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Sink organs, the net receivers of resources from source tissues, provide food and energy
for humans. Crops yield and quality are improved by increased sink strength and source
activity, which are affected by many factors, including sugars and hormones. With the
growing global population, it is necessary to increase photosynthesis into crop biomass
and yield on a per plant basis by enhancing sink strength. Sugar translocation and
accumulation are the major determinants of sink strength, so understanding molecular
mechanisms and sugar allocation regulation are conducive to develop biotechnology to
enhance sink strength. Grapevine (Vitis vinifera L.) is an excellent model to study the
sink strength mechanism and regulation for perennial fruit crops, which export sucrose
from leaves and accumulates high concentrations of hexoses in the vacuoles of fruit
mesocarp cells. Here recent advances of this topic in grape are updated and discussed,
including the molecular biology of sink strength, including sugar transportation and
accumulation, the genes involved in sugar mobilization and their regulation of sugar
and other regulators, and the effects of hormones on sink size and sink activity. Finally, a
molecular basis model of the regulation of sugar accumulation in the grape is proposed.

Keywords: grape, sink strength, sugar accumulation, sugar transporters, sugar-cleaving enzymes, hormones

INTRODUCTION

With an increasing global population estimated to reach 9 billion people by 2050 (Nelson et al.,
2012), a dramatic increase in agricultural productivity must occur. However, this increase has to
be achieved without additional land for production and within the context of uncertain climatic
shifts (Beddington, 2010). Thus, it is imperative to produce higher biomass and yield on a per plant
basis to sustain the growing human population. In plants, the “source” refers to an organ with a net
export of assimilates required for plant growth, such as carbon; whereas the “sink” is an organ that
consumes or accumulates resources from the source (Doehlert, 1993). Photoassimilates are usually
transported from sources to sinks as simple sugars, typically as sucrose (White et al., 2016). Sink
strength determines photoassimilates importation and accumulation, thus controlling crop yield

Abbreviations: At, Arabidopsis thaliana; Vv, Vitis vinifera L; Ptr, Populus trichocarpa; SE, sieve elements; CC, companion
cell; UDP-G, diphosphate glucose; ADP-G, adenosine diphosphate glucose; CPPU, forchlorfenuron,N-(2-Chloro-4pyridinyl-
N-phenylurea); GA; Gibberellin acid; ip, isopentenyladenine; ABA, Abscisic acid; 6-BA, 6-benzylaminopurine; BR,
brassinosteroids; EBR, 24-epibrassinolide.
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and affecting fruit quality. Clearly the phloem loading of sucrose
at the source organ, transporting from source to sink, and
unloading and metabolism in the sink organ are major processes
affecting sink strength (Zhang et al., 2005). A complex signaling
network encompassing sugars, hormones, and environmental
factors determine sink strength by regulating sugar mobilization
(Yu et al., 2015). Therefore, understanding sucrose delivery and
accumulation regulation is vital to enabling new technological
breakthroughs to improve crop yield and food quality.

Grape (Vitis vinifera L.) is a widely grown economic fruit
species consumed as fresh fruit, dried raisins, and wine (Bondada
et al., 2017; Imran et al., 2017; Khalil-Ur-Rehman et al., 2017;
Wang W. et al., 2017). As in many crops, soluble sugar content is a
primary component of yield and market value for grapes. Sucrose
translocated from grape leaves is unloaded and metabolized in
fruit (sink) and eventually accumulates as hexose (Lecourieux
et al., 2014). Hexose accumulation not only provides carbon and
energy for berry growth, but it also contributes to the sweetness
and flavor of grapes. This review focuses on the mechanism
related to the formation and regulation of sink strength in
grape, including the molecular mechanism of sugar transport
and accumulation, the genes involved in sugar allocation and its
regulation, the genetic regulation of hormones and their role in
regulating sugar transport, phloem unloading, and metabolism.
This review also provides a premise for further research and
development of new technologies to regulate photosynthetic
assimilate partitioning in perennial fruit crops.

SINK STRENGTH

Sink strength has been defined as an organ’s competitive ability to
import photoassimilates, which can be expressed as the product
of sink size and sink activity (Ho, 1988). Sink size is the
total biomass of the sink tissue (g), reflecting the cell number
and size. Genetic factors and plant growth regulators regulate
them during cell division (Bünger-Kibler and Bangerth, 1982;
Geiger and Shieh, 1993). Sink activity refers to a particular
resource’s specific uptake rate (mol g−1 s−1) (Geiger and Shieh,
1993). Three crucial physiological processes govern sink activity:
phloem unloading and post-phloem transport of sugars in
the sink cells; the absorption of the sink organ itself; and
carbohydrate accumulation in sink organs (Roitsch, 1999). Also,
external factors can modulate sink strength by increasing source
strength (generally increasing source strength by influencing
photosynthetic rate or increasing source capacity), regulating
the loading and unloading of the assimilate in the phloem, and
participating in the formation of sink size (cell number and
size) and sink activity (sugar transport, phloem unloading, and
accumulation in the sink organs). Studies on grapes have shown
that the vital step controlling sugar accumulation is determined
within the developing fruit rather than the source leaves’ ability
to export photosynthetic products or the transport efficiency of
the phloem pathway (Zhang et al., 2006; Xie et al., 2009). This key
step occurs in the process of sugar entering berry cells after the
sugar is unloaded from fruit phloem, which is called “post-sieve
molecular transport” or “post-phloem transport” (Fisher and

Oparka, 1996). It is the critical step that restricts the improvement
of berry quality. Therefore, the external factors involved in
regulating the sink activity, including sugar phloem unloading
and sugar accumulation in the sink cells, could strongly affect sink
strength in the grape.

