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Weeds can be major environmental and economic burdens in New Zealand. Traditional
methods of weed control including manual and chemical approaches can be time
consuming and costly. Some chemical herbicides may have negative environmental and
human health impacts. One of the proposed important steps for providing alternatives
to these traditional approaches is the automated identification and mapping of weeds.
We used hyperspectral imaging data and machine learning to explore the possibility
of fast, accurate and automated discrimination of weeds in pastures where ryegrass
and clovers are the sown species. Hyperspectral images from two grasses (Setaria
pumila [yellow bristle grass] and Stipa arundinacea [wind grass]) and two broad leaf
weed species (Ranunculus acris [giant buttercup] and Cirsium arvense [Californian
thistle]) were acquired and pre-processed using the standard normal variate method. We
trained three classification models, namely partial least squares-discriminant analysis,
support vector machine, and Multilayer Perceptron (MLP) using whole plant averaged
(Av) spectra and superpixels (Sp) averaged spectra from each weed sample. All three
classification models showed repeatable identification of four weeds using both Av and
Sp spectra with a range of overall accuracy of 70–100%. However, MLP based on the
Sp method produced the most reliable and robust prediction result (89.1% accuracy).
Four significant spectral regions were found as highly informative for characterizing the
four weed species and could form the basis for a rapid and efficient methodology for
identifying weeds in ryegrass/clover pastures.

Keywords: hyperspectral imaging, weeds classification, superpixel, PLS-DA, multilayer perceptron

INTRODUCTION

Pastures based on perennial ryegrass (Lolium perenne) and white clover (Trifolium repens) are the
main source of forage for animal production in New Zealand (McClearn et al., 2020). Weeds are a
major economic constraint. Within the primary sector alone, weeds cost farmers NZ$50M in actual
expenditure on chemical herbicides and labor (Bourdôt et al., 2007). Technologies that reduce
these costs, and help minimize the use of synthetic herbicides, would improve the value of forage
production (Bacco et al., 2018).
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Recently, technologies such as hyperspectral imaging
(HSI) systems are providing opportunities for rapid
classification of plant species both in the laboratory and the
field (Griffel et al., 2018; Liu and Zhang, 2018; Xu et al.,
2018; Ferreira et al., 2019). The advantage of HSI is the
provision of a combined spectroscopy and relationships
between various chemical components and the absorption
of spectra (Curran, 1989; Ebbers et al., 2002). The principle
of HSI spectroscopy is based on molecular vibrations
in the IR region (Youngentob et al., 2012). Therefore,
absorbance at specific wavelengths, which might be related
to specific chemical bands, can be used for different materials
classification and quality determination (Vaiphasa et al., 2007;
Schwanninger et al., 2011).

Many attempts have been made to use the visible light
imaging or Red-Green-Blue (RGB) to identify weeds (Ahmad
et al., 2018; Raja et al., 2020). However, shape, color and size,
are limiting constraints of RGB imaging for the identification
of species with similar phenotype (Wang et al., 2019). HSI
can overcome these limitations by capturing spectral and
spatial information simultaneously. It has a proven history
of widespread use in materials discrimination and quality
estimates including in meat science (Al-Sarayreh et al., 2018;
Reis et al., 2018), forestry (Te et al., 2019), and land cover
mapping (Jiang et al., 2017; Xu et al., 2018). Shorten et al.
(2019) showed the potential of HSI for the measurement of
a few components of forage quality. Other studies (Ahmad
et al., 2019; Farooq et al., 2019b) indicate promising potentials
for plant identification based on chemical signatures of
different species.

Numerous analytical methods for HSI data classification
have been reported (Lunga et al., 2014; Li et al., 2017;
Audebert et al., 2019). Among these techniques, support
vector machine (SVM; Yu et al., 2012; Peng et al.,
2015) and partial least squares discriminant analysis
(PLS-DA; Yang et al., 2015; Carreiro Soares et al., 2016;
Walter et al., 2019) are considered as the most reliable
techniques. This is specifically the case when limited
training data are available (Melgani and Bruzzone, 2004;
Chevallier et al., 2006).

