the performance of
the test set, the accuracy of 460–600 nm wavelengths was 88.46%.
And the accuracy of 750–950 nm wavelengths was 53.85%,
which was similar to blind guessing. The results confirmed
the effectiveness of the visualization method. It could also
indicate that the 3D CNN model paid attention to the area
around the leaf veins and the leaf edges in the 460–600 nm
wavelengths of the HSIs.

DISCUSSION

Aphids not only appear on cotton crops but also often appear
on other traditional crops. Aphids affect the growth and
development of crops, which in turn affect the quality and yield
of agricultural products grown on crops. From a physiological
point of view, the selection of aphid-resistant crops is one of
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TABLE 2 | Classification accuracy of the conventional machine learning methods and convolutional neural network (CNN).

Data set type Methods Category values Training Validation Test

0 1 Accuracy 0 1 Accuracy 0 1 Accuracy (%)

First derivative spectra LR 0a 71 4 22 4 21 3

1 7 71 4 21 4 24

Total 92.81 84.31 86.54

SVM 0 74 1 22 4 15 9

1 2 76 2 23 5 23

Total 98.04 88.24 73.08

NN 0 75 0 17 9 14 10

1 0 78 7 18 6 22

Total 100.00 68.63 69.23

DT 0 67 8 14 12 20 4

1 0 78 8 17 5 23

Total 94.77 60.78 82.69

CNN 0 75 0 26 0 24 0

1 0 78 0 25 1 27

Total 100.00 100.00 98.08

RGB images LR 0 75 0 26 0 24 0

1 0 78 0 25 8 20

Total 100.00 100.00 84.62

SVM 0 75 0 26 0 23 1

1 0 78 0 25 9 19

Total 100.00 100.00 80.77

NN 0 75 0 26 0 24 0

1 3 75 1 24 13 15

Total 98.04 98.04 75.00

DT 0 75 0 24 2 21 3

1 0 78 0 25 9 19

Total 100.00 96.08 76.92

CNN 0 75 0 26 0 24 0

1 0 78 0 25 8 20

Total 100.00 100.00 84.62

Hyperspectral images LR 0 75 0 23 3 21 3

1 0 78 4 21 6 22

Total 100.00 86.27 82.69

SVM 0 75 0 26 0 21 3

1 0 78 2 23 5 23

Total 100.00 96.08 84.62

NN 0 75 0 26 0 24 0

1 15 63 8 17 11 17

Total 90.20 84.31 78.85

DT 0 75 0 22 4 18 6

1 0 78 4 21 4 24

Total 100.00 84.31 80.77

CNN 0 70 5 25 1 22 2

1 6 72 3 22 4 24

Total 92.81 92.16 88.46

a0 means the label of the healthy leaves, 1 means the label of the infected leaves.

the effective measures to reduce the impact of aphids, but the
process of crop selection and breeding takes a long time (Cabral
et al., 2018; Zhan et al., 2020). From a chemical and physical
point of view, the infection caused by aphids can be captured
by the imaging system (Chen et al., 2018b). Currently, there

are few studies on aphid detection based on near-ground object
hyperspectral imaging. In this study, the Vis/NIR hyperspectral
imaging system was used to detect aphid infection and direct
sensory monitoring of aphid infection. It can provide a reference
for the direct control of aphids on crops.
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FIGURE 5 | The row coordinate represents the wavelength, and the ordinate represents the sample correctly predicted by 1D CNN. The depth of each row of color
represents the importance of the wavelength of the corresponding sample in the process of identifying A. gossypii Glovers infection. (A) Visualization of the first
derivative spectra test set of healthy leaves. (B) Visualization of the first derivative spectra test set of infected leaves.

FIGURE 6 | Visualization of the cumulative contribution of wavelengths of samples correctly predicted in the 1D CNN in the first derivative spectra test set.

Due to hyperspectral imaging can obtain spatial and spectral
information of the research object, both spatial and spectral
information in hyperspectral imaging can be used to detect pest
infection and disease infection (Ahmad et al., 2018). Therefore,

the spectral information and spatial information based on
hyperspectral imaging have been introduced in previous research.
Previous studies have determined that using spectral information
in hyperspectral imaging is highly effective for detecting pest
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FIGURE 7 | CNN-based saliency map of RGB images and hyperspectral images. The saliency maps of RGB images are based on 2D CNN, and the saliency maps
of hyperspectral images are based on 3D CNN. In each saliency map, the features of the darker regions have a greater impact on the identification results. ‡a–e
indicates the five periods of dataset collection in turn.
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FIGURE 8 | Visualization of the wavelength contribution of the hyperspectral image test set.

infection and disease infection (Rady et al., 2017). It is feasible
to use the average spectra of hyperspectral imaging or the pixel-
wise spectra for 1D analysis and detection of infection. Zhou
et al. (2019) used average spectra to detect infection. Qiu et al.
(2019) used the spatial information of spectral imaging and used
the pixel-wise spectra to detect the infected area. However, the
1D analysis does not make full use of the spatial information of
hyperspectral imaging. Due to a large amount of hyperspectral
imaging data, the selection of key wavelength images is important
for the use of spatial information (Li et al., 2019). According
to the 2D analysis of the key wavelength information, the plant
infection area can be marked with higher precision. However,
1D analysis and 2D analysis are not sufficient for the mining
and utilization of spatial information or spectral information.
The 3D analysis makes effective use of spatial information and
spectral information, and it has a few applications in plant disease
monitoring. At present, there are few studies on simultaneous
1D analysis, 2D analysis, and 3D analysis for the same infection.
In this study, 1D analysis, 2D analysis, and 3D analysis were
used to detect aphid infection in cotton leaves, and the multi-
dimensional detection results were all good. On the whole,
1D analysis is worthy of consideration for rapid detection of
infection, and 2D analysis and 3D analysis can be used to detect
the infected area.