MOLECULAR BIOLOGY OF SINK
STRENGTH

Assimilate input and sucrose metabolism in sink organs
directly affect the development and vitality of sink organs
and determines sink strength (Chourey et al., 2012). Clarifying
the molecular biology of sugar transport and accumulation is
essential for the identification of the key enzyme/genes that
control the distribution of assimilates from “source” to “sink” in
perennials fruit crops.

Sugar Transport and Accumulation in
Grape
The grape berry exhibits a double sigmoidal growth pattern
(Coombe, 1992). Its development can be divided into stage I
and stage III, characterized by rapid growth, whereas stage II
is a lag period. The first rapid growth phase that occurs after
the fruit set is due to increased cell number and expansion of
existing cells. Cell division in the flesh is almost complete during
the first few weeks of development (Harris et al., 1968). Stage
II, 7 to 10 weeks after flowering, is when little or no growth
occurs. The second rapid growth phase occurs at the end of the
lag phase. The transition from stage II to stage III is completed
within 24 h, and is known as véraison, associated with a change in
skin color, and marks the beginning of maturity (Coombe, 1992).
Before véraison, the fruit is hard, green, acidic, and lacks sugar
(<150 mM sugar content) and glucose to fructose ratio is about
2:1. During véraison, organic acid content begins to decrease, and
soluble sugar concentration increases. About 20 days after the
onset of véraison, the hexose concentration increases to around 1
M and the ratio of glucose to fructose is 1:1 (Findlay et al., 1987).
Sucrose is exported from the source organ (leaf) and imported
into berry flesh cells via two pathways: the symplastic pathway
and the apoplastic pathway. Firstly, the sucrose, produced in the
photosynthetic mesophyll cells (MC) of leaves, is loaded into
the phloem sieve tubes through a symplastic-loading pathway or
apoplastic-loading pathway. In the symplastic-loading pathway,
sucrose is loaded into the sieve tubes through plasmodesmata
between the sieve elements (SE)/companion cell (CC) complex
and the surrounding parenchymal cells without specific carries
(Turgeon and Wolf, 2009). In the apoplastic-loading pathway,
sucrose is loaded and accumulated in the phloem by passing
through the apoplast between the phloem parenchyma cells
(PP) and the CC with specific transporters, which can be
of the PLANT SUGAR WILL EVENTUALLY BE EXPORTED
TRANSPORTER (SWEETs) family (Chen et al., 2012) and
SUCROSE TRANSPORTERS (SUT1/SUC2) proteins coupled
with a proton pump (H + − ATPase) (Gottwald et al., 2000).
Then sucrose is transported in the sieve tubes via hydrostatic
pressure. Following long-distance delivery, sucrose is unloaded
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from the phloem SE to the storage parenchyma cells through
the symplastic-unloading pathway or the apoplastic-unloading
pathway. In the latter case, sucrose is taken up into the
parenchyma apoplasm by the members of the SUT1/SUC2
transporter family and is then hydrolyzed by cell-wall invertase
(CWINV) or sucrose synthase into hexoses (Chen et al., 2017;
Wan et al., 2018; Duan et al., 2020). Hexoses enter the
parenchyma cells via specific monosaccharide transporters at the
plasma membrane or the tonoplast level (Corelli Grappadelli
et al., 2019). Alternatively, sucrose is imported into the vacuoles,
where it is converted into hexoses by vacuolar invertase (VIN).
These processes maintain a sucrose concentration gradient at the
unloading site to maintain a high rate of unloading and hexoses
accumulation (Lecourieux et al., 2014). Studies with grape have
shown that the phloem unloading routes are changeable with
grape sink development. A shift of phloem unloading from
symplastic to apoplastic pathways was verified at or just before
the onset of véraison, indicating the phloem unloading pathway
changes in response to grape sink development (Zhang et al.,
2006). It appears that sugar transporters and sugar metabolism-
related enzymes are linked to a complex regulatory network that
determines the fruit’s sugar accumulation.

Sugar Transporters and Sugar-Cleaving
Enzymes in Grape
Four sucrose transporters (SUT/SUC) were identified in the
grape genome (Table 1), three of them were cloned from
Shiraz and Cabernet Sauvignon berries (VvSUC11; AF021808,
also identified as VvSUT1 AF182445; VvSUC12 AF021809;
and VvSUC27 AF021810) and the sucrose transport activity
was characterized by heterologous expression in Saccharomyces
cerevisiae (Afoufa-Bastien et al., 2010). VvSUC11 belongs to
the SUT4 subfamily, including AtSUC4. VvSUC12 contains two
structural characteristics specific to the SUT2/SUC3 subfamily,
which includes AtSUC3. VvSUC27 is a SUT located at the
plasma membrane and belongs to the dicot-specific SUT1
subfamily, which includes the remaining AtSUCs (Cai et al.,
2017). Overexpression of VvSUCs (VvSUC11 or VvSUC12, or

VvSUC27) in both tobacco and Arabidopsis conferred more rapid
development, higher yield and enhanced abiotic stress resistance
(Cai et al., 2017, 2020). Similarly, Cai et al. (2019) reported
SUTs in ‘Zuoshan-1’ (Vitis vinifera) responded to various stress
stimuli and subsequently promoted sucrose metabolism and
hormone synthesis.