Machine learning has been widely used for image classification
(Chen et al., 2014). The Multilayer Perceptrons (MLP)
methods have the advantage of handling a large number
of training data (Golhani et al., 2018; Taneja, 2020). These
methods could automatically learn features, while yielding
comparable results on HSI classification process to other
methods (Sutskever and Hinton, 2008).

Generally, the original HSI image contains the target (i.e.,
weeds) as well as the background and other components that
could affect the labeling accuracy of the target species. To
remove the background and obtain the region of interest (ROI),
a segmentation strategy is required (Ren and Malik, 2003).
Single or multistep thresholding algorithms are commonly used
for obtaining the ROI and extracting the average spectrum
of a sample (Sharma and Bhavya, 2020). Building prediction
models based on the extracted spectra is commonly used for
indoor applications (Mishra et al., 2017; Yuan et al., 2019).

Spatial variation in spectra requires more attention in pixel-
wise prediction and outdoor applications for achieving high
prediction accuracy (Vaughn et al., 2016).

Image segmentation is a crucial step in analyzing and
understanding the contents of an image. It can be used to
extract a wide range of image features including spatial features
and superpixel (Sp) segmentation is one of these segmentation
methods (Ren and Malik, 2003). In this method the pixels
are grouped into many small segments adhering to the target
boundaries where each segment shares the same spectral and
spatial features of a common target (Li and Chen, 2015). It
provides a compact and uniform segmentation for the target and
extracts the spatial spectra from the image (Fan et al., 2017).

Therefore, we hypothesize that there are unique spectral
signatures in each weed species, which are detectable by HSI and
modeling. To test our hypothesis, we used three common weeds
and a proxy weed species in ryegrass paddocks of New Zealand
(NZ). The three weed species were the annual winged thistle
(Carduus tenuiflorus Curtis), the annual yellow bristle grass
[Setaria pumila (Poir.) Roem. & Schult.] and the perennial giant
buttercup (Ranunculus acris L.). Winged thistle is a problematic
weed of drought-prone low-fertility sheep and beef cattle pastures
while yellow bristle grass and giant buttercup are weeds of high-
fertility dairy pastures (Bourdôt et al., 2003; Lamoureaux, 2014).
The fourth species, wind grass [Anemanthele lessoniana (Steud.)
Veldkamp], is a NZ native species. It was used as a proxy for
Chilean Needle Grass [Nassella nessiana (Trin. & Rupr.)], which
cannot legally be cultivated in NZ. This grass is currently limited
in its geographical distribution in New Zealand but threatens
vast tracts of low-fertility drought prone hill-country pasture land
(Bourdôt et al., 2010, 2012). Proven true, this hypothesis will
allow future development of database for spectral signatures of
weeds, which is valuable to detect weeds independently of the
type of fields they are found in (i.e., independently of the type
of plant species that are surrounding the weeds).

MATERIALS AND METHODS

Weed Sample Preparation
Four criteria were considered to choose the weed species, i.e.,
cover grass, broadleaf, perennial, and annual weeds. Selected
weed species included three weeds of ryegrass pastures [thistle
(TT), yellow bristle grass (YBG), and buttercup (BC)] and one
proxy endemic species [wind grass (WG)] (Figure 1). Weed seeds
were sourced from Margot Forde Germplasm Centre (MFGC),
Palmerston North, NZ. For each weed species, 30 single seeds
were planted in pots (one plant per pot) on 2 October 2018 at
AgResearch Ruakura campus (Hamilton, New Zealand), The pots
were standard 7 cm (7 × 7 × 8 cm) plastic pots placed on tables
in the open-air greenhouse with a temperature between 18 and 25
degrees and watered as required (2–3 times a week). The standard
Daltons potting mix soiled was used (40% bark fiber, 20% C.A.N
Fines A grade, 20% Coco fiber classic, 20% pumice 7 mm plus
fertilizer containing lime, permawet, osmocote, microplus (Te,
Mg, and Fe), Gypsum, dolomite, and coated ExteNd). After
3 weeks, all plants were transferred to the lab for HSI scanning.

Frontiers in Plant Science | www.frontiersin.org 2 January 2021 | Volume 11 | Article 611622

https://www.frontiersin.org/journals/plant-science
https://www.frontiersin.org/
https://www.frontiersin.org/journals/plant-science#articles


fpls-11-611622 January 19, 2021 Time: 15:59 # 3

Li et al. Weeds Identification use HSI

FIGURE 1 | The four weed species (a) Thistle (TT), (b) Yellow bristle grass (YBG), (c) Buttercup (BC), and (d) wind grass (WG).

