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School of Biological Sciences, Nanyang Technological University, Singapore, Singapore

Plants produce a vast array of chemical compounds that we use as medicines and
flavors, but these compounds’ biosynthetic pathways are still poorly understood. This
paucity precludes us from modifying, improving, and mass-producing these specialized
metabolites in suitable bioreactors. Many of the specialized metabolites are expressed
in a narrow range of organs, tissues, and cell types, suggesting a tight regulation of the
responsible biosynthetic pathways. Fortunately, with unprecedented ease of generating
gene expression data and with >200,000 publicly available RNA sequencing samples,
we are now able to study the expression of genes from hundreds of plant species. This
review demonstrates how gene expression can elucidate the biosynthetic pathways
by mining organ-specific genes, gene expression clusters, and applying various types
of co-expression analyses. To empower biologists to perform these analyses, we
showcase these analyses using recently published, user-friendly tools. Finally, we
analyze the performance of co-expression networks and show that they are a valuable
addition to elucidating multiple the biosynthetic pathways of specialized metabolism.
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INTRODUCTION

Despite the therapeutic and industrial potential of specialized plant metabolites (SM, also called
secondary metabolites), their total chemical synthesis is often prohibitively expensive or even
impossible due to their structural complexity (Chemler and Koffas, 2008). As a consequence, most
of the SM are still extracted from their plant sources. The plant sources are often difficult to
cultivate, resulting in the overharvesting of these species from the wild, as exemplified by firmoss
(Huperzia serra), the pacific yew (Taxus brevifolia), and golden root (Rhodiola rosea; Busing et al.,
1995; Lan et al., 2013). Furthermore, many valuable SM can be present at low concentrations
in plants, precluding the production of these beneficial molecules in a cost-efficient manner.
Consequently, large efforts are underway to understand the SM biosynthetic pathways, as these
pathways can be engineered into more suitable microbial or plant hosts and further modified to
produce novel, more potent compounds.

Despite the efforts to elucidate the plant SM biosynthetic pathways, very few pathways have
been studied to completion, and even fewer have been transferred to heterologous hosts. A few
examples include artemisinic acid (Paddon et al., 2013), the monoterpenoid indole alkaloids
(Brown et al., 2015), and the benzylisoquinoline alkaloids (Thodey et al., 2014). This is a stark
contrast to the >700 bacterial and fungal SM biosynthetic pathways that have been characterized
and engineered (Cimermancic et al., 2014). There are two main reasons for this discrepancy
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between plants and microbes. Firstly, the enzymes
biosynthesizing a SM in microbes are typically organized as
biosynthetic gene clusters (BGCs), i.e., in a contiguous manner
on chromosomes (Keller, 2019), which greatly simplifies the
identification of the biosynthetic pathways. Conversely, in
plants, the majority of SM pathways are not found in BGCs
(Kliebenstein et al., 2012; Shi and Xie, 2014). However, nearly
two dozen BGCs making defensive compounds have been
functionally characterized, indicating that BGCs can be used
to predict plant SM pathways in some cases (Nützmann et al.,
2016; Kautsar et al., 2017; Tohge and Fernie, 2020). Secondly, in
contrast to microbes, biosynthetic enzymes in plants comprise
multiple, large gene families (e.g., cytochrome p450 family can
comprise up to 1% of all plant genes; Mizutani and Ohta, 2010),
complicating the assignment of an enzyme to a correct pathway
based on genomic approaches alone. Consequently, many plant
SM pathways, such as artemisinin, salicin, and taxol, have
been elucidated by time-consuming and complex experimental
approaches such as activity-guided fractionation, where the
relevant enzyme is purified by multiple rounds of activity-guided
fractionation, and identified by a proteomic approach, such as
mass spectrometry.

Fortunately, the last decade has seen the emergence of novel
methods in the area of genomics, transcriptomics, proteomics,
metabolomics, synthetic biology, and gene function prediction,
which has fueled the identification of SM biosynthetic pathways
(Jacobowitz and Weng, 2020; Mutwil, 2020). These additional
approaches provide multipronged sources of information to
predict the identity of the enzymes making a given SM, allowing
rapid de novo biosynthetic pathway prediction in nonmodel
plants (Torrens-Spence et al., 2016). These predictions can then
be rapidly tested by synthesizing codon-optimized cDNA of the
putative enzyme and expressed in a laboratory microbe or a more
suitable plant, such as Nicotiana benthamiana [please see the
excellent review on these approaches in Jacobowitz and Weng,
2020)]. The various computational approaches comprising
sequence similarity, Quantitative Trait Loci/Genome-Wide
Association Studies (QTL, GWAS), phylogenetic profiling, and
machine learning have been extensively reviewed elsewhere
(Jacobowitz and Weng, 2020; Mutwil, 2020).