Monosaccharide transporter genes are present in 59 loci
in grapevine, which can be grouped into seven subfamilies,
including 20 hexose transporters (VvHT; subfamily I), three
tonoplast monosaccharide transporters (VvTMT; subfamily II),
five polyol/monosaccharide transporters (VvPMT; subfamily III),
ERD6-like Transporters (subfamily IV), two vacuolar glucose
transporters (VvVGT; subfamily V), 3 inositol transporters
(VvINT; subfamily VI) and other four monosaccharide
transporters (VvpGlcT/VvSGB1; subfamily VII) (Table 1;
Afoufa-Bastien et al., 2010). Seven full-length cDNAs encoding
monosaccharide transporter, named VvHT1–VvHT6/VvTMT2,
VvTMT1 (VvHT1 AJ001061; VvHT2 AY663846; VvHT3
AY538259 and AY854146; VvHT4 AY538260; VvHT5 AY538261;
VvHT6 AY861386, DQ017393) have been isolated from various
cultivars such as Pinot noir, Ugni blanc, Chardonnay, Cabernet
Sauvignon, Syrah and Riesling (Fillion et al., 1999; Vignault
et al., 2005; Hayes et al., 2007; Zeng et al., 2011). Three of them
(VvHT1, VvHT4, and VvHT5) belong to plasma membrane
hexose transporters. Their plasma membrane localization has
been verified by immunofluorescence, immunolabeling, and
GFP fusion proteins. They all facilitated glucose uptake, VvHT1
has a higher affinity for glucose than VvHT4 and VvHT5 and
displays broad substrate specificity, being able to recognize both
d-glucose and d-fructose. On the contrary, VvHT3 is not able to
transport any of the tested radiolabeled sugars in the deficient
yeast model (Vignault et al., 2005; Conde et al., 2006; Hayes
et al., 2007). VvHT2 and VvHT6/VvTMT2 seem to be localized
in the tonoplast and VvHT6/VvTMT2 has high sequence
similarity to the previously described tonoplast monosaccharide
transporter of Arabidopsis thaliana AtTMT2 (Agasse et al., 2009;
Afoufa-Bastien et al., 2010). Induction of VvTMT1-GFP fusion
protein expression in transgenic yeast revealed its tonoplast
localization. Glucose/other monosaccharide -uptake activities

TABLE 1 | The summary information of sugar transporters identified in grape.

Type Genes Family
members

Substrate Location Cloned members
in grape

Function of cloned
members

References

Disaccharide
transporter

VvSUT/VvSUC 4 Sucrose Plasma
membrane

VvSUC11,
VvSUC12,
VvSUC27

Sucrose transport; Promote
development; Enhance
abiotic stress

Afoufa-Bastien et al.,
2010; Cai et al., 2017,
2019, 2020

Monosaccharide
transporter

VvHT (sub I)
VvTMT (sub II)
VvPMT (sub III)
ERD6-like (sub IV)
VvVGT (sub V)
VvINT (sub VI)
VvGlcT (sub VII)

59 Hexose, Polyol,
Inositol

Plasma
membrane or
tonoplast

VvHT1, VvHT4,
VvHT5, VvTMT1,
VvHT2, VvHT6

No detail in grape Fillion et al., 1999;
Vignault et al., 2005;
Conde et al., 2006;
Hayes et al., 2007;
Agasse et al., 2009;
Afoufa-Bastien et al.,
2010; Zeng et al., 2011

Sugar Uniporter VvSWEET 17 Sucrose,
Glucose,
Fructose

Plasma
membrane

VvSWEET4,
VvSWEET7,
VvSWEET10

Broad spectrum of sugar
transport; Enhance biotic
stress

Chong et al., 2014;
Breia et al., 2019;
Meteier et al., 2019;
Zhang et al., 2019
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of VvTMT1 have been detected by heterologous expression in
the hxt-null mutant yeast (Zeng et al., 2011). Recent function
analysis indicated PbTMT4 regulates the accumulation of
sugars in the vacuole and it is a strong contributor to fructose,
glucose, and sucrose accumulation in frutescence of pears
(Pyrus bretschneideri) (Cheng et al., 2018). Transient silencing
of one Prunus persica tonoplast sugar transporter (PpTST1)
significantly inhibited sugar accumulation in peach fruit (Peng
et al., 2020). For ripe grapes, a very high concentration of glucose
and fructose (∼1 M each) accumulates in the vacuole of flesh
cells (Fontes et al., 2011). Clearly, monosaccharide transporters
play important roles in vacuolar accumulation of hexose in
grape berry. To date, the function of these transporters has not
been studied in detail, though different locations and affinity for
monosaccharide of these monosaccharide transporters showed
diversified functions in sugar transport process.

SWEETs is a family of a plasma membrane-localized
sugar uniporters that have been found in recent years.
Arabidopsis thaliana AtSWEET1 was the first identified plant
SWEET transporter and responsible for glucose unidirectional
transport in different systems (Chen et al., 2010). AtSWEET11,
AtSWEET12, and AtSWEET17 were subsequently characterized
to export sucrose out of the phloem parenchyma cells or
fructose efflux from vacuole (Chen et al., 2012; Chardon et al.,
2013). Seventeen SWEET homologes were identified in the
grape genome (Table 1), VvSWEET4 is characterized as a
glucose transporter localized in the plasma membrane (Chong
et al., 2014). Overexpression of the VvSWEET4 in grapevine
hairy roots increases sugar transportation and content and
enhances resistance to soilborne pathogens (Meteier et al., 2019).
Similarly, VvSWEET7 is a mono- and disaccharide transporter
and its expression is up-regulated in response to Botrytis cinerea
infection in grapes (Breia et al., 2019). VvSWEET10 has a
broad spectrum of sugar transport functions. Overexpression
of VvSWEET10 in grapevine calli and tomatoes increased the
glucose, fructose, and total sugar levels significantly (Zhang
et al., 2019). VvSWEET15 was highly expressed in three grape
cultivars’ berries and obviously positively correlated with berry
hexose content during ripening (Ren et al., 2020). In summary,
these findings demonstrated the role of VvSWEETs in sugar
accumulation and biotic stress response.