Currently, conventional machine learning methods are used
to monitor plant diseases and insect pests. Meanwhile, the DL
method has been widely used in the monitoring of plant diseases
and insect pests. 1D DL and 2D DL are widely used in plant
diseases and insect pest detection. 3D DL has been partially
applied in the monitoring of plant diseases and insect pests.
However, the DL method has not been reasonably explained in
the detection of plant diseases and insect pests. In this study,
the saliency map was used to visualize the DL model. Through
visualization, important wavelengths and spatial regions were

discovered. The important wavelengths and spatial regions were
consistent with actual conditions. Overall, the visualization of DL
provides new ideas for the interpretation of the application of
plant pests and disease detection in DL in the future.

Overall, the classification results of the 1D analysis, 2D
analysis, and 3D analysis were fine. In the field of spectroscopy,
DT and NN models were prone to overfitting problems, which
may be the reason for the poor results (Liu et al., 2008; Mandrell
et al., 2020). RGB images lost a lot of spectral information and
only contain color information, which may be the reason for
their poor performance. Due to the computing power of the
computer in this study, HSIs contain a lot of spectral information
and spatial information, but the 3D CNN model may not make
full use of information. For the first derivative spectra, while the
spatial information was lost, the spectra were simple but contain
enough information, and most models were easy to learn data
features under the existing computer computing power, which
may be the reason for the outstanding effect. Considering the
impact of the training set size on the overall performance of
the investigated classification methods, the size of the validation
and test sets were kept constant, and the training set size was
sequentially expanded from 25/27, which was the same size as
the validation and test sets, to 75/78 (the number of healthy
samples/number of infected samples). The results are shown in
Supplementary Table 2. The overall performance was poor when
the training set size was 25/27, and when the training set size
was 50/52, the overall performance approximated the overall
performance of the training set size of 75/78. With the increase
of training set size, the overall performance grew slowly. The
overall performance was likely to be the best when the training
set size was 75/78.

Aphids pierce and suck plant tissues on tender leaves, tender
stems, buds, and floral organs, and other young parts of the
plant, and suck the juice, which will make the veins and leaves
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green, yellow, white, or thin (Dubey et al., 2013). These will cause
changes in the color, texture, and spectral reflectance of the leaves.
In the process of visualization, the saliency maps showed that the
1D CNN model was interested in the 750–950 nm wavelengths,
followed by the spectral range of 460–660 nm. The 2D CNN could
capture the color and texture characteristics of the leaves, and the
model itself did not notice the aphids. The main interest spectral
range of the 3D CNN model was 460–660 nm, and its interest area
was around the leaf veins and the leaf edges. Combined with the
L1-norm visualization of HSIs, it was found that 3D CNN was not
interested in the spectral range of 750–950 nm. Besides, for the 1D
and 3D CNN models, the datasets in the range of 460–660 nm
and 750–950 nm were re-modeling, respectively, and the test
results were consistent with the visualization results, indicating
the effectiveness of the visualization methods. It can be used for
wavelength selection. However, 1D CNN and 3D CNN models
had differences in the regions of interest of the corresponding
data sets. The reason may be that the 1D CNN model captured the
information of the overall structural change of the blade and the
information of the spectral reflectance change in the NIR spectral
range. For the 3D CNN model, it could capture the changes in the
spectral reflectance of the leaves in the Vis spectral range of the
HSIs, but it was difficult to capture the NIR information about
the changes in the internal chemical composition of the leaves.

In this study, only the infected leaves and the healthy leaves
in cotton plants were studied. Since HSIs were obtained in
a greenhouse, the interference factors affecting the HSIs were
controllable. In the controllable environment, typical infected
samples and healthy samples were obtained, and the difference
between the two categories of HSIs was large. However, there
are many uncontrollable factors in field conditions, which cause
uncertainty and variations in samples. The differences between
healthy and infected samples might not be so large, and a
large number of field experiment samples should be studied
in future research. Our study provided an initial assessment of
pest detection in cotton, and provide a potential method for
rapid and non-invasive pest detection. In future researches, the
developed method will be validated and updated based on the
in-field experiments.

CONCLUSION

In this study, the Vis/NIR hyperspectral imaging system (376–
1044 nm) and machine learning methods were used to identify
aphid infection in cotton leaves. Spectra, RGB images, and
hyperspectral images containing a single leaf were used to build
classification models. Spectra did not contain spatial information.
However, the spectral information in the spectra was simple but
rich, which was conducive to the learning of existing computing
power and models, and had achieved excellent results. The
RGB images and the hyperspectral images contained spatial
information, and the characteristics of the spatial region that
affect the classification results could be found. Compared with
the RGB images, the hyperspectral images contained a lot of
spectral information. The classification results of the 3D CNN
used to identify aphid infection were better than 2D CNN and

worse than 1D CNN. It was recommended that 1D CNN could
be used to quickly and accurately identify aphid infection. In the
visualization of 1D CNN, it was found that the important spectral
regions of the spectra were concentrated in the Vis (460–660 nm)
and NIR (750–950 nm) range. In the visualization of 2D CNN
and 3D CNN, the spatial regions of cotton leaves changed after
aphid infection were found. 2D CNN could be used to find aphid
infection areas. 3D CNN combined features of 1D CNN and 2D
CNN, it could be used to discover the aphid infection area while
discovering important spectral regions. Based on the exploration
of CNNs in multiple dimensions on aphid infection, the effects
of CNNs in various dimensions were compared, which provided
data reference for related scholars and provided new ideas for
future research on pest infection.
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