This review focuses on gene expression and co-expression
networks as tools to uncover SM biosynthetic pathways. To
showcase some of the analyses, we dissect biosynthetic pathways
of sporopollenin, lignin, cutin, and suberin. We also discuss
another important but overlooked property of gene expression
and co-expression analyses: the ability to identify transcription
factors and transporters as additional genes involved in the
metabolites’ regulation and biosynthesis. Finally, we discuss some
of the caveats typical for these analyses.

CORRELATING METABOLITE
PRESENCE AND GENE EXPRESSION

Specialized metabolites often show a restricted presence in only
a few organs, tissues, and cell types (Li et al., 2016), and can
be extensively regulated by environmental factors (e.g., pathogen

attack, UV-B light; Li et al., 2015; Tohge et al., 2016). For
example, plant defense metabolites are frequently present in
specialized tissues/cell types to minimize autotoxicity in the
surrounding tissues and/or to maximize the effectiveness of these
metabolites toward the spatially specific attacks of the aggressors
(Schilmiller et al., 2010; Tissier, 2012). Of the 895 non-redundant
metabolite spectra from different tissues of Nicotiana attenuata,
595 (63%) displayed tissue-specific expression, showing that SM
often have organ- and tissue-specific gene expression (Li et al.,
2016). Intuitively, the biosynthetic enzymes and their mRNAs
should only be present in the cells where the metabolite is made.
This assumption can be exploited to identify the biosynthetic
genes by correlating gene expression and metabolite levels.
This assumption fails for cases where the site of metabolite
biosynthesis and accumulation differs, as exemplified by nicotine,
which is biosynthesized in roots by root-specific enzymes and
exported to leaves (Katoh et al., 2005; Tan et al., 2020). However,
this simple yet powerful analysis has been successfully applied
to unravel biosynthetic pathways of modified fatty acids in
tomato (Jeon et al., 2020) and colchicine in Gloriosa superba
(Nett et al., 2020).

To exemplify how gene expression specificity can uncover a
biosynthetic pathway, we use the CoNekT online tool1 (Proost
and Mutwil, 2018) to analyze pollen exine biosynthesis. Pollen
exine is an outermost protective layer of pollen grains, and
consists of the insoluble sporopollenin biosynthesized in anthers
(Hsieh and Huang, 2007). Thus, by identifying other genes
with anther-specific gene expression, we should find the exine
biosynthetic genes. To perform this analysis, we navigated
to the “Tools/Find Specific Profiles,” selected Arabidopsis and
“Flowers (anthers)” as the target species and tissue, which
revealed 162 genes with another-specific expression (Figure 1A
and Supplementary Table 1). As expected, these genes show
exclusively anther-specific expression profiles (Figure 1B).
Among these genes, we found numerous genes with unknown
function, transcription factors, lipid transfer proteins, and
several genes implicated in sporopollenin biosynthesis (Table 1).
Notably, the analysis can reveal non-enzymatic genes essential
for the functioning of the pathways, such as transporters
needed for shuttling of the metabolite precursors (ABCG26)
and transcription factors controlling the expression of the
pathway (MYB103).

Expression profiles can also identify functionally equivalent
genes across species. For example, gene AT1G69500 (CYP704B1)
is a cytochrome P450 long-chain fatty acid {omega}-hydroxylase
essential for pollen exine formation (Dobritsa et al., 2009).
Cytochrome P450 genes comprise one of the largest gene
families that catalyze various metabolic reactions (Xu et al.,
2015). Due to numerous duplications, it can be challenging to
identify P450 genes involved in sporopollenin biosynthesis in
other plants. However, since all sporopollenin-specific P450s
are also likely expressed in anthers in other species, we can
use gene expression to identify the relevant genes. We used
CoNekT to compare expression profiles of the orthogroup
containing AT1G69500 and 78 other land plant-specific

1https://evorepro.sbs.ntu.edu.sg/search/specific/profiles
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FIGURE 1 | Expression profiles of AT1G69500 (CYP704B1), a cytochrome P450 involved in pollen exine formation. (A) User interface of the CoNekT tool used to
identify organ-specific genes. (B) The plot shows the expression of CYP704B1 in Arabidopsis. The various organs and tissues are shown on the x-axis, while the
y-axis indicates expression levels as Transcripts Per Million (TPM). The gray points indicate the minimum and maximum expression. (C) Expression profiles of
CYP704B1 and its orthologs in seed plants. Green and red color indicate low and high expression, respectively, while black cells indicate missing gene expression
data. The figure contains expression profiles of genes from Arabidopsis (AT) and Amborella (AMTR). The CoNekT platform groups various tissues (e.g., petals,
anthers, and pistils) from an organ (e.g., flower) into one category. Each cell contains the average expression values of samples from the organ. For brevity, only
genes from Amborella and Arabidopsis are shown.