After importation into sink parenchyma cells, sucrose is
rapidly taken into the vacuole for storage or degraded into
hexoses for a wide range of metabolism in order to maintain the
gradients in the sink cells, thus maintaining phloem unloading
(Lecourieux et al., 2014). Sucrose-cleaving enzymes such as
sucrose synthase (SuSy) and invertase are mainly responsible
for sucrose metabolism in sink cells (Chen et al., 2017; Wan
et al., 2018). Stein and Granot (2019) reviewed SuSy is the only
Suc-metabolizing enzyme that can catalyze both the synthesis of
sucrose from fructose and uridine diphosphate glucose (UDP-
G) and the cleavage of sucrose, in the presence of UDP or
other nucleotide phosphates (especially ADP), to fructose and
UDP-G or adenosine diphosphate glucose (ADP-G). Subcellular
localization of SuSy is detected both in cytosolic fractions
or/and plasma-membrane in several plants. SuSy contributes
to sucrose hydrolysis mainly in the cytosol and it responds

to sink strength in different plants (Braun et al., 2014).
Five SuSy genes (VvSS1-5) have been identified in the grape
genome (Zhu et al., 2017). VvSS3 was reported to co-express
with VvSWEET15 to regulate sucrose hydrolysis and transport,
leading to increase hexose accumulation in grapes (Ren et al.,
2020). Invertase hydrolyzes sucrose irreversibly into glucose
and fructose and has a crucial function in establishing and
maintaining sink metabolism, and hence considered to be a
central molecular sink strength determinant (Koch, 2004). Three
types of invertase isoenzymes are distinguished based on their
solubility, subcellular localization, pH optima, and isoelectric
point: (1) Soluble acid invertase (VIN) is located primarily
in vacuoles; (2) Cell wall-bound invertase (CWINV) binds
to cell walls; (3) Soluble alkaline or Neutral invertase (A/N-
INV) is present in the cytoplasm and has a low activity in
plant tissues (Sturm, 1996). Invertases are also divided into
Acid Invertase (AI) and Neutral Invertase (NI) according to
the optimal pH required by the reaction (Avigad, 1982). To
our knowledge, nine neutral/alkaline invertase (NI) genes have
been identified in the 8.4X grape genome (Nonis et al., 2008).
But genes encoding AI have not been identified so far. We
conducted a BLASTP search against the 12X grape genome
database (Grapevine Genome Browser. Available online1) using
known protein sequences of invertase genes from Arabidopsis
as queries (tair datebase. Available online2). After manually
removing redundant sequences and verifying existence of the
core domains with the Conserved Domains Database (CDD.
Available online3), 19 putative invertase genes were identified
in the grape genome (Supplementary File 1). The phylogenetic
analysis revealed that 11 were grouped into the neutral/alkaline
invertase sub-family, and eight were from the acid invertase
sub-family, of which there were three vacuolar acidic invertases
(VIN) and five cell wall acidic invertases (CWINV) (Figure 1A).
Multiple alignments of acid invertase sub-family (Figure 1B)
revealed that the only one CWINV (GSVIVT01033873001) and
one VIN (GSVIVT01006154001) contain the DPNGD domains,
which were well-conserved in this family and are essential for
β-fructosidase catalytic activity (Sturm and Chrispeels, 1990).
The other six genes contain the variable NDPNG motif. The
conservative Cys catalytic site (MWEC-P/V-D) (Chen et al.,
2015) was found at the C-terminal of all acid invertase members,
the exception being one VIN gene (GSVIVT01024570001) with
‘MWECAN’ motif, a proline (P) residue was present in MWEC-
P/V-D motif of CWINV sequences, whereas a valine (V) was at
the same position of VIN sequences. This finding is consistent
with the previous study (Goetz and Roitsch, 1999). The variation
of NDPNG motif among acid invertase genes may indicate
their specific function in grape. Several AI genes have been
functionally validated in sink strength through their involvement
in sucrose metabolism in some species (Liu et al., 2016; Xu
et al., 2019; Deng X. et al., 2020). In grape, an increase in
the expression and activity of CWINV was concomitant with
a rise in apoplastic sugar concentration and osmotic pressure

1http://www.genoscope.cns.fr/externe/GenomeBrowser/Vitis/
2https://www.arabidopsis.org/servlets/Search?type=general&action=new_search
3http://www.ncbi.nlm.nih.gov/cdd