Hyperspectral Imaging
A line scan HSI spectrograph system (Extended VNIR, Headwall
Photonics, Fitchburg, MA, United States), with a 320 × 240
pixels camera was used for the HSI data collection. This system
covered the range of 550–1,700 nm spectra with 5 nm spectral
resolution and 235 wavelengths from the visible and NIR range
of the electromagnetic spectrum. A halogen lamp light source
(JCR 21V 150W/AL Japan 2DB) was set up on one side of the
camera’s lens, at 30o from the vertical plane as the illumination
system. The light power was adjusted using a white reference
tile (Labsphere Inc., North Sutton, NH, United States) where the
highest intensity detected in the white reference tile (Labsphere
Inc., North Sutton, NH, United States) was set as 85% of the
saturation of the detector to prevent areas where the sample
may saturate the detector. The distance between the plant
sample and the camera was adjusted to 25 cm and the plants
were placed directly below the HSI system with the camera
exposure time set on 25 ms. The translation speed of the linear
stage was set to 11.1 mm/s. The white reference image was
captured by placing a white tile under the hyperspectral camera.
Dark reference images were acquired with the lens cap on the
hyperspectral camera.

Single weed-pots were placed on the linear stage to capture
the hyperspectral images when they pass under the camera.
Considering that each pot was scanned individually, the presence
of shadows was not a major issue. For cases where the scanning is
performed in the field, it is possible to use a different illumination
system to reduce the presence of shadows (Bateman et al., 2020).

Three steps of the workflow for identification of weeds are
shown in Figure 2. These three steps are:

Step 1: Acquiring hyperspectral images
Hyperspectral images were captured for 30 samples of each

weed. Four types of weeds samples were present so in total, 120
hyperspectral images of weeds have been captured.

Step 2: Image Processing
Captured hyperspectral images were go through a

series of steps to process them for extracting the spectral
data for modeling.

Step 3: Modeling
Spectral data extracted from the image processing

step pre-processed and then it was used as an input for
model development.

Image Processing
This was the second step of the workflow where ROI extracted by
employing segmentation on calibrated hyperspectral images.

Calibration
Each captured hyperspectral image was calibrated, using dark
reference (D), and white reference image (W). Hyperspectral
images raw intensity values were used to calculate reflectance by
using Eq. 1.

Rc =
Xraw − XD

Xw − XD
(1)

where Rc is the absolute reflectance, Xraw stands for the intensity
value of sample weeds scanned, Xw symbolizes the intensity value
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FIGURE 2 | Proposed workflow for identification of Weeds.

of captured white reference and XD represents the intensity of the
dark reference.

Segmentation
The aim of segmentation was to extract plant ROI by segregating
the background (i.e., soil, stones, etc.) from the vegetation
(i.e., leaves of different weeds). Custom code was generated in-
house using R for thresholding segmentation and superpixel
segmentation. Details of this are provided below.

(a) Thresholding segmentation: A thresholding algorithm
was developed by applying threshold value of 0.19 at
950 nm wavelength. This generated a mask which was then
multiplied with the original HSI image to create an image
of vegetation material only (Figure 3). The spectral data
extracted after the thresholding segmentation was averaged
and we named these averaged spectra as “Av” spectra
which is the spectra for each plant with 235 components
corresponding to 235 wavelengths. To obtain the Av, the
mean spectrum of 120 segmented HSI images (one HSI
image for each potted plant) was calculated on weed leaves
resulting in the collection of 120 samples, which were used
for training (96 samples), and validating (24 samples) the
PLS-DA, SVM, and MLP models.