TABLE 1 | Annotation of anther-specific genes involved in sporopollenin biosynthesis.

Gene ID Symbol Annotation Function

AT3G13220 ABCG26, WBC27 ABC-2 type transporter family protein Polyketide export Quilichini et al., 2014

AT1G62940 ACOS5 Acyl-CoA synthetase 5 Sporopollenin monomer biosynthesis de
Azevedo Souza et al., 2009

AT4G34850 LAP5 Chalcone and stilbene synthase family
protein

Biosynthesis of pollen fatty acids and
phenolics found in exine Dobritsa et al.,
2010

AT1G02050 LAP6 Chalcone and stilbene synthase family
protein

Biosynthesis of pollen fatty acids and
phenolics found in exine Dobritsa et al.,
2010

AT1G01280 CYP703A2, CYP703 Cytochrome P450, family 703, subfamily A,
polypeptide 2

Biosynthesis of medium-chain hydroxy fatty
acids Morant et al., 2007

AT1G69500 CYP704B1 Cytochrome P450, family 704, subfamily B,
polypeptide 1

Biosynthesis of long-chain fatty acids
Dobritsa et al., 2009

AT5G56110 MYB103, AtMYB103, ATMYB80, MS188 Myb domain protein 103 Tapetum and exine development Zhang
et al., 2007

Frontiers in Plant Science | www.frontiersin.org 3 January 2021 | Volume 11 | Article 625035

https://www.frontiersin.org/journals/plant-science
https://www.frontiersin.org/
https://www.frontiersin.org/journals/plant-science#articles


fpls-11-625035 December 30, 2020 Time: 16:43 # 4

Delli-Ponti et al. Studying Metabolic Pathways With Transcriptomics

genes (https://evorepro.sbs.ntu.edu.sg/family/view/131885,
click on “row-normalized” to view expression). As expected,
AT1G69500 is expressed specifically in flowers (CoNekT
groups components of an organ into one category), while
for Amborella trichopoda, only AMTR_s00010p00266280
is showing a similar expression pattern, suggesting that
AT1G69500 and AMTR_s00010p00266280 are functionally
equivalent (Figure 1C).

USING GUIDE GENES TO IDENTIFY
BIOSYNTHETIC PATHWAYS

To uncover the other biosynthetic pathway components, it
is possible to identify other genes with a similar expression
profile if at least one of the biosynthetic enzymes is known
(Usadel et al., 2009; Serin et al., 2016). This assumption is
based on the observation that genes with similar expression
patterns across organs, developmental stages, and biotic and
abiotic perturbations tend to be involved in related biological
processes. Identification of genes with similar profiles can
be made by calculating all possible pairwise comparisons
of gene expression profiles using different similarity metrics
(e.g., Pearson Correlation Coefficient, Mutual Rank, and
Highest Reciprocal Rank), across tens to thousands of gene
expression measurements captured by microarrays or RNA
sequencing (RNA-seq; Usadel et al., 2009; Mutwil et al., 2010;
Aoki et al., 2016).

The identification of these transcriptionally co-regulated
(co-expressed) genes has been successfully used to further
complete various metabolic pathways, such as protolimonoids
from Azadirachta indica (Hodgson et al., 2019), vinblastine from
Madagascar periwinkle (Caputi et al., 2018), etoposide glycone
from Podophyllum hexandrum (Lau and Sattely, 2015), and the
seco-iridoid pathway from Catharanthus roseus (Miettinen et al.,
2014), to name a few recent examples. The identification of the
co-expressed genes can be performed in three ways, by a: (i) co-
expression list analysis, (ii) hierarchical clustering of expression
profiles, or (iii) co-expression networks. To exemplify how these
analyses can be performed and interpreted, we use the classical
example of lignin biosynthesis, which requires multiple steps to
convert phenylalanine to various lignin precursors (Figure 2A;
Sibout et al., 2017).

UNCOVERING FUNCTIONALLY
RELATED GENES BY THE
CO-EXPRESSION LIST ANALYSIS

The co-expression list analysis is typically a “one versus all”
analysis, where the expression profile similarity of one gene is
compared to expression profiles of all genes, and the resulting
list is sorted according to a similarity metric, such as the Pearson
Correlation Coefficient (PCC; Usadel et al., 2009). Typically, this
analysis is used to uncover unknown components of a biological
process (Brown et al., 2005; Persson et al., 2005). Since the list
is sorted according to expression profile similarity, the most

relevant genes are found on top of the list, and typically top
50 genes are investigated (Aoki et al., 2016; Proost and Mutwil,
2018). The analysis of phenylalanine ammonia-lyase 1 (PAL1),
which is the first enzyme in the phenylpropanoid pathway needed
for lignin biosynthesis (Figure 2A), revealed several known
players, such as C4H, PAL2, CYP98A3, CCR1, CCR2, 4CL, and
HCT (Table 2 and Supplementary Table 2). It is important to
note that the list does not contain all of the lignin biosynthetic
enzymes, showing that co-expression is not always guaranteed
to retrieve all relevant genes. To uncover the pathway’s missing
members, we recommend using other known members of the
pathway as a query and collate the results.