Frontiers in Plant Science | www.frontiersin.org 4 January 2021 | Volume 11 | Article 606918

http://www.genoscope.cns.fr/externe/GenomeBrowser/Vitis/
https://www.arabidopsis.org/servlets/Search?type=general&action=new_search
http://www.ncbi.nlm.nih.gov/cdd
https://www.frontiersin.org/journals/plant-science
https://www.frontiersin.org/
https://www.frontiersin.org/journals/plant-science#articles


fpls-11-606918 January 6, 2021 Time: 12:44 # 5

Li et al. Sink Strength Regulation in Grape

FIGURE 1 | (A) Phylogenetic tree of invertase genes from different plants. Amino acid sequences from Arabidopsis (tair database), populus (Chen et al., 2015) and
grapevine were used to construct the unrooted phylogenetic tree by MEGA v. 6.0 (Tamura et al., 2013) with the neighbor-joining (N-J) method, p-distance, pairwise
deletion method, and a bootstrap test with 1,000 replicates. The red and green circles indicate vacuolar acidic invertases and cell wall acidic invertases of
Arabidposis and populus, respectively. Blue and purple triangles indicate alkaline/neutral invertase of Arabidposis and populus, respectively. (B) Multiple alignment of
the acid invertase sub-family in grape with two known populus vacuolar acidic invertase (PtrVINV1) and cell wall acidic invertase (PtrCWINV3) as references. The red
box shows β-fructosidase motif (DPNGP), the yellow box shows the cys catalytic site (MWEC-P/V-D).
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(Zhang et al., 2006; Xie et al., 2009). While some studies reported
invertase and hexose transporters are unnecessary for sugar
differential accumulation among cultivars (Ren et al., 2020),
others found that it was mainly due to acid invertase activity
(Guan, 2011). However, no functional identification is focused
on the member of VvSSs or invertase family in grape so far.
Therefore, a transgenic functional characterization experiment
would help explore the specific role of each VvSSs or invertase
genes in sugar accumulation in grape berry.

The Regulation of Sugar Transporters
and Sugar-Cleaving Enzymes
The current investigations opine that the plant sugar transporters
and sugar-cleaving enzymes under the control of their substrate
either at the transcriptional or post-transcriptional levels.
Exogenous sucrose feeding controls the transcription level of
SUC and SUC protein amount in sugar beet (Vaughn et al.,
2002). Glucose could regulate the expression of monosaccharide
transporters (VvHT3, VvHT4, VvHT5, and VvHT6) by inducing
VvSK1 transcription, a Glycogen Synthase Kinase3 protein
kinase that modulates sugar uptake and accumulation in
grape (Lecourieux et al., 2010). Several studies reported that
extracellular invertases are induced by sugars (Roitsch et al.,
1995; Tymowska-Lalanne and Kreis, 1998). The expression
of CWINV and SuSy was repressed by glucose, and the
intensity of repression depended on glucose concentration
and incubation time. Hexokinase (HXK, EC 2.7.1.1) involved
in hexose phosphorylation, plays a crucial role in sugar
sensing and signaling. It has been found HXK activity had an
inverse relationship with the endogenous glucose or fructose
levels during grape development. The phosphorylation of
hexoses by HXK was an essential component in the glucose-
dependent VvCWINV and VvSuSy expression (Wang et al.,
2014). Additionally, glucose could repress VvHT1 transcription
via an HXK-dependent pathway. While inducing the reduction
of VvHT1 protein in the plasma membrane by a HXK-
independent post-transcriptional regulation (Conde et al.,
2006). Thus, it is clear that sugar could play a regulatory
role in sink activity by regulating its transport carrier or
metabolic enzymes.

Except for sugar’s regulatory role, little is known about
protein/regulators that control sugar transporters and metabolic
enzymes in the grapevine. In Arabidopsis, identification of SUC2-
interaction partners indicated that SUC2 activity is controlled by
its protein turnover rate and phosphorylation state. UBIQUITIN-
CONJUGATING ENZYME 34 (UBC34) is responsible for
triggering the turnover of SUC2 in a light-dependent manner.
WALL-ASSOCIATED KINASE LIKE 8 (WAKL8) functions on
the phosphorylation of SUC2 for increasing transport activity
(Xu et al., 2020). In cotton (Gossypium hirsutum), CBL-
interacting protein kinase GhCIPK6 is recruited to the tonoplast
by Calcineurin B-like protein GhCBL2 and interacts with the
tonoplast-localized sugar transporter GhTST2 to regulates plant
sugar homeostasis, in particular glucose homeostasis (Deng J.
et al., 2020). HpWRKY3, a WRKY transcription factor in pitaya
(Hylocereus), was identified as the putative binding protein

of the HpINV2 and HpSuSy1 promoters and could activate
the expression of HpINV2 and HpSuSy1. It is proposed that
HpWRKY3 is involved in sugar accumulation by inducing
the sucrose metabolic genes in pitaya fruit (Wei et al., 2019).
Similarly, Li et al. (2020) found that PuWRKY31 bound to the
PuSWEET15 promoter and induced its transcription to promote
sugar accumulation in Ussurian pear (Pyrus ussuriensis).

THE EFFECT OF HORMONE ON SINK
STRENGTH

Grape production benefits from plant growth regulators as long
as they are applied at the recommended dose and frequency, and
pre-harvest intervals are strictly followed (Ugare et al., 2013).
For instance, CPPU [forchlorfenuron,N-(2-Chloro-4pyridinyl-
N-phenylurea)], a synthetic cytokinin-like plant regulator,
promotes berry set and increases berry size (Reynolds et al.,
1992). Application of gibberellic acid (GA) is a routine practice to
increase berry size or induce seedlessness in table grapes (Weaver
and MacCune, 1961); Other plant hormones such as Abscisic acid
(ABA), auxin, and brassinosteroids (BR) also play important roles
in the formation and maintenance of fruit sink strength.