(b) Superpixel segmentation (Figure 4): The simple linear
iterative clustering (SLIC) algorithm (Achanta et al., 2012)
was used to divide the plant image into non-overlapping
patches Sp (superpixels). This was achieved by taking the
similarity in spectral and spatial domains into account
when grouping pixels into clusters. Principal components
analysis (PCA) was used to transform the original HSI
image (where each pixel contained 235 wavelengths)
into three channels (each pixel contained 3 principal

components). In total, 120 PCA images were created. This
was followed by the segmentation of each PCA image
into 400 patches using SLIC algorithm. The patches that
contained leaves were extracted and the mean spectrum
of each valid patch was extracted from the HSI image
and used as the spectral and spatial (Spectro-spatial)
features of the weed leaves. All patches in each plant
were marked with the same label. We denoted it as “Sp”
averaged spectra which mean each plant has “n” “SP”
spectra, each containing 235 elements corresponding to
235 wavelengths. “n” is the number of super-pixels for an
individual plant. This number of clusters used in SLIC (i.e.,
400 patches) was enough to avoid patches mixing regions
from weed leaves and the background. While for this study
the valid patches (which contained leaves) were separated
manually, in a practical application a model may be used
to separate between patches representing the plant leaves
and the background.

Modeling
Three commonly used discrimination models for object
classification were used in this study. These were partial least
squares-discriminant analysis (PLS-DA), SVM, and MLP.

Partial Least Squares-Discriminant Analysis
Partial least squares-discriminant analysis is a very popular linear
classification method in chemometrics and is based on the PLS
regression algorithm (Lee et al., 2018). In PLS-DA, the output
(y variable) of PLS regression is transferred into a categorical
structure as reference value and descriptor matrix x is used
for discrimination analysis. It typically produces the lowest
within-class variability and therefore maximum separation. The
scores of latent variables (LVs) from the resulting PLS-DA
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FIGURE 3 | Thresholding segmentation to extract spectral features.

FIGURE 4 | Superpixel segmentation to extract spatial-spectral features.

model were used to identify groups of samples representing
the four types/classes of weeds. The regression coefficients
corresponding to those LVs with discrimination power between
classes were then evaluated to identify the spectral regions
potentially associated with discrimination of weeds (Wold et al.,
2001; Barker and Rayens, 2003). This method has been widely
used for identifying chemical traits and species classification in
food and agriculture sciences (Bassbasi et al., 2014; Botelho et al.,
2015; Lenhardt et al., 2015).

Support Vector Machine
Support vector machine analysis (Boser et al., 1992), is a powerful
technique and ideal for data classification, especially for the high-
dimensional data with a limited number of training samples
(Tarabalka et al., 2010). This method was originally defined for
binary classification and has been also extended to form a multi-
class classification (Pérez-Cruz and Artés-Rodríguez, 2002). This
extension allows for a broad application in hyperspectral image
analysis (Fauvel et al., 2008; Pal and Foody, 2010) and remote
sensing (Melgani and Bruzzone, 2004; Mountrakis et al., 2011).

Multilayer Perceptron
Multilayer perceptron is a powerful machine learning technique
that can characterize the features of the samples and learn the
appropriate classification features from the samples (Goodfellow
et al., 2016). The MLP model is dependent on multiple
sets of parameters, such as the number of hidden layers,
regularization parameter, and activation epoch (Ramchoun et al.,
2017). Activation function allows the introduction of non-
linear function to the neural network. Activation epoch also

prevents the MLP model from becoming a simple linear function
with limited learning power. There are three main activation
functions: hyperbolic tangent (Tanh; Kalman and Kwasny, 1992),
rectifier (Xavier et al., 2011), and maxout (Goodfellow et al.,
2013). The two types of regularization (L1 and L2) are useful
functions in the MLP model to reduce the effect of overfitting.

Multivariate Data Analysis
Data analysis was conducted in R software version 3.1.2 (R Core
Team, 2017). The “mdatools” package (Kucheryavskiy, 2019)
was applied for the PLS-DA model, and the “e1071” package
(Meyer et al., 2019) for SVM model construction. The “h2o”
package (Erin et al., 2019) was used for MLP modeling and
variable selection.

Two types of data, i.e., (a) spectral data, i.e., “Av” and (b)
combined spectral and spatial data “Sp” were used for training
the model by using PLS-DA, SVM, and MLP methods. These
included average of a leaf spectra for each weed and the average of
each selected leaf patch of a weed species (Figures 3, 4). We chose
80% of each data set for model calibration and the remaining
20% for validation and elementary testing. Two assessments
were used: (1) all the pixels from segmented plant; and (2)
the averaged spectra of segmented plants. This generated two
datasets: “all pixels dataset” and “average dataset.” Then each
dataset was split into two sets. The “all pixels” generated “all pixels
calibration dataset” and “all pixels validation dataset.” Similarly,
the “averaged dataset” generated “averaged calibration dataset”
and “averaged validation dataset.” Each calibration dataset was
used to fit a model independently. Each model was then applied
to the corresponding validation dataset. The assessment of
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predictions resulting from these two independent validation
datasets resulted in two set of accuracies.