HIERARCHICAL CLUSTERING ANALYSIS

Hierarchical clustering of expression profiles is a “many versus
many” analysis, where the selected genes are grouped into
clusters defined by expression profile similarity. These clusters
are then visually analyzed to identify genes containing the
known components of a pathway and exclude genes that are
not part of these clusters. Typically, this analysis is used when
the list of candidate genes is extensive and needs to be reduced.
This approach has been used in identifying P450 enzymes
important for protolimonoid synthesis (Hodgson et al., 2019) and
components of etoposide aglycone biosynthesis (Lau and Sattely,
2015). To exemplify a clustering analysis, we selected four PAL
gene family members, ATC4H, and nine members of the CAD
family. We entered the 14 (AT2G37040, AT3G10340, AT3G53260,
AT5G04230, AT2G30490, AT1G72680, AT2G21730, AT2G21890,
AT3G19450, AT4G34230, AT4G37970, AT4G37980, AT4G37990,
and AT4G39330) genes into the “Tools/Heatmap/Comparative”2,
which revealed the expression profiles of these genes in organs
of Arabidopsis. The resulting heatmap was pasted into the
ClustVis web-tool3(Metsalu and Vilo, 2015) and used to perform
hierarchical clustering. The heatmap revealed that PAL1,2 and
4 are clustering with C4H and CAD, but, e.g., not with PAL3,
which has not been implicated in lignin biosynthesis (Figure 2B).
The heatmap can also indicate where a given cluster is expressed,
showing that the lignin cluster has the highest expression in roots.
In contrast, the other major cluster containing CAD2, 3, 6, and
ELI3 are expressed in male organs (comprising pollen and sperm,
Figure 2B). Thus, the clustering analysis can reveal functionally
related genes and indicate the organs and tissues where these
genes are likely active.

CO-EXPRESSION NETWORK
ANALYSIS—SEARCHING WITH A QUERY
GENE

Co-expression networks can be used in “many versus many”
(when used with one query gene) or “all versus all” (when used
with co-expression clusters) type of analyses. In co-expression

2https://evorepro.sbs.ntu.edu.sg/heatmap/
3https://biit.cs.ut.ee/clustvis/
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FIGURE 2 | Analysis of lignin biosynthesis with expression clustering and co-expression network approaches. (A) Biosynthetic pathway of lignin. (B) Hierarchical
clustering of PALs, C4H, and CAD genes. The red and blue colors indicate high and low expression in a given organ, respectively. (C) Co-expression network of
PAL1. Nodes represent genes, gray edges connect co-expressed genes, while node colors indicate orthogroups of the gene families. The red square in (B,C)
indicate genes known to be involved in lignin biosynthesis.

networks, nodes (or vertices) represent genes, and edges (or
links) connect genes that display similar expression profiles (Lee
et al., 2004; Usadel et al., 2009; Serin et al., 2016). While the
networks are different from co-expression lists (lists are ordered
while networks are not) and hierarchical clustering (networks
are unordered and typically do not indicate the expression
patterns of genes), when used with one query gene, the networks

provide the same information: the identity of functionally-
related genes. To exemplify a typical network analysis, we
used PAL14, which similarly to the co-expression list (Table 2),
retrieved several, but not all, known participants of lignin
biosynthesis (Figure 2C).

4https://evorepro.sbs.ntu.edu.sg/network/graph/3767
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TABLE 2 | Co-expression list of PAL1.

Sequence Annotation PCC Function

AT2G37040 Phenylalanine ammonia-lyase 1 ATPAL1, PAL1 1.0 Phenylpropanoid pathway entry Cochrane et al., 2004

AT2G30490 Cinnamate-4-hydroxylase ATC4H, CYP73A5, REF3, C4H 0.836494 Trans-4-coumarate biosynthesis Schilmiller et al., 2009

AT3G53260 Phenylalanine ammonia-lyase 2 ATPAL2, PAL2 0.806119 Phenylpropanoid pathway entry Cochrane et al., 2004

AT2G40890 Cytochrome P450, family 98, subfamily A, polypeptide 3 CYP98A3 0.647512 3’-hydroxylation of p-coumaric esters Schoch et al., 2001