Cytokinin
A study that tested nine plant hormones found that only 6-
benzylaminopurine (6-BA, artificial agent for cytokinin) and
ABA stimulated unloading photosynthetic products in bean
seeds, which occurred within 10–12 min after 6-BA or ABA
treatment (Clifford et al., 1986). Several studies supported that
cytokinin may regulate rate-limiting steps in nutrient utilization
and distribution. For instance, radioactive nutrients were
preferentially transferred and accumulated in cytokinin-treated
areas (Mothes and Engelbrecht, 1962). Localized overexpression
of the ISOPENTENYLTRANSFERASE (IPT, the enzyme that
mediates the rate-limiting step in cytokinin synthesis) caused
local sink enhancement (Guivarc’h et al., 2002). The formation
of green areas on senescing leaves suggested an alteration of
the sink-source relation by cytokinin (Engelbrecht et al., 1969;
Body et al., 2013). A later study found photosynthetic capacity
and soluble sugar content were not significantly affected in the
source organs (leaves) of a cytokinin-deletion mutant, however,
soluble sugar content, invertase activity and ATP content in sink
organs (shoot tip) were obviously reduced (Werner et al., 2008).
Recent research reported phytochromobilin deficiency impairs
sugar metabolism through the regulation of cytokinin and auxin
signaling in tomato fruit (Bianchetti et al., 2017). Additionally,
light can weaken the sink activity and inhibit axillary bud
germination by downregulating cytokinin signals in rose. Under
dark conditions, 6-BA treatment rapidly activated the key
components of sink strength, including vacuolar acid invertase,
sucrose transporter and sucrose synthase, and promoted axillary
bud growth (Roman et al., 2016). In summary, these findings
support the role of cytokinin in regulating sink strength, and
suggest that localized cytokinin production could create a
localized sink and result in a new source-sink relationship,
thereby modulating nutrient mobilization.
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Several studies have related the availability of cytokinin
to plant sink strength under abiotic stress in recent years.
For instance, the exogenous application of cytokinin (KIN)
to developing tomato fruit or the increase in endogenous
cytokinins (tZ) under salinity partially restored sink activity
and fruit growth, and also activated most sugar metabolic
enzymes (Albacete et al., 2014). Delay of senescence in IPT
transgenic tobacco (Nicotiana tabacum) plants correlated with
elevated CWINV activity. Localized induction of a CWINV
under control of a chemically inducible promoter resulted in an
ectopic delay of senescence, resembling the naturally occurring
green areas on senescing leaves, these results established a causal
relationship between cytokinin and extracellular invertase for
delaying senescence (Balibrea Lara et al., 2004). P(SARK): IPT
transgenic rice plants, expressing IPT driven by P(SARK), a
maturation- and stress-induced promoter, had enhanced drought
tolerance and higher grain yield with improved quality (nutrients
and starch content). This phenomenon indicated that stress-
induced cytokinin synthesis in the P(SARK):IPT plants modified
source/sink relationships and promoted sink strength through
a cytokinin-dependent coordinated regulation of carbon and
nitrogen metabolism that allowed plant adaptation and survival
under water stress (Reguera et al., 2013). Results in many
crops that overexpress IPT under the control of P(SARK) have
demonstrated a delay in leaf senescence and improved crop
growth and yield under different stress conditions (Décima
Oneto et al., 2016; Joshi et al., 2019). Therefore, it appears that
cytokinin plays a role in making up the deficiencies caused by
stress in plant. Cytokinin may function in two ways when plants
are under abiotic stress. Cytokinin could delay the stress response
or senescence of leaves (thus maintaining source activity),
resulting in the production and/or export of more assimilates for
sink organs’ growth. On the other hand, cytokinin could expand
the sink capacity by increasing cell proliferation or maintaining
the sink activity by regulating sucrolytic enzymes to acquire more
photo-assimilates.

Forchlorfenuron,N-(2-Chloro-4pyridinyl-N-phenylurea) is
widely used for fruit size enhancement in table grape production
(Reynolds et al., 1992; Wang W. et al., 2017). Hence, it may be
suggested that CPPU treatment is conducive to forming the
sink capacity at early berry development. Indeed, endogenous
cytokinin levels are critically involved in the regulation of
early fruit growth through the regulation of cell division by
D-type cyclin expression (Baldet et al., 2006). Similar results
were also observed with barley (Hordeum vulgare L.), wherein
the effects of foliar application of 6-BA resulted in increased
sink size soon after anthesis and increased sink demand was
met by current photosynthesis of organs (Hosseini et al.,
2008). However, the application of CPPU had some adverse
effects on grapes, including inhibiting anthocyanin and sugar
accumulation (Khalil-Ur-Rehman et al., 2017). Moreover, the
endogenous cytokinin zeatin levels are high early in the flesh of
immature berries but decrease rapidly at the time of véraison
when sugar and anthocyanin start to accumulate (Zhang
et al., 2003). On the other hand, some studies found a rapid
increase in isopentenyl adenine (ip) at véraison and remained
at elevated levels throughout grape ripening (Böttcher et al.,

2013, 2015). To date, studies have not given any clear indications
for possible functions of endogenous cytokinin on the sugar
accumulation in grapes. Therefore, why CPPU caused decreased
sugar accumulation in grapes is still unknown. This adverse
effect may be related to two main reasons. One is the ability
of cytokinin to establish local metabolic sink capacity. Under
normal growth conditions, exogenous cytokinin application
could reconstruct other competitive sink organs and break the
original balance between the source (leaf) and sink (berry),
resulting in reduced accumulation of sugar in fruit. The second
reason is that cytokinin prefers to enhance sink size rather than
to sink activity. Application of CPPU could trigger fruit growth
and delay fruit maturity, therefore not conducive to initiating
fruit ripening and sugar accumulation. Future studies should
focus on fine-tuning the regulation of cytokinin concentrations
and the tissue-specific responses during grape development.