The pre-processing method SNV (Standard Normal Variate)
was applied to the spectra before model calibration which has
been shown to be a reliable pre-processing method on weed
classification (Shirzadifar et al., 2018). The number of significant
LVs for the PLS-DA, and the parameters of epsilon and cost
for SVM models were determined using the leave-one-out cross-
validation method (Sudheer et al., 2014; Vehtari et al., 2017).

Model Performance Metrics and Optimization
The parameters recall (R), precision (P), average accuracy (AA),
and overall accuracy (OA) were used for PLS-DA, SVM, and MLP
model performance. Four quantities from the performance of a
classification process in the population of all instances were used
to calculate R, P, AA, and OA: True positives (TP), false positives
(FP), true negatives (TN), and false negatives (FN) using below
the equations:

R =
TP

TP + FN

P =
TP

TP + FP

AA = TP+ TNTP+TN+FP+FN

OA =
AA1 + AA1 + AA.... + AAn

n

where n is the number of the classes [thistle (TT), yellow
bristle grass (YBG), buttercup (BC), and wind grass (WG)]. To
qualitatively evaluate the predictability power of models for weed
classification, the t-SNE algorithm (Maaten and Hinton, 2008)
was applied. The accuracy of a classification process was defined
as the portion of true positives and true negatives in all instances.

Model optimization
To find the best parameters of the MLP model for Av and Sp
data, a grid loop with different hidden layers, activation function,
epochs and different l1 or l2 regularization parameters was set up
(Figure 5). A five-fold cross-validation was used for fine-tuning
these parameters. Models with the highest OA and the lowest loss
values were chosen as the final model, and the feature weight from
the final best performance model was used for feature evaluation.

RESULTS

Mean Raw and Standard Normal Variate
Spectra
The raw and SNV mean of 30 weeds for each species are plotted
in Figure 6. While all weeds showed similar general patterns in
both types of spectra, large variability between the four weeds
was also observed. The SNV spectra highlights regions that can
be used for discrimination between the four weed species. Three
important regions were identified based on these two types of
spectra: 550 to 700 nm, 1,000 to 1,200 nm, and 1,300 to 1,500 nm.

FIGURE 5 | The loop structure for all MLP models.

These regions are the only regions in the spectra used in this
study with detectable difference in reflectance value among the
four weed species.

Models Evaluation
The notations used for models developed with Av and Sp data
using PLS-DA, SVM, and MLP are given below:

(a) Av_PLS-DA: PLS-DA model developed with Av data
(b) Sp_PLS-DA : PLS-DA model developed with Sp data
(c) Av_SVM: SVM model created with Av data
(d) Sp_SVM: SVM model created with Sp data
(e) Av_MLP: MLP model generated with Av data
(f) Sp_MLP: MLP model generated with Sp data

The optimal number of LVs was chosen as 10 for both Av
and Sp_PLS-DA models based on cross validation. The optimal
value of epsilon and cost for SVM model using Av and Sp data
were 0 and 32, and 0 and 4, respectively. For the MLP model,
Tanh activation with two hidden layers (32, 16) were selected for
final application. The full-length spectra with 5% dropout was set
as the input layer, and the four classification classes were set as
the output layer. The validation set of both Av and Sp data were
used to test the ability of our model for weed classification. The
results of the modeling are presented in Table 1. Overall, the PLS-
DA, SVM and MLP models yielded relatively high classification
results based on both the Av and Sp data with an overall accuracy
(OA) of 70–100%. MLP model yielded the highest recall (R),
precision (P). Furthermore, average accuracy (AA) and OA with
Av and Sp data were 1, 1, and 0.89, 0.90, respectively.

Multilayer Perceptron models were best performing models
with Av and Sp data. The t-SNE algorithm was applied to the
features that were extracted from Av_MLP model hidden layer
and the raw Av spectral data for comparison. The results showed
that the raw Av data did not discriminate the four species
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FIGURE 6 | The raw and SNV VIS-NIR mean spectra of four weed species. TT: thistle, YBG: yellow bristle grass, BC: buttercup, and WG: wind grass.

TABLE 1 | Evaluation of the preformance of the proposed PLS-DA SVM, MLP models for weed recognition in the validation set, using four parameters: average
accuracy (AA), overall accuracy (OA), recall (R), and precision (P), based on Av and Sp data.

Av data Sp data

R (%) P (%) AA (%) OA (%) R (%) P (%) AA (%) OA (%)

PLS-DA YBG 100 83 87 91 70 96 70 70

BC 80 100 63 64

TT 100 100 72 88

WG 67 100 76 25

SVM YBG 100 100 92 92 92 90 84 86

BC 80 80 73 81

TT 100 100 86 92

WG 89 89 86 61

MLP YBG 100 100 100 100 94 91 89 90

BC 100 100 82 81

TT 100 100 90 95

WG 100 100 89 79

TT: thistle, YBG: yellow bristle grass, BC: buttercup, and WG: wind grass.

(Figure 7A). However, they were distinctly classified after the
application of the MLP extraction model (Figure 7B).

Performance of the Models on All
Hyperspectral Pixels
The confusion matrix of the actual weeds and predicted weeds
by Av_MLP and Sp_MLP models are shown in Figure 8. The
Sp_MLP model produced higher prediction accuracy than the
Av_MLP model. The prediction accuracy of Av_ MLP model
(81.6%) using all pixels validation dataset was lower than the
accuracy of using averaged validation dataset (100%; Table 1).
The Sp_MLP and Av_MLP models yielded similar accuracy
for the predication of all pixels with 89.1 and 81.6% accuracy,

respectively. Av_MLP performed lower accuracies (65 and 65.8%)
than the Sp_MLP model (80.7 and 93.4%) for the identification
of YBG and windgrass. These results suggest that averaging
all spectra across the weed species enhances the amount of
information captured about the weeds. However, when spectra
come from smaller regions (e.g., single pixel, from Sp) this
ability is reduced.

The predicted, ground truth and false color images of the
weeds are presented in Figure 9. From Figures 9C,D we can
conclude that Sp_MLP model showed better precision in overall
weed recognition (i.e., for YBG, BC, and WG weeds) than the
Av_MLP model. Furthermore, in the case of thistle, similar
prediction was observed by Sp_MLP and Av_MLP models.
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FIGURE 7 | The prediction performance of Av_MLP using spectral data of four weed (A) raw avearage spectral data (B) features data that extracted from Av_MLP
model hidden layer.

FIGURE 8 | Confusion matrix of predicted weed species for validation set (A) by Av_MLP (B) by Sp_MLP. The numbers in the matrices are each weed prediction
percentage. (TT: thistle, YBG: yellow bristle grass, BC: buttercup, and WG: wind grass).

DISCUSSION

Targeted weed control could increase the speed and accuracy and
reduce costs to farmers (Komi et al., 2007). The prerequisite of

targeted weed control is a reliable weed identification system.
Many techniques have been used in recent years to increase
the accuracy and speed of weed identification mainly applying
RGB imaging (Solahudin et al., 2018). HSI, however, has the
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FIGURE 9 | False color and predicted images of validation set for weeds (A) False color images of the weeds : TT: thistle, YBG: yellow bristle grass, BC: buttercup,
and WG: wind grass (B) generated ground truth images (C) Predicted image with Av_ MLP model (D) Predicted image with Sp_MLP model. Note: Four prediction
colors were used; Red: Thistle, Blue: YBG, Green: Buttercup, and Pink: Windgrass and a hard threshold was used to remove the background of the leaves. The
different colors are representing different weeds, which means that some pixels in this image have been predicted as other plants, and not all pixels have been
predicted correctly.

advantage of identifying weeds based on their reflectance data,
which is an indicator of the plant’s chemical composition (Farooq
et al., 2019a). Using HSI will add value to the weed identification
techniques based on RGB imaging, which is hinged on shape,
size, and color discrimination. Wei et al. (2014) applied canonical
discriminant analysis and the PLS-DA model to data from five
wavelengths (672, 757, 897, 1,117, and 1,722 nm) to discriminate
soil and five weed species from winter rape. They achieved this
with a high accuracy of 90.91%, which is slightly higher than our
result. The reason for this might be that they only discriminated
the broad leave species, whereas we have very narrow-leaf species
of grass as well. Broad leaf species are slightly simpler to identify
than the narrow leaf species because of the fact of more uniform
spectral data collection.

The MLP method has been widely used for classification
in agricultural research (Golhani et al., 2018; Kiani et al., 2018).

In our study, four important spectral regions (550–750, 995–
1,005, 1,110–1,220, and 1,380–1,470 nm) have been identified by
Sp_MLP model as “the best model” with high weed identification
performance. In general, the 500–750 nm spectral region
has been reported as important in vegetation discrimination
(Cochrane, 2000; Smith and Blackshaw, 2003; Frels et al.,
2018). Further, the region around 700 nm is known to be
highly informative for vegetation discrimination due to its
association with chlorophyll content (Gitelson and Merzlyak,
1997). The spectra in the ranges of 880–1,000,1,050–1,200,
and 1,250–1,550 nm has been mostly associated with the
third and second overtone of C-H stretching and second
overtone of O-H stretching (Burns and Ciurczak, 2007;
Schwanninger et al., 2011). Danson et al. (1992) described that
the bands at 970, 1,200, and 1,450 nm wavelengths are water
absorption bands.
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All three identification models used in this study yielded
high prediction accuracy both based on the Av and Sp selected
spectra. However, the MLP model produced the highest accuracy,
sensitivity and speciality compared to the other identification
models both in the calibration and validation sets using the Av
and Sp data. The t-SNE method has been recognized as a very
powerful approach for data exploration and visualizing high-
dimensional data (Maaten and Hinton, 2008). In this study, the
first two dimensions of t-SNE extracted from original spectra
and Av_MLP showed that the original spectra do not efficiently
discriminate the four weed species. However, the discrimination
power was improved by the Av_MLP model, with four weeds
identified and discriminated.

The Av spectral models also distinctly identified the four
weed species. This is likely due to chemical composition of each
species (Vengris et al., 1953). However, the data could not be
simply averaged for model calibration when the model was used
for classification across all pixels obtained from hyperspectral
images. According to Fang et al. (2015) the shape of the
hyperspectral images should be assessed based on the different
structures of HSI specifically if the heterogeneous spatial area is
large. Averaging each selected Sp area as the input data for model
calibration has the advantage of including overall and distributed
leaf spectral information. It will also reduce the size of the input
data for training the model. This method has been widely used for
the RGB and HSI imaging (Achanta et al., 2012; Fang et al., 2015).

Overall, the Sp_MLP model showed the best predictive results,
followed by Sp_SVM and Sp_PLS-DA. Silva et al. (2013) also
suggested that PLS-DA has a lower classification power and is not
suitable for weed identification.

The novel approach introduced in this study based on super-
pixels (Sp) allows the detection of weeds even where only few
parts of the plant are visible, for instance in pastures where these
weeds are mixed with other plant species. Thus, the introduced
approach helps to overcome the challenging situation where the
incomplete visibility of plant’s morphology is a limiting factor for
RGB imaging. Also, it is worth noting that spectral signatures
could be obtained with non-imaging approaches, but this would
have practical challenges in large grazing fields. The HSI used
for detection of weeds in our study is either based on unique
spectral signature and/or morphological features extracted from
the hyperspectral images.

CONCLUSION

This study demonstrated the ability of HSI to detect unique
spectral signatures of a diverse group of weed species including

grass and broadleaf as well as annual and perennial weeds. Models
developed with Sp spectral data can provide better results in
comparison to averaged spectral data for weed classification.
Compared to the traditional classification methods, MLP is a
more robust and reliable method when developed with Sp data.
This novel approach based on Sp will significantly advance the
applicability of HSI in plant identification. This is especially
useful when it is applied in the grazing field including in mixed
swards of a few plant species. Future work should focus on
the development of a system that provides classification using
spectral signature and/or morphological features aligned with
decision tree strategies to deal with complex systems such as
mixed swards.
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