AT1G80820 Cinnamoyl-Coa reductase CCR2, ATCCR2 0.624933 Cinnamaldehyde biosynthesis Lacombe et al., 1997

AT1G51680 4-coumarate:CoA ligase 1 4CL1, AT4CL1, 4CL.1 0.609514 CoA thiol ester biosynthesis Ehlting et al., 1999

AT5G48930 Hydroxycinnamoyl-CoA shikimate/quinate hydroxycinnamoyl transferase HCT 0.589046 Hoffmann et al., 2004

AT1G15950 Cinnamoyl-Coa reductase 1 CCR1, IRX4, ATCCR1 0.525528 Cinnamaldehyde biosynthesis Lacombe et al., 1997

For brevity, only the known participants of the lignin biosynthesis pathway are shown.

In contrast to lists and hierarchical clustering approaches,
networks can convey additional information with node and edge
colors. For example, CoNekT uses different node colors and
shapes to indicate gene families (see text footnote 4; Proost
and Mutwil, 2018), while ATTED-II5 (Aoki et al., 2016), and
GeneMANIA6 (Warde-Farley et al., 2010) use edge styles to
indicate different types of functional relationships between genes
(e.g., co-expression, protein-protein interactions). Modern tools
provide interactive networks, where the nodes can be moved,
colored by different criteria (e.g., by organ-specific expression
or gene family membership), allowing adjusting the networks to
convey the desired information better.

IDENTIFYING FUNCTIONALLY RELATED
GENES BY CUSTOM NETWORK
ANALYSIS

While a typical genome-wide co-expression network typically
contains tens of thousands of nodes (genes) and millions of edges
(connections), a typical user is only interested in a particular
part of the network representing a biological process of interest.
Since functionally related genes tend to be connected, the
network can be used to uncover functional clusters of genes.
Conceptually, the analysis is similar to hierarchical clustering
(Figure 2B), but instead of clades, the functionally related genes
are connected by edges.

While most current studies focus on uncovering the enzymes
constituting a biosynthetic pathway, non-enzymatic genes are
also crucial for SM’s efficient biosynthesis. For example, gliotoxin
biosynthesis in fungi Aspergillus requires a gliotoxin efflux
pump that removes the harmful metabolite from the cellular
environment. At the same time, another enzyme modifies it to
a less toxic form (Dolan et al., 2015). Furthermore, up to 50% of
BGCs in fungi also contain transcription factors that positively
regulate the corresponding pathway (Brown et al., 2015). In
plants, we observed that relevant transcription factors and
transporters can be co-expressed with the pathways they regulate
and participate in, respectively. For example, we observed
ABCG26, a polyketide transporter needed for exine biosynthesis

5https://atted.jp/locus/?gene_id=818280
6https://genemania.org/search/arabidopsis-thaliana/pal1

in Arabidopsis (Table 1), and in Brachypodium distachyon
various other transporters and transcription factors important
for cellulose biosynthesis (Sibout et al., 2017), artemisinin
biosynthesis in Artemisia annua (Tan and Mutwil, 2019) and
nicotine biosynthesis in Nicotiana tabacum (Tan et al., 2020).
Thus, co-expression analysis is uniquely positioned to reveal non-
enzymatic components essential for the efficient functioning of
metabolic pathways.

To demonstrate how this analysis can be performed, we tested
which MYB transcription factors are co-expressed with lignin
biosynthesis-related laccases (LAC) in Arabidopsis (Figure 3). To
this end, we used as input the 11 LAC genes7, together with
122 MYB transcription factors8 into the “Tools\Create custom
network” tool9. We observed the association of laccases necessary
for lignin biosynthesis in the secondary cell wall (LAC2, LAC4,
and LAC17; Berthet et al., 2011; Khandal et al., 2020) with MYBs
controlling lignin biosynthesis (MYB103, MYB85, MYB63, and
MYB52; Zhou et al., 2009; Cassan-Wang et al., 2013; Öhman
et al., 2013; Geng et al., 2020). Interestingly, we also observed the
association of MYB5, which controls seed coat development (Li
et al., 2009) to TT10, which is essential for flavonoid biosynthesis
in the seed coat (Pourcel et al., 2005). Since CoNekT allows quick
retrieval of gene families representing different gene functions,
we envision that this functionality can be used to rapidly highlight
transcription factors, transporters, and other genes necessary for
the biosynthetic pathways.