Gibberillic Acid
A two-step GA application has usually been employed before
anthesis and again after anthesis; the former for inducing
seedlessness and the later for berry enlargement (Dass and
Randhawa, 1968; Wang X. et al., 2017). GA3 is thought to increase
fruit size by triggering cell division and expansion in many
fruit crops (Zhang and Whiting, 2011). Recently, transcriptome
analysis revealed that cell-wall relaxation could be the main
process in exogenous GA3-triggered berry enlargement at the
early stage of grape fruit development (Chai et al., 2014). GA3
application at the 3–4 mm berry stage increased grape size, and
the top five genes upregulated by GA3 are related to cell wall
formation in berries (Upadhyay et al., 2018). Similarly, proteome
analysis of the berry-sizing effect of GA3 on seedless grape shows
cytoskeleton and cell-wall modification proteins are up-regulated
in the stages II and III of berry development (Wang et al., 2012).
Hence, post-bloom GA3 application induced berry expansion
through modifying cell wall components. Recent studies reported
GA could regulate genes of the lignin biosynthesis (Garcia-
Rojas et al., 2018), cell wall metabolism, xylem development,
phenylpropanoids, and the cell cycle (Meneses et al., 2020),
generating changes in cell wall composition that caused an
increase in berry drop. These studies provide some clues to
explore further the mechanism underlying the effects of GA on
the fruit cell cycle and expansion affected by GA.

Sucrose, glucose, and fructose in grapes’ suspension cell
cultures significantly increased after GA3 treatment (Zhang et al.,
2014). These findings, coupled with previous studies, corroborate
that GA3 can hasten the accumulation of hexoses within the
expanding cells (Kordel and Kutschera, 2000). GA3 could relieve
the repression of glucose on CWINV and SuSy1 expression by
regulating the HXK gene expression, thereby further regulating
intracellular glucose metabolism to maintain normal cell growth
in grape (Zhang et al., 2014). Similarly, a significant increase
in sink demand and larger fruit size caused by applied GA
was shown in Japanese pear. This enhanced sink strength was
closely correlated with increased activities of sugar metabolizing
enzymes induced by GA application during rapid fruit growth
(Zhang et al., 2007). The expression of the Rosa hybrida vacuolar
invertase 1 gene (RhVI1) was controlled by sugar/light and

Frontiers in Plant Science | www.frontiersin.org 7 January 2021 | Volume 11 | Article 606918

https://www.frontiersin.org/journals/plant-science
https://www.frontiersin.org/
https://www.frontiersin.org/journals/plant-science#articles


fpls-11-606918 January 6, 2021 Time: 12:44 # 8

Li et al. Sink Strength Regulation in Grape

FIGURE 2 | The regulation model of hormones on sink strength reported in grape. Symbol ‘?’ means no clear relationship between hormones and sink activity
(sugar accumulation),→ stands for promotion, —• stands for inhibition. Solid line means direct regulation relationship, dotted line means indirect regulation
relationship or no further study for direct regulation.

gibberellin/light synergistically. Further study demonstrated that
the 127 bp RhVI1 promoter fragment located between −595
and −468 bp was critical for this synergism (Rabot et al., 2014).
Therefore, GA3 functions as a regulator of sugar accumulation
in the plant; however, the precise mechanisms involved remain
elusive in many plants, including grape.

Abscisic Acid
Extensive studies showed that ABA enhanced sugar accumulation
in crop sink organs (Kobashi et al., 2001; Kuhn et al., 2013).
In Malbec grapevines treated with ABA, increased accumulation
of glucose and fructose in berries was correlated with enhanced
VvHT2 and VvHT6 gene expression and increased phloem area
and sucrose content in leaves (Murcia et al., 2016). When
Hayes et al. (2010) studied the pathogen-induced regulators of
carbohydrate sink strength, they found powdery and downy
mildew infections induced VvHT5 activity in coordination with
VvCWINV in grape leaves and this was controlled through
ABA. These findings indicated ABA regulated VvCWINV and
VvHT5 expression during the transition from source to sink
in response to infection by biotrophic pathogens (Hayes et al.,
2010). Some cross-mediation among ABA signaling and sugar
metabolism and accumulation have been identified in different
species. MdAREB2, an ABA-responsive transcription factor in
apple (Malus domestica), directly activated the amylase and
the sugar transporter gene MdSUT2 to promote soluble sugar
accumulation (Ma et al., 2017). The grape ASR (ABA, stress,
ripening) protein VvMSA, a protein induced by sucrose, stress
and ABA during fruit development, combines to a 160 bp
interval of VvHT1 promoter to regulate sugar movement and
accumulation via regulating the expression of VvHT1 (Carrari
et al., 2004). A VvMSA transcriptional regulation model at

the convergence of ABA, glucose, hexokinase1, and SnRK1
was proposed. In short, VvMSA expression is inhibited by
hexokinase1 and stimulated by ABA at high glucose levels,
whereas the inhibition by hexokinase1 is released at low glucose
levels in grape protoplasts (Saumonneau et al., 2012; Dominguez
and Carrari, 2015). ABSCISIC ACID-INSENSITIVE4 (ABI4) is
a member of the AP2/ERF family. Its expression is induced in
the presence of low glucose concentrations (Cho et al., 2010) and
high glucose concentrations and ABA (Arroyo et al., 2003; Zheng
et al., 2019). An ATX5-HY1-ABI4 regulatory module governing
the glucose response was identified recently. More specifically,
trithorax-group Protein ARABIDOPSIS TRITHORAX5 (ATX5)
directly regulates the transcription of HY1 by trimethylating
H3 lysine 4 of the Arabidopsis Heme Oxygenase1 (HY1) locus.
Glucose signaling suppresses ATX5 activity and subsequently
reduces the H3K4me3 levels at the HY1 locus, thereby leading
to the increased expression of ABI4 (Liu et al., 2018). ABA not
only could activate both the VIN and CWINV during grape berry
development through enhancing their activities and amounts
(Pan et al., 2010), but also could block the inhibitory effect of
glucose on the expression of SuSy and CWINV in grapes. This
inhibition was linked with the glucose sensor HKX1 (Wang
X. Q. et al., 2017). Therefore, HXK may be another potential
cross-mediator between ABA and glucose signaling to control
sugar accumulation.

Auxin
Fruit growth usually begins with cell division, continues with
cell division and expansion, and only ends with cell expansion.
The SAUR19 subfamily, one of the auxin signaling components,
has been shown to function as a positive effector of cell
expansion in Arabidposis (Spartz et al., 2012). The cell elongation
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FIGURE 3 | Model of the molecular basis for the progress and regulation of sugar accumulation in grape berry. Symbol ‘?’ means no clear relationship between
hormones and sink size (berry expansion) and sink activity (sugar accumulation),→ in blue stands for promotion, —• in blue stands for inhibition.

bHLH protein (VvCEB1) was identified and characterized to
control cell expansion in grape. VvCEB1opt-overexpressing
lines significantly elevated auxin content and increased the
number of lateral leaf primordia within meristems relative to
control, demonstrating that cell expansion and organ number
proliferation were likely an auxin-mediated process (Lim et al.,
2018). Overexpression of VvCEB1 in grape embryos resulted in
either activation or repression of the VvIAA family members’
expression while inducing the expression of VvSAUR and
VvGH3 genes. These disparities in the expression levels of
auxin-regulated genes may reflect their complex regulation of
cell expansion (Nicolas et al., 2013). Combined physiological,
transcriptome and cis-regulatory element analyses in grapes
suggest that fruit size is associated with changes in the berry’s
ripening physiology, where large berries approach ripening faster.
Compared with large berries, auxin levels are high in small
berries, accompanied with upregulation of transcripts encoding
TAR4 and YUC (Wong et al., 2016). It may be related to

inhibition of cell expansion and fruit ripening by auxin. A recent
study reported that auxin slowed down the onset of grape berry
ripening by delaying cell expansion (Dal Santo et al., 2020). Taken
together, these data provide insight into the link between auxin
signaling and cell expansion in grapes, which may affect the sink
capacity and sink demand in subsequent berry development.

Additionally, Böttcher et al. (2012) reported that the initiation
of sugar accumulation was delayed. The sugar accumulation
rate was lower in NAA-treated grape berries, resulting in
a 15-day delay in harvest. Antisense suppression of Sl4RF4,
an auxin response factor (ARF) gene in tomato (Solanum
lycopersicum), resulted in higher starch content in developing
fruits correlating with the up-regulation of genes and enzyme
activities involved in starch biosynthesis. This phenomenon
suggested the involvement of ARFs in the control of sugar
content (Sagar et al., 2013). Altogether, the findings indicated
that auxin delayed the accumulation of sugar content during
fruit development.
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Brassinosteroids
Application of exogenous BR (24-epibrassinolide; EBR)
increased soluble sugar content in Cabernet Sauvignon berries
accompanied by increased activities of invertases and sucrose
synthase. These increases coincided with the upregulation of
transcription levels of VvCWIN, VvHT3, 4, 5, 6, and VvSUC12,
27 during véraison (Xu et al., 2015). Vergara et al. (2018) also
found that BR analogs increased soluble solids and anthocyanins
in ‘Redglobe’ grapes. Together, these data suggested that BR
positively controls sugar accumulation in grapes during véraison.
In the review of Kuhn (2016), it was concluded that sugar
transporter SUT2 and BR signaling cross-talk regulated plant
immunity. Recent studies found that the phenotypic effects of
SlSUT2 silencing in tomato could partially be rescued by EBR
treatment, demonstrating that SlSUT2 interconnects sucrose
partitioning with brassinosteroid signaling (Hansch et al., 2020).
These studies could provide guidance for further research into
the involvement of BR in the regulation of sugar transport and
accumulation in grapes.

To summarize, the regulation of hormones on sink strength
reported in grape berry was constructed to a regulatory network
in the present review (Figure 2). Cytokinin could facilitate sink
size formation by activating D-type cyclin gene expression to
promote cell division. However, exogenous cytokinin (CPPU)
is not conducive to sugar accumulation in grape berry. The
level of endogenous ip increased rapidly at véraison when sugar
and anthocyanin accumulate. It remained at elevated levels
throughout grape ripening, whereas zeatin decreased rapidly,
reaching low levels at around véraison. However, no studies
confirm the repression of zeatin or the promotion of ip on sugar
accumulation. Auxin was found to inhibit cell expansion in grape
berry. However, the differential response of auxin-related genes
to the cell elongation bHLH protein (VvCEB1) suggests their
complex cell expansion regulation. Recent reports suggest auxin
could restrain the sink activity via delaