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Genomic selection (GS) is transforming the field of plant breeding and implementing 
models that improve prediction accuracy for complex traits is needed. Analytical methods 
for complex datasets traditionally used in other disciplines represent an opportunity for 
improving prediction accuracy in GS. Deep learning (DL) is a branch of machine learning 
(ML) which focuses on densely connected networks using artificial neural networks for 
training the models. The objective of this research was to evaluate the potential of DL 
models in the Washington State University spring wheat breeding program. We compared 
the performance of two DL algorithms, namely multilayer perceptron (MLP) and convolutional 
neural network (CNN), with ridge regression best linear unbiased predictor (rrBLUP), a 
commonly used GS model. The dataset consisted of 650 recombinant inbred lines (RILs) 
from a spring wheat nested association mapping (NAM) population planted from 2014–
2016 growing seasons. We predicted five different quantitative traits with varying genetic 
architecture using cross-validations (CVs), independent validations, and different sets of 
SNP markers. Hyperparameters were optimized for DL models by lowering the root mean 
square in the training set, avoiding model overfitting using dropout and regularization. DL 
models gave 0 to 5% higher prediction accuracy than rrBLUP model under both cross 
and independent validations for all five traits used in this study. Furthermore, MLP produces 
5% higher prediction accuracy than CNN for grain yield and grain protein content. 
Altogether, DL approaches obtained better prediction accuracy for each trait, and should 
be incorporated into a plant breeder’s toolkit for use in large scale breeding programs.

Keywords: artificial intelligence, convolutional neural network, deep learning, genomic selection, multilayer 
perceptron, neural networks, wheat breeding

INTRODUCTION

Genomic selection (GS) was first proposed in animal breeding for predicting breeding values of 
untested individuals (Meuwissen et  al., 2001). Recently, this technology has been adopted by plant 
breeders for predicting genomic estimated breeding values (GEBV) using genome-wide markers 
in GS models (Lorenzana and Bernardo, 2009; Heffner et  al., 2010). GS aids in the selection of 
parents for use in crossing and in the selection of progenies at an earlier stage, ultimately reducing 
the time required for completing the breeding cycle (Jonas and De Koning, 2013; Poland, 2015). 
It offers the potential of increasing the genetic gain per unit time and cost by increasing selection 
accuracy and shortening the generation of the breeding cycle. GS has been applied in several crop 
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species, such as barley (Hordeum vulgare L.), cassava (Manihot 
esculenta), maize (Zea mays L.), wheat (Triticum aestivum L.), 
and rice (Oryza sativa L.) (Maenhout et  al., 2007; Isidro et  al., 
2015; Sallam et  al., 2015; Okeke et  al., 2017; Lozada and Carter, 
2019). The fast-growing popularity of GS since the last decade 
can be attributed to the reduction in genotyping costs, producing 
thousands of polymorphic markers for most cultivated species 
(Poland et  al., 2012; Wang et  al., 2014). This nonetheless has 
resulted in a problem of so-called “large p, small n” when predicting 
phenotypes using markers.

Several statistical models are used to address this “large p, 
small n” issue by using penalized regression approaches. The 
most common GS model, ridge regression best linear unbiased 
predictor (rrBLUP), assumes markers to be  random and have 
common variance and reduces the effect of all markers equally 
towards zero (Endelman, 2011). Least absolute shrinkage selection 
operator (LASSO) performs variable selection and continuous 
shrinkage simultaneously, where some markers are assumed 
to have an effect while others are set equal to zero (Tishbirani, 
1996). Elastic net (EN) is the combination of both rrBLUP 
and LASSO, which uses average weight penalties from these 
two models (Zou and Hastie, 2005). Various Bayesian models 
(Bayes A, Bayes B, Bayes C, Bayes Cpi, and Bayes D) are 
equally important as they assume a heavy-tailed prior distribution 
or uses a combination of distributions for marker effects (Pérez 
et  al., 2010; Perez-Rodriguez et al., 2012; Perez and de Los 
Campos, 2014). These models rely on the use of Markov Chain 
Monte Carlo (MCMC) for estimating the marker effects and 
are computationally intensive. Recently, compressed BLUP 
(cBLUP) and super BLUP (sBLUP) models have been developed 
which combines the variable selection operator of Bayes models 
with the computational advantage of mixed models (Wang 
et  al., 2018). All these models are parametric as they assume 
a relationship between predictors and traits of interest, thus 
only obtaining the additive variance components, completely 
ignoring gene-by-gene and higher-order interactions.

Machine learning (ML) is an alternative approach for prediction 
and classification. ML is a branch of computer science that 
combines statistic and mathematic techniques for progressively 
training the models without explicitly programming them. ML 
builds different algorithms which gradually learn from the sample 
data and training the model, which ultimately provides predictions 
(Samuel, 2000). Several studies using non-parametric techniques 
of ML have been conducted in plants and livestock using support 
vector machines (SVM), boosting, random forests, and 
Reproducing Kernel Hilbert Space (RKHS; González-Camacho 
et  al., 2012; González-Recio et  al., 2014; Howard et  al., 2014). 
The main advantage of using ML models for GS is that they 
learn the pattern from the data without being told any prior 
assumption, in this way they include all the variances, their 
interactions, and environmental components (Gianola et al., 2006; 
Campos et al., 2018; Gonzalez-Camacho et al., 2018). Although 
various studies are using ML for GS, to date, the field of deep 
learning (DL) has not been widely explored.

Deep learning is a branch of ML focusing on densely 
connected networks using artificial neural networks for training 
models (Min et  al., 2017). The concept of DL is based on the 

biological networks of the brain neurons. DL uses a different 
combination of layers where data is transformed across each 
layer for obtaining a better fit. Furthermore, DL uses nonlinear 
activation functions, allowing them to predict the genetic 
architecture of the trait accurately (Angermueller et  al., 2016; 
Wang et  al., 2020). The most prominent advantage of DL is 
the number of high capacity and flexible trainable parameters. 
Traditional Bayesian neural networks are not as deep as they 
do not perform multiple layers of nonlinear transformation 
to the data (Lecun et  al., 2015). DL models are continually 
being applied for classification and prediction problems (Pérez-
Enciso and Zingaretti, 2019; Ramcharan et  al., 2019). The 
performances of the DL algorithm have proved to be  higher 
or similar to that of traditional ML approaches in many fields 
like image processing, military target recognition, genomics, 
speed recognition, health care, reconstructing brain circuits, 
traffic signal classification, and sentiment analysis (Angermueller 
et  al., 2016; Campos et  al., 2018; Bresilla et  al., 2019; Zou 
et  al., 2019). Also, there are various successful applications  
of DL for biological sciences, the majority of which are  
involved in disease classification (Rangarajan et  al., 2018; 
Abdulridha et  al., 2020).

Deep learning employs multiple neurons with proposed 
models such as a convolutional neural network (CNN), recurrent 
neural networks (RNN), and multilayer perceptron (MLP), and 
has the potential for application in GS (Alkhudaydi et al., 2019; 
Crossa et  al., 2019; Cuevas et  al., 2019). The input layer for 
these models includes a marker information, whereas the output 
layer consists of responses, with different number of hidden 
layers. Implementation of DL algorithms is straightforward, 
but the optimum model performance depends upon the choice 
of hyperparameter selection, which is not trivial and 
computationally intensive (Lecun et  al., 2015; Young et  al., 
2015). Selection of hyperparameters is the most critical step 
for MLP, as it depends upon its ability to learn from the 
training data and can be  generalized to a new dataset when 
applied for predictions. The choice of making a right decision 
of the number of layers, number of epochs, number of neurons, 
type of activation function, type of regularization penalty, 
activation rate, stopping criteria, among others, is cumbersome 
(Pérez-Enciso and Zingaretti, 2019). Optimal selection of these 
parameters depends upon the expertise in modeling and defining 
the problem. Often, the selection of parameters from a large 
number of tuning parameters is difficult because of time 
constraints and nonlinear interaction between the various 
parameters (Lecun et  al., 2015; Young et  al., 2015). There are 
four commonly used approaches for tuning parameters 
optimization, namely, random search, grid search, optimization, 
and Latin hypercube sampling (Koch et al., 2017). The detailed 
explanations of these approaches are out of the scope of this 
paper and are referred to in other readings (McKay, 1992; 
Koch et  al., 2017; Montesinos-López et  al., 2018a).

Several studies have focused on the use of DL models in 
wheat. Ma et  al. (2018) have reported that CNN performs better 
for predicting grain length in wheat compared to traditional 
genomic best linear unbiased predictor (GBLUP). Similarly, 
Montesinos-López et  al. (2018b) observed that DL models were 
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better than GBLUP when genotype-by-environment interactions 
were ignored in predicting grain yield in maize and wheat. 
Mcdowell (2016) reported that DL models perform similarly to 
several linear regression and Bayesian techniques employed for 
GS. Although previous studies have not demonstrated a consistent 
advantage of DL over conventional penalized regression approaches, 
more efforts are required to explore the potential and constraints 
of DL for GS scenarios (Bellot et  al., 2018; Li et  al., 2018; 
Montesinos-López et al., 2019a; Abdollahi-Arpanahi et  al., 2020). 
It would, therefore, be  necessary to assess different DL models 
in the context of GS in plant breeding programs. In this study, 
we  evaluated the performance of two different DL algorithms, 
namely MLP and CNN, for predicting yield, yield components, 
and agronomic traits having a different genetic architecture. The 
objectives of this study are to (1) optimize DL models for predicting 
complex traits in spring wheat; (2) compare the accuracy of GS 
for DL models with rrBLUP, one of the most commonly used 
GS models in plant breeding; and (3) evaluate the effect of marker 
number on the accuracy of the models. This study will allow 
us to explore the potential of DL for predicting quantitative traits 
in breeding programs.

MATERIALS AND METHODS

Plant Material and Field Data
The spring wheat dataset used in this study consists of a nested 
association mapping (NAM) population containing 32 founder 
parents each crossed to common cultivar “Berkut” (Jordan 
et  al., 2018; Blake et  al., 2019). Due to space constraint, 650 
Recombinant inbred lines (RILs) from 26 NAM families which 
have genotyping data provided by Kansas State University were 
planted between the 2014 and 2016 growing seasons at the 
Spillman Agronomy Farm near Pullman, WA, United  States. 
A modified augmented field design was used in each trial 
with three replicated check cultivars [“Berkut,” “McNeal” (Lanning 
et  al., 1994), and “Thatcher”] in each block. Five agronomic 
traits with varying heritability and genetic architecture, including 
grain yield, grain protein content, heading date, plant height, 
and test weight were evaluated. Grain yield (t/ha) was calculated 
using a Wintersteiger Nursery Master combine (Ried im Innkreis, 
Austria) from grain weight per plot by harvesting whole plots. 
A Perten DA 7000 NIR analyzer (Perkin Elmer, Sweden) was 
used to determine the percentage of protein content in the 
grain. Days to heading was recorded as the number of days 
from planting to full exposure of spikes in 50% of the plot. 
Plant height (cm) was measured as length between the base 
of the plant to the tip of the fully emerged spike, excluding 
the awn when present. Test weight (kg  hL−1) was measured 
postharvest (Perkin Elmer, Sweden).

Statistical Analysis
Adjusted means were calculated for the unreplicated genotypes 
using the residuals derived separately for the individual 
environment using “lme4” function implemented in the R 
program using the model:

 Y Block Check residualsij i j ij= + +

where Yij is the trait of interest, Blocki is the fixed effect 
of the ith block, and Checkj corresponds to the effect of 
replicated check cultivar (Bates et al., 2015; R Core Team, 2017).

Broad-sense heritability for all phenotypic data points were 
calculated for each environment separately using the formula:

H g g e
2 2 2 2= +( )s s s/

where H2 is the broad-sense heritability, σ2
g and σ2

e are the 
genotypic and error variance components, respectively, obtained 
from the augmented randomized complete block design model 
treating genotype effects as random using the model equation:

Y Block Check Gen eij i j j i ij= + + + +( )µ

where Yij is the trait of interest, Blocki is the fixed effect 
of the ith block, Genj is the random effect of unreplicated 
genotypes j nested within ith block and distributed as independent 
and identically distributed, Genj ~ N(0, σ2

g), Checkj corresponds 
to effect of replicated check cultivar, and eij is the standard 
normal errors distributed as eij  ~  N(0, σ2

e) (Federer, 1961; 
Aravind et  al., 2020).

Genotyping
The NAM population was genotyped using the Illumina 90  K 
SNP array (Wang et  al., 2014) and genotyping-by-sequencing 
(GBS; Poland et  al., 2012). Information on genotyping, map 
construction, and marker calling has been previously reported 
(Jordan et al., 2018). The initial genotypic information consisted 
of 73,345 polymorphic markers anchored to the Chinese Spring 
RefSeqv1 map (International Wheat Genome Sequencing 
Consortium, 2014; Jordan et  al., 2018). RILs with missing 
phenotypic information in one environment were removed 
before filtering the genotypic data. SNP markers with more 
than 20% missing data, minor allele frequency of <0.10, and 
RIL missing >10% genotypic data were also discarded, resulting 
in a total of 635 RILs with 40,000 SNP markers used for 
analyses. Principal component analysis (PCA) was performed 
for assessing the population structure among the 26 NAM 
families using 40,000 SNP markers and 635 RILs. The whole 
data set and filtering pipeline used is provided on GitHub.1

Genomic Selection Models
Penalized Regression Models
Ridge regression best linear unbiased predictor is one of the 
most used GS models in plant breeding and was included 
here for comparison with the DL algorithms. Genome-wide 
marker effects were estimated using rrBLUP model for all 
traits (Endelman, 2011). GEBVs were calculated with mixed 
solve function implemented in R package “rrBLUP,” according 
to the model:

y Zu e= + +m

where y is an N  ×  1 vector of adjusted means for all 
unreplicated genotypes, μ is the overall mean, Z is an N  ×  M 

1 https://github.com/Sandhu-WSU/DL_Wheat.git
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matrix assigning markers to genotypes, u is a vector with 
normally distributed random marker effects as u  ~  N(0, I𝝈2

u), 
and e is the residual error with e  ~  N(0, I𝝈2

e). The solution 
for mixed equation can be  written as

u Z ZZ I yT T= +( )−l
1

where λ is the ridge regression parameter represented as 
λ  =  𝝈2

e/𝝈2
u is the ratio of residual and marker variances. 

rrBLUP has the potential for dealing with “large p and small 
n” with penalized regression and has high numerical stability 
with highly correlated markers (Hoerl and Kennard, 2000). 
Codes and data set used for implementing the rrBLUP GS 
model is uploaded at GitHub.1

Multilayer Perceptron
Multilayer perceptron is a densely connected network, which 
is a typical feedforward neural network and does not assume 
a particular structure in the input features (Gulli and Pal, 
2017). The basic structure of MLP consists of a densely connected 
network of the input layer, output layer, and multiple hidden 
layers (Figure  1). All these layers are connected by a dense 
network of neurons, where each neuron has its characteristic 
weight (Angermueller et  al., 2016). In the case of GS, the 
input layer consists of a certain fixed number of neurons where 
each neuron represents an SNP marker in the training set. 

There are multiple hidden layers with a different number of 
neurons. Different layers are connected by neurons with a 
strength called “weight.” The weight coefficient of neurons 
between the input and output layers is obtained from the 
training dataset using non-linear transformations. The number 
of output layer neurons is equal to the number of response 
variables in the GS model.

During the GS model training, the output of hidden layer 
one is a weighted average nonlinear transformation function 
of each input plus a bias (b; Figure  1). The output of the 
first layer (hidden layer 1) is represented as

Z b W f x1 0 0 0= + ( )

where Z1 is the output of the first layer, b0 is the bias 
for the first layer estimated from the rest of the weights 
(W0), x represents the genotypes of each individual, and f 
is a nonlinear activation function. This model is trained 
successively, where the output of neurons from the previous 
layer act as input for the next layer. The general expression 
for the model is

Z b W f xk k k k= + ( )− − −1 1 1

where Zk is the output vector for the GEBVs, and other 
terms of this equation are defined previously.

A

B

FIGURE 1 | Representation of multilayer perceptron (MLP) with three hidden layers and five SNP markers in the input layer. This shows the network structure for 
working of MLP, where the connection between different neurons is depicted (A); bottom half represents weight assigned to each neuron and prediction of output 
using nonlinear activation function (B).
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Convolutional Neural Network
Convolutional neural network is proposed to accommodate 
inputs that are associated with each other such as linkage 
disequilibrium between nearby SNP markers. A CNN is a 
special case of artificial neural networks where hidden layers 
typically consist of convolutional layers, pooling layers, flatten 
layers, and fully connected dense layers. In each convolutional 
layer, CNN automatically performs the convolution operation 
along with an input of predefined width and strides through 
the application of kernels and filters where the weights are 
the same for all SNP marker windows. The filter moves for 
the same window size across the input SNP markers, and 
CNN obtains the local weighted sum. The learned filters move 
across the input SNP marker data until the entire genotypic 
data are transverse. Each of these convolutional operations 
learns the coefficient of the so-called “kernel” or filter, which 
is equivalent to neurons of MLP. The output of the convolutional 
function can be  defined as an integral transformation and is 
represented as

 s t f k t k t x f xx( )= ∗( )( )= −( ) ( )∑
where k represents the kernel, convolution is the 

transformation of f into s(t), and this operation is performed 
over an infinite number of copies f shifting over the kernel 
along each chromosome and filters take into account the linkage 
disequilibrium along the chromosome. A max-pooling layer 
is added after each convolutional layer to account for 
dimensionality reduction and making filters invariant to the 
small changes in the input. The pooling layer smoothed out 
the results by merging the output of the previous convolutional 
layer by taking the minimum, mean, and maximum. Activation 
function and dropout is employed after the convolutional and 
dense layer (Figure  2).

The greatest advantage of CNN over MLP is their capability 
to reduce the estimation of the number of hyperparameters 
required for training the model. Successive output layers are 

produced by the action of the activation function over the 
previous convolution layer. Finally, the pooling operation is 
performed resulting in dimension reduction, smoother 
representation, and merging of kernel output by computing 
their mean, maximum, or minimum.

Hyperparameter Optimization
A grid search cross-validation (CV), which selects the parameters 
that provide minimum mean square error (MSE; Pedregosa 
et al., 2011; Cho and Hegde, 2019) was implemented to optimize 
the hyperparameters on the whole population and for all traits 
evaluated in this study. Based upon available literature, 
we  selected hyperparameters for training, and based on those 
parameters, a grid search CV with the full factorial design 
was implemented. The different hyperparameters which were 
tried for optimizing includes learning rate (constant and 
adaptive), activation function (relu, linear, tanh, identity, and 
logistic), solver (lbfgs, sgd, and adam), number of hidden layers 
(1, 4, 6, 8, and 10), number of neurons in completely dense 
network (10, 19, 38, 50, 62, 98, 112, and 150), drop out (0, 
0.01, 0.1, and 0.2), number of filters (16, 32, 64, and 128), 
and regularizations (L1 and L2). Grid search CV used the 
inner CV where the outer training data set was split to 80% 
for inner training and the remaining 20% for inner testing. 
The inner training data set was used for hyperparameter 
optimization using the Keras validation split function and 
internal capabilities. The best hyperparameters were selected 
that give the least MSE on the inner testing population, and 
hence those parameters were used for the individual traits 
(Gulli and Pal, 2017).

Overfitting, which is related to poor model performance 
on the validated set, is one of the biggest constraints in 
implementing DL strategies in plant breeding. With this, 
approaches such as regularization, dropout, and early stopping 
were applied to minimize overfitting in the models. Dropout 
includes randomly assigning a subset of training neuron’s weight 

FIGURE 2 | Representation of the convolutional neural network (CNN) employed in this study. The input layer consists of 40,000 markers with a kernel size of three 
in the convolutional layer. Dropout is employed after the second convolutional and first dense layer. Relu activation function was used for training the model and 
hyperparameters were selected by lowering the mean squared error.
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TABLE 1 | Broad-sense heritability of five different traits for each environment (2014–2016) evaluated in this study.

Environment Grain yield Grain protein content Test weight Plant height Heading date

2014 0.38 0.57 0.68 0.81 0.84
2015 0.24 0.35 0.59 0.59 0.80
2016 0.40 0.63 0.57 0.89 0.91

to zero to reduce complexity and overfitting. Herein, we  used 
a 0.2 fixed dropout rate during hyperparameter optimization 
based on Srivastava et  al. (2014) and Early stopping involves 
terminating the training process depending on the validation 
performance. As soon as the validation error reaches a minimum, 
training is halted. Keras provides an API (Callbacks) to 
incorporate the feature of early stopping. We  used the 
EarlyStopping callback to create our MLP and CNN model. 
The other regularization techniques, L1 and L2, penalize weight 
values of the neural network. This technique involves making 
values close to zero and negative equal to 0 as they do not 
affect the model’s performance. L1 penalizes the sum of the 
absolute values of weights, whereas L2 penalizes the weight’s 
sum of the square. Our analysis made use of the parameter 
alpha of MLP and added L1_L2 regularizer in the first 
convolutional layer of CNN model. The DL algorithms were 
implemented in Scikit learn and Keras in Spyder (Python 3.7; 
Pilgrim and Willison, 2009; Pedregosa et  al., 2011; Gulli and 
Pal, 2017). Codes and data set used for implementing the DL 
models is uploaded at GitHub.1

Cross-Validation and Independent Prediction
Prediction accuracy for the GS models (rrBLUP, MLP, and 
CNN) was evaluated by implementing a five-fold CV where 
80% of the data was included in the training population, and 
20% of the remaining data was used as a testing set within 
each environment. Two hundred replications were performed 
for each model to assess model performance. Each replication 
consisted of five iterations, where the dataset was split into 
five groups, and a different testing set was used for each 
iteration. Instant accuracy was calculated where correlation for 
each testing set was obtained and an average of five iterations 
was reported. Accuracy of the GS model was defined as the 
Pearson correlation coefficient between GEBVs and true 
(observed) phenotypes. A total of nine random sets of markers 
were used for training models and comparing the effect of 
marker number on the model’s performance, including 1,000 
(M1,000), 5,000 (M5,000), 10,000 (M10,000), 15,000 (M15,000), 20,000 
(M20,000), 25,000 (M25,000), 30,000 (M30,000), 35,000 (M35,000), and 
40,000 (M40,000) SNP markers, and these models were also 
implemented using 200 replications with five-fold CV.

Independent validation was performed by training the GS 
model on the previous growing season, and predictions were 
made for future years. Briefly, the GS model was trained on 
the 2014 environment, and the prediction was made for the 
2015 and 2016 environments. Similarly, the GS model trained 
on 2015 environment was used for predicting the 2016 
environment. This type of validation represents the scenario of 
predicting the performance of a line before planting them in 

the field for the next growing season. Due to the computational 
burden of DL models, the whole analysis was completed on 
the WSU’s high computing cluster.2 When implemented on a 
single system, MLP and CNN were 40- and 55-fold more 
time-consuming. We solved this issue by executing the iterations 
in parallel on the cluster computers.

RESULTS

Heritability and Population Structure
Broad-sense heritability for all the five traits was obtained for 
each environment (Table 1). Each trait had different heritability 
values, depicting different genetic makeup, and varying 
environmental effects. Plant height and heading date were highly 
heritable, grain protein content, and test weight were moderately 
heritable, and grain yield was the least heritable among the 
traits. The heritability of each trait was lowest for the 2015 
environment suggesting a more non-genetic variance effect for 
that environment. PCA showed the presence of two subgroups 
in population where PC1 and PC2 explained 5 and 4% of 
total genetic variation, respectively (Supplementary Figure  1). 
Furthermore, PC1 and PC2 for five different phenotypic traits 
evaluated in this study explained 31.8 and 21.4% of the variation 
(Supplementary Figure  2). In PC1, grain protein content and 
days to heading were clustered together and were opposite 
from test weight and grain yield.

Optimization of Hyperparameters for Each 
Trait
Different hyperparameters for each trait were selected using 
a grid search CV for 200 iterations by lowering the MSE. 
The combinations of hyperparameters were selected for each 
trait that had the lowest MSE during 200 iterations of grid 
search CV. These selected hyperparameters were used for 
predicting the traits for each environment separately. All the 
hyperparameters chosen in this study are provided for MLP 
(Table  2) and CNN (Table  3). The number of filters was the 
most important factor for lowering MSE in the case of CNN. 
In the case of MLP, activation function and number of neurons 
in layers were the main parameters controlling model 
performance. Different dropout and regularization values were 
selected to reduce overfitting in the model by looking at 
training accuracy, and these values were used for the testing 
set (Tables 2 and 3). We  provided the information about the 
hyperparameters required for tuning each trait separately because 
of the different genetic architecture of the five traits used in 

2 https://hpc.wsu.edu/
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this study. These results were consistent with other studies 
which also showed that different hyperparameters are required 
for various traits in plant breeding (Cuevas et  al., 2019; 
Montesinos-López et  al., 2019b).

Comparison of Model Performances for 
Cross-Validations
We compared the performances of two DL models with rrBLUP 
for each of the environments using the whole marker dataset 
(M40,000) for GS. Figure  3 shows the prediction accuracy for 
each of the five traits with three models, namely rrBLUP, MLP, 
and CNN under each environment. Furthermore, average 
prediction accuracy over the environment for each model is 
provided for all five traits (Table 4). Average prediction accuracy 
was highest with MLP for all the five traits. MLP improves 
the prediction accuracy from 3 to 5% for all the traits compared 
to rrBLUP, which is the most often used model in wheat 
breeding for predicting quantitative traits (Rutkoski et al., 2011; 
Sun et  al., 2019). Even CNN gave 0 to 3% higher prediction 
accuracy than rrBLUP (Table  4). These results suggest that 
DL models should be included to obtain slightly higher prediction 
accuracies, as even minor increases in prediction accuracy could 
improve the selection efficiency in a breeding program. The 
improvement in prediction accuracy with DL models compared 
to the linear rrBLUP model is attributed to the use of nonlinear 
activation functions relu and tanh, which model the nonlinear 
relationship and ignore the restrictive assumptions of rrBLUP.

Multilayer perceptron gave 5% higher prediction accuracy 
than CNN for grain protein content and grain yield (Table  4). 
Among the five tested traits, grain yield and grain protein 
content are controlled by a large number of QTL, and high 
prediction accuracy with MLP is due to use of more hidden 

layers and less number of neurons which more efficiently 
capture the complex relationship between the SNP markers 
and response (Table  2; Sukumaran et  al., 2015; Arora et  al., 
2017). Furthermore, both MLP and CNN performed similarly 
for predicting test weight, plant height, and days to heading. 
This suggests that either of these models could be  used for 
predicting those traits in spring wheat. Furthermore, some 
hyperparameters are specific for particular traits (Tables 2 and 3). 
Grain yield and grain protein content requires a greater number 
of hidden layers compared to the other three traits, demonstrating 
that complex DL networks are required for highly quantitative 
traits (Bellot et  al., 2018).

Complete details about prediction accuracy for each model 
on each environment is provided in full detail in Figure  3. 
There was a difference in prediction accuracy for each trait 
with all the models under different environmental conditions. 
This is because of the different heritability of each trait across 
the environments and the varying amounts of genetic variances 
captured by each model. Furthermore, DL models were able 
to capture the different amount of environmental variance as 
shown in Figure  3A, where the rrBLUP and DL models 
performed similarly for the 2016 environment, whereas for 
2014, MLP had an 8% higher prediction accuracy than rrBLUP, 
suggesting that more environmental effect was captured. Similar 
trends can be  explained for all the other traits predicted in 
this study (Figure  3).

Marker Set Optimization
The number of predictors (markers) has been reported to have 
a significant effect on the GS model performance (Heffner et al., 
2011; Ma et  al., 2018; Lozada and Carter, 2019). Therefore, 
we  assessed the effect of the number of SNP markers on the 

TABLE 2 | Hyperparameters selected for each trait using a random grid search CV for MLP. 

Hyperparameter Grain yield Grain protein content Test weight Plant height Heading date

Activation function relu relu relu tanh tanh
Solver adam adam sgd sgd sgd
Learning rate Adaptive Adaptive Constant Constant Constant
No. of hidden layers 4 4 4 3 3
No. of neurons (38, 38, 38, 19) (19, 19, 19) (50, 38, 38) (120, 90, 90) (90, 90, 90)
Dropout 0.2 0.2 0.2 0.2 0.2
Epochs 200 200 200 150 150
Regularization 0.1 0.1 0.05 0.05 0.05

These hyperparameters were later used for training the models.

TABLE 3 | Hyperparameters selected for each trait using a random grid search CV for CNN.

Hyperparameter Grain yield Grain protein content Test weight Plant height Heading date

Activation function relu relu relu relu relu
Solver adam adam adam adam adam
Learning rate adaptive adaptive constant constant constant
Number of filters 64 64 64 64 64
Dropout 0.2 0.2 0.2 0.2 0.2
Epochs 200 200 200 200 200
Regularization 0.05 0.05 0.05 0.05 0.05

These hyperparameters were later used for training the models.
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performance of GS models evaluated in this study. Across all 
models, an increased marker number was related to improved 
prediction accuracy. The lowest prediction accuracy was obtained 
using M1,000 for all the evaluated traits (Figure 4). Non-significant 
differences in model performances were observed when the 
marker number was increased from M5,000 to M40,000 for rrBLUP 
(Figure  4). MLP and CNN models rendered consistent 
improvement in prediction accuracy as the number of markers 
were increased in the model (Figure  4); nevertheless, trends 
vary across traits. Accuracy for plant height and days to heading 
reached a stable value when M5,000 or more markers were used 
for MLP and M10,000 or more markers were included in CNN 
model (Figures 4D,E). This can be attributed to a small number 
of QTLs which are controlling these traits; hence, this number 

of markers is able to capture all of them efficiently. In the 
case of test weight, there was a consistent increase in prediction 
accuracy for MLP and CNN until marker numbers reached 
above M15,000, where no further significant increase in accuracy 
was observed (Figure 4C). Prediction accuracy for grain protein 
content and grain yield continuously increased as markers were 
increased to M30,000 for MLP and M25,000 for CNN (Figures 4A,B). 
These results suggest that with the reduction in genotyping 
cost, which produces a plethora of genotyping information, DL 
models should be used to obtain an increased prediction accuracy 
by efficiently using a large number of predictors in the GS models.

Prediction Accuracy Across Environments
In addition to looking at prediction accuracy within environments, 
model performance in an across-environment prediction scenario 
was also assessed. GS models were trained on data from the 
previous year, and predictions were made for next year phenotypic 
data. Average prediction accuracy for the independent validations 
for all five traits is provided (Table  5). Figure  5 shows the 
prediction accuracy for each of the five traits with three tested 
models under each environmental condition when the model 
was trained on the previous year dataset. There was a significant 
decrease in prediction accuracy under independent validation 
compared to CV for each trait (Tables 4 and 5). This is because 
of using different populations for training and testing the model, 
which results in a different amount of non-genetic variances. 

A B

D E

C

FIGURE 3 | Comparison of model performance for five different traits used in this study. (A-E) represent the model’s performance for grain yield, grain protein 
content, test weight, plant height, and days to heading, for each trait under each environment using five-fold cross-validation (CV) and 40,000 SNP markers. The 
x-axis represents the environment, and the y-axis represents the prediction accuracy for the model.

TABLE 4 | Comparison of average prediction accuracy with three models 
(rrBLUP, MLP, and CNN) for five traits evaluated in this study and predicted 
separately for each environment for spring wheat. 

Model Grain 
yield

Grain 
protein 
content

Test 
weight

Plant 
height

Heading 
date

rrBLUP 0.39 0.48 0.45 0.52 0.46
MLP 0.44 0.53 0.48 0.57 0.51
CNN 0.39 0.48 0.47 0.55 0.49

The highest prediction accuracy is bolded for each trait under each model scenario.

https://www.frontiersin.org/journals/plant-science
www.frontiersin.org
https://www.frontiersin.org/journals/plant-science#articles


Sandhu et al. Deep Learning in Wheat Breeding

Frontiers in Plant Science | www.frontiersin.org 9 January 2021 | Volume 11 | Article 613325

Independent validations could be potentially improved by inclusion 
of genotype by environmental interactions in the model or by 
inclusion of more phenotypic data in the training models (Heffner 
et  al., 2010; Lorenz et  al., 2011). Furthermore, DL models 
performed equal or slightly better than rrBLUP for all the traits 
and strengthens the findings from the CV analysis (Table  5).

DISCUSSION

Genomic selection is transforming the field of plant breeding, 
and therefore using models with increased predictive power is 
relevant. DL is a new ML-based technique which explores the 
complex relationships hidden in the data for making predictions. 

In this study, we  investigated the application of DL-based GS 
models for predicting complex traits in spring wheat. DL 
approaches were successfully applied for predictions and 
optimization of hyperparameters for each trait. Higher prediction 
accuracy (0–5%) with DL models compared to rrBLUP were 
observed for predicting five traits. Using a different number 
of markers in the model influenced the accuracy of GS for 
the evaluated traits, where an improved accuracy was related 
to increased marker number.

The optimization of hyperparameters for DL models is critical 
and challenging because of the high computational costs in 
this study, nevertheless, this optimization issue was solved using 
grid search CV (Young et  al., 2015). First, we  observed that 
each trait requires various combinations of hyperparameters, 
as prediction accuracy is dependent upon the interaction of 
these factors (Bellot et al., 2018; Montesinos-López et al., 2018b). 
The different tuning parameters for each trait depend on the 
genetic architecture of the trait. We  observed that the “relu” 
activation function was the most important for predicting all 
traits in CNN and most of the traits in MLP, suggesting that 
“relu” function is critical for training GS models in wheat. 
Several studies have validated this function as a universal function 
for regression-based prediction models (Lecun et  al., 2015; 
Pérez-Enciso and Zingaretti, 2019). Furthermore, different layers 
in CNN (convolutional, max-pooling, dense and fully connected) 
require a different set of hyperparameters, thus creating challenges 

TABLE 5 | Comparison of average prediction accuracy under the independent 
validation scenario with three models (rrBLUP, MLP, and CNN) for five traits 
evaluated in this study for spring wheat.

Model Grain 
yield

Grain 
protein 
content

Test 
weight

Plant 
height

Heading 
date

rrBLUP 0.20 0.34 0.25 0.33 0.25
MLP 0.24 0.37 0.29 0.39 0.27
CNN 0.23 0.35 0.28 0.39 0.27

The highest prediction accuracy is bolded for each trait under each model scenario.

A B

D E

C

FIGURE 4 | Comparison of markers numbers for each of the genomic selection (GS) models for predicting five different traits in wheat. (A-E) represent the model 
performances for grain yield, grain protein content, test weight, plant height, and days to heading, respectively. The x-axis represents the number of markers in the 
model, and the y-axis represents prediction accuracy.
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in understanding the complex biological connection (Min et al., 
2017). We  obtained a higher prediction accuracy with DL, but 
those results are only valid for the hyperparameters used in 
this study (Montesinos-López et  al., 2018b).

The high prediction accuracy of DL models compared to 
rrBLUP under both cross- and independent-validation scenarios 
can be  attributed to the presence of hidden layers which 
automatically captures the complex hidden interaction without 
prior specification (Lecun et  al., 2015). This means that unlike 
rrBLUP, which only models first-order interactions, DL models 
can capture interactions of large orders without specifying so in 
the model. DL could therefore explore data in such a way that 
humans cannot see and extract conclusions which otherwise are 
not possible to catch (Goodfellow et  al., 2016). Higher or equal 
prediction accuracy of DL with rrBLUP for all the traits suggest 
that these models should be further explored in wheat, to further 
improve the prediction accuracy with inclusion of secondary 
correlated traits and genotype-by-environment interaction effects 
(Cuevas et  al., 2019; Montesinos-López et  al., 2019b).

It should be  noted that rrBLUP was competitive with the 
DL models in terms of the accuracy of GS in the current 
study. The rrBLUP model’s interpretability, transparency, and 
absence of the time-consuming task of hyperparameter tuning 
still makes it an attractive approach for GS, though the potential 
of improving prediction accuracy using DL approaches could 
not be  discounted. Ma et  al. (2018) reported that DL-based 
methods performed better than rrBLUP for predicting grain 

length, grain hardness, plant height, grain protein, and thousand 
kernel weight in wheat. They further suggested that both DL 
and rrBLUP models should be  used for selecting the “best” 
individuals. Our results were consistent with their observations 
that DL approaches give slightly better prediction accuracy than 
rrBLUP, but with some computational costs associated with 
the DL models. Montesinos-López et  al. (2018b) on the other 
hand observed DL models to be  superior compared to GBLUP 
in six out of the nine traits evaluated in wheat and maize. 
Liu et  al. (2019) also demonstrated the superiority of single 
and dual CNN models over the rrBLUP for predicting yield, 
protein, oil, moisture, and height in soybean (Glycine max L.). 
Similarly, Zingaretti et al. (2020) showed that DL models perform 
better than conventional linear statistical models for predicting 
traits having epistatic variances in the allopolyploid species of 
strawberries (Fragaria x ananassa) and blueberries (Cyanococcus 
spp.). These and our results open the field of DL in plant 
breeding and suggest that there is a great potential to increase 
predictive power for complex traits using DL approaches.

The performance of DL models improves when a large 
dataset is used for training the model (Min et  al., 2017). Our 
current results and some related works, nonetheless, support 
that DL based models can reach an equivalent or superior 
accuracy than traditional linear models for GS even with the 
smaller dataset for training (Ma et al., 2018; Montesinos-López 
et  al., 2018a). Furthermore, a previous study using the largest 
dataset analyzed so far (100  k individuals) for training the DL 
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C

FIGURE 5 | GS model performance for independent validation using all three models for predicting five different traits in wheat (A-E). The x-axis represents the 
environments where predictions were implemented. The first year indicates the testing, whereas the second year is the training environment.
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model does not provide the superiority over the linear models 
(Bellot et al., 2018). These results altogether suggest that training 
population size is less important compared to the trait used 
for the prediction; this does not however undermine the use 
of large population sizes in the GS model. The biggest issue 
with a small dataset for DL is overfitting, which results from 
the failure of the model to learn general patterns present in 
the data. We  tried to avoid overfitting in our models using 
dropout and regularization, which involves the removal of some 
fixed number of neurons during model training (Lecun et al., 2015; 
Bellot et  al., 2018).

One drawback of DL models is that different hyperparameters 
handle different parts of the data, resulting in a problem for 
interpreting biological significance and importance of each 
feature (marker) in the model (Bellot et  al., 2018; Cuevas 
et  al., 2019). DL models, consequently, might not be  useful 
for providing insights into the genetic architecture of the trait; 
instead, genome-wide association studies might be  more 
appropriate for this purpose. Furthermore, the computational 
cost is a significant hindrance for training DL models, as 
multiple hyperparameters are required to be  optimized for 
each trait separately (Gulli and Pal, 2017; Cho and Hegde, 
2019). Plant scientists are often interested in understanding 
the biological meaning of prediction models, which is difficult 
in DL-based models because of the “black-box” nature of neural 
networks, and a large number of layers and neurons involved 
in training the model. Finally, DL based models require a 
background in computer science and statistics, which might 
require additional expertise or collaborations. Nevertheless, 
despite these limitations, DL approaches could still be  used 
in the context of GS in plant breeding programs. Overall, this 
study opens a new avenue of DL for the prediction of complex 
traits in plant breeding.

CONCLUSION

In this study, we compared the performance of two DL models, 
namely MLP and CNN, with rrBLUP for predicting five different 
traits in spring wheat. Our results suggest that DL based models 
are superior for predicting all five traits used in this study. 
We optimized the hyperparameters required for training different 

traits and validated that each trait requires a specific set of 
hyperparameters for best performance. We  observed that 
prediction accuracy for DL models was trait dependent and 
improved as the number of predictors (markers) in the models 
increased. Although training the DL models is computationally 
intensive and challenging, we  found that the application of 
DL-based approaches is feasible and promising in terms of 
improving the prediction accuracy for complex traits in spring 
wheat. For these reasons, DL models should be  incorporated 
into a plant breeder’s toolkit for use in large scale breeding 
programs to improve genetic gain for quantitative traits.
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