SEARCHING CO-EXPRESSION
CLUSTERS FOR ENRICHED
BIOSYNTHETIC PATHWAYS

One of the significant advantages of co-expression networks
is the availability of graph-theoretical methods to define co-
expression clusters, i.e., groups of genes with similar expression
profiles (Ronan et al., 2016). This simplifies gene expression
data analysis, as clustering typically assigns tens of thousands
of genes into hundreds of co-expression clusters. The clusters
can then be compared to identify groups with similar functions

7https://evorepro.sbs.ntu.edu.sg/family/view/115
8https://evorepro.sbs.ntu.edu.sg/family/view/3
9https://evorepro.sbs.ntu.edu.sg/custom_network/
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FIGURE 3 | Co-expression network of Arabidopsis laccases and MYB transcription factors. Nodes represent genes, gray edges connect co-expressed genes, while
node colors indicate MYBs (yellow) or laccases (purple). The red square indicates MYBs and laccases implicated in lignin biosynthesis. For brevity, only genes that
are connected to at least one other gene are shown.

across species (Heyndrickx and Vandepoele, 2012) or duplicated
modules within species (Ruprecht et al., 2016). Furthermore,
the clusters’ biological function can be elucidated by identifying
enriched Gene Ontology or MapMan terms (Sibout et al., 2017;
Ferrari et al., 2020).

To demonstrate how searching for functionally enriched
clusters can be used to generate novel insights, we selected
cutin and suberin as an example. Cutin and suberin are
lipid biopolyester components of the cell walls important for
desiccation tolerance (Philippe et al., 2020). To identify a
module biosynthesizing cutin in Arabidopsis, we navigated to
the “Tools/Find enriched clusters,” entered “cutin biosynthesis”
under GO search box, and clicked “Show clusters.” This revealed
three clusters significantly (p-value < 0.05) enriched for genes
known to be involved in cutin biosynthesis in Arabidopsis, and we
clicked on cluster 26. The page dedicated to the cluster provides
information about the average expression profile of the genes in
the cluster, the identity of the genes, and functional enrichment

analysis10. The “Similar clusters” table found on the cluster page
also contains the identity of similar clusters across and within
species (similarity is defined by Jaccard index between cluster
gene families; Proost and Mutwil, 2018), allowing an easy way to
identify conservation and duplication of biosynthetic pathways
(Ruprecht et al., 2016). Interestingly, we observed that cluster 206
from Arabidopsis is most similar to cutin cluster 26, indicating
that the cutin cluster has been duplicated to biosynthesize a
cutin-like polymer in another organ or tissue.

By clicking on the “Compare” button next to the duplicated
cluster 206, the two clusters are visualized (Figure 4A). The
two clusters contain numerous gene families that have been
implicated in the biosynthesis of cutin and suberin, comprising
CYP450s, lipid transfer proteins, acyl-transferases, and glycerol-
3-phosphate acyltransferase (GPAT; Philippe et al., 2020). Cutin is
predominantly present in aerial organs, while suberin is mostly

10https://evorepro.sbs.ntu.edu.sg/cluster/view/212
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FIGURE 4 | Comparison of the duplicated clusters involved in suberin and cutin biosynthesis. (A) Co-expression networks of module 26 (blue, left) and 206 (green,
right) from Arabidopsis thaliana. The annotation of the colored shapes of the gene families (given as orthogroups OG) is shown below. (B) Expression profiles of
At4g39480 from cluster 29 and At5g58860 from cluster 206. Green and red colors indicate low and high expression, respectively. The expression values are scaled
by dividing each row by the maximum expression found in the row. The tool used is available at the “Tools/Generate heatmap/Comparative” on CoNekT’s homepage.

present in roots and seed coats (Philippe et al., 2020). In line with
this, comparative expression profile analysis of two representative
CYP450s revealed the expected expression of cluster 26 in flowers
and cluster 206 in roots (Figure 4B). Interestingly, MYB107 has
been shown to regulate suberin biosynthesis (Gou et al., 2017),
but is also found in the cutin cluster, suggesting that it might also
have a role in cutin biosynthesis. We also observed numerous
other gene families (e.g., cupredoxin, cysteine/histidine-rich,
carboxypeptidases, and RING/U-box), which are not implicated
in the biosynthesis of the polymers. However, since these gene
families are present in both clusters, they are likely involved in
some aspect of their biosynthesis.

To conclude, enriched cluster analysis can reveal the clusters
comprising various biosynthetic pathways. The conserved or
duplicated modules can identify the conserved (i.e., likely
relevant) genes found in the pathways.

PERFORMING YOUR OWN ANALYSIS
WITH EXISTING TOOLS OR YOUR OWN
DATA

While the above analyses exemplified how CoNekT can be
used to study SM, multiple online tools are available, such as
ATTED-II (Aoki et al., 2016), CoNekT (Proost and Mutwil,
2018), PlaNet (Mutwil et al., 2011), ePlant (Waese et al., 2017),
and PlantGenIE (Sundell et al., 2015) reviewed in Rao and
Dixon (2019). These tools are preloaded with expression data
from tens of plants of agricultural and evolutionary interest
(Table 3). Still, there are >200,000 RNA-seq experiments publicly
available for >100 species from the plant kingdom11, providing
an excellent opportunity to study the biosynthetic pathways

11https://www.ncbi.nlm.nih.gov/sra/
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TABLE 3 | Online tools allowing expression profiles and co-expression network analysis.

ATTED
(https://atted.jp/)

ePlant
(http://bar.utoronto.ca/)

PlantGenIE
(https://plantgenie.org/)

PlaNet
(www.gene2function.de)

CoNekT
(www.evorepro.plant.tools)

Amborella
trichopoda

N N N N Y

Arabidopsis
thaliana

Y Y Y Y Y

Brassica rapa Y N N N N

Chlamydomonas
reinhardtii

N N N Y Y

Cyanophora
paradoxa

N N N N Y

Eucalyptus grandis N N Y N N

Ginkgo biloba N N N N Y

Glycine max Y N N Y N

Marchantia
polymorpha

N N N N Y

Medicago
truncatula

Y N N Y N

Oryza sativa Y Y N Y Y

Physcomitrella
patens

N N N Y Y

Picea abies N N Y N Y

Populus
trichocarpa

Y N Y Y N

Selaginella
moellendorffii

N N N N Y

Solanum
lycopersicum

Y N N N Y

Vitis vinifera Y N N N Y

Zea mays Y Y N N Y

Only tools that are preloaded with co-expression networks for more than two plants are shown.

of SM. Furthermore, as RNA-seq analysis is becoming more
affordable and accessible, numerous studies nowadays generate
and analyze their own RNA-seq data to prioritize genes for
functional analysis. To perform such an analysis, we need (i)
coding sequence (CDS) file, (ii) gene expression data, and (iii)
gene expression similarity analysis.

The CDS file contains the transcript sequences the RNA-
seq data should be mapped too. A CDS file can be typically
retrieved from a public database, such as the EnsemblGenone12

or Phytozome13, or the genome release paper, if available. If
no genome is available, RNA sequencing data can be used for
de novo assembly. Best-performing transcriptome assemblers
are typically able to retrieve >70% of the expected gene space
(Hölzer and Marz, 2019). Indeed, elucidation of biosynthetic
pathways without a reference genome successfully revealed steps
in colchicine alkaloid (Nett et al., 2020) and protolimonoid
biosynthesis (Hodgson et al., 2019), showing that the RNA-seq
data can be used as an acceptable source for CDS. Comparison
of 10 transcriptome de novo assembly tools across nine RNA-
seq datasets spanning different kingdoms of life showed that
Trinity, SPAdes, and Trans-ABySS consistently show the highest

12https://plants.ensembl.org/index.html
13https://phytozome.jgi.doe.gov/pz/portal.html

performance in reconstructing the coding sequences (Hölzer and
Marz, 2019), where Spades has the easiest setup, user-friendliness,
and lowest memory usage and runtime.

The gene expression data is used to reveal the functional
associations between the genes. While as few as eight samples
can be sufficient to identify relevant members of a metabolic
pathway (Nett et al., 2020), the expression data should ideally
capture organs/tissues which show contrasting levels of the
metabolite of interest. For example, among the four organs of
G. superba (leaf, stem, rhizome, and root), colchicine alkaloids
showed the highest accumulation in the rhizome, which allowed
the authors to elucidate most of the pathway by identifying
rhizome-specific genes by clustering analysis. In another study,
the authors took advantage of highly specific induction of
falcarindiol biosynthesis by pathogen elicitors and identified six
acetyltransferases that were upregulated upon treatment (Jeon
et al., 2020). Conversely, the lignin (Figures 2, 3), suberin, and
cutin (Figure 4) examples from Arabidopsis use one dataset
containing hundreds of publicly available RNA-seq experiments
that captures different organs, developmental stages, and growth
conditions. This comprehensive dataset can thus be potentially
used to identify all Arabidopsis biosynthetic pathways, as long
as the dataset captures the organs where a given pathway is
expressed. We have developed a user-friendly, cloud computing
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FIGURE 5 | Performance of co-expression networks in predicting correct enzymes in specialized metabolism. The rows contain different SM classes, as defined by
MapMan, while the columns contain four plants: maize (Zea mays, orange box), tomato (Solanum lycopersicum, red box), rice (Oryza sativa, gray box), and
Arabidopsis thaliana (green box). For each species, we calculate the performance for three networks, based on: Higest Reciprocal Rank (HRR), Mutual Rank (MR),
and Pearsson Correlation Coefficient (PCC). The shade of the cells and the cell numbers correspond to F1 score (harmonic mean of precision and recall), which
ranges from 0 (poor performance of prediction or too few genes associated to a specific pathway to perform a prediction) to 1 (perfect performance).

pipeline, LSTRaP-Cloud14, that provides tools to download
and quality-control publicly available gene expression data
and to perform co-expression list and co-expression network
guide gene analyses (Tan et al., 2020). Alternatively, Curse
can perform these analyses on the user’s computer and allow
the semi-automated annotation of the RNA-seq experiments15

(Vaneechoutte and Vandepoele, 2019).
The gene expression similarity analysis is used to identify

genes with similar expression patterns, which is the basis for
identifying functionally-related genes. If one or multiple guide
genes are known, we recommend the co-expression list approach
(Table 2), which can be performed by the LSTRaP-Cloud or
Curse. To identify gene clusters containing known participants
of the pathway of interest, clustering-based analyses of the
expression matrix (Table 1 and Figure 2B) can be done with

14https://github.com/tqiaowen/LSTrAP-Cloud
15http://bioinformatics.psb.ugent.be/webtools/Curse/

the ClustVis web-tool16 (Metsalu and Vilo, 2015). Alternatively,
CoExpNetViz allows the upload and co-expression analysis of the
user’s gene expression data17 (Tzfadia et al., 2016), and CoNekT
provides source code and instructions to set up a stand-alone
database18 (Proost and Mutwil, 2018).

IS CO-EXPRESSION A SILVER BULLET
IN BIOSYNTHETIC PATHWAY
DISCOVERY? NOT QUITE

The above examples demonstrate that gene expression and
co-expression analyses are valuable additions to the SM

16https://biit.cs.ut.ee/clustvis/
17http://bioinformatics.psb.ugent.be/webtools/coexpr/index.php
18https://github.com/sepro/CoNekT
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pathway discovery toolbox. However, as with many guilt-by-
association methods, we often observe many missing enzymes
(false negatives) and irrelevant genes (false positives). This is
exemplified by Figure 2C, where, e.g., COMT enzyme is not
detected (false negative) and where a large number of seemingly
irrelevant genes are found in the lignin biosynthesis network
(false positive).

To gage the co-expression networks’ performance in
identifying SM genes, we tested three network construction
methods (PCC, HRR, and MR) from four different species
(Zea mays, Solanum lycopersicum, Oryza sativa, and Arabidopsis
thaliana). The used networks are based on gene expression data
representing all major plant organs at different developmental
stages (Julca et al., 2020). We analyzed 15 different secondary
metabolic pathways associated with alkaloids, betaines,
glucosinolates, phenolics, and terpenoids (Figure 5). We then
predicted genes that are involved in each of the 15 pathways, by
using a network neighborhood approach (Hew et al., 2020), and
the F1 score to see how known members of each pathway could
be correctly classified by each of the networks. We observed
a complex interplay between the different metabolic pathways
and species. For example, the performance of the networks
was higher in Arabidopsis than tomato for nearly all pathways,
while, e.g., terpene pathway could be more readily predicted in
maize than Arabidopsis (higher scores in the latter plant), for
all three types of networks (HRR, MR, and PCC). Conversely,
methylerythritol 4-phosphate (MEP) pathway could not be
predicted at all in Arabidopsis (F1 score 0 for all networks).
These results indicate that co-expression networks can show
unpredictable performance when predicting SM pathways, and
more research is needed to understand which conditions would
result in best performance (quantity and quality of the expression
data, the network construction methods).

CONCLUSION AND FUTURE
PERSPECTIVES

Gene expression and co-expression network analyses are
valuable, unique tools to unravel the biosynthetic pathways
of specialized metabolism. The expression-based analyses’
versatility allows shortlisting of gene candidates with even
a few RNA sequencing samples (Nett et al., 2020) or
elucidation of multiple pathways with one large expression
dataset (Figures 1–4). We find ourselves in the log phase of

metabolic pathway discovery as open-source online tools are
publicly available (e.g., https://github.com/tqiaowen/LSTrAP-
Cloud) and repositories are brimming with gene expression data
for hundreds of plant species.

In addition to uncovering the enzymes underpinning the
various metabolic pathways, the co-expression networks present
two exciting, novel opportunities. Firstly, these analyses can
reveal non-enzymatic components of the pathways, such as
transporters and transcription factors (Table 1 and Figure 3).
The transcription factors are especially exciting, as changing
their expression can alter the whole pathway’s activity and cause
dramatic changes in metabolite levels (Zhao and Dixon, 2011).
Secondly, the networks can serve as top-down tools to uncover
new pathways by identifying novel clusters of connected genes.
For example, the analysis investigating the functional association
between MYB transcription factors and laccases (Figure 3) can
be repurposed to study associations between all enzymes in an
organism. The analyses discussed in this review can and should be
supplemented with other omics-based inference methods to pave
the way for more nutritious, resilient crops, and the development
of novel medicines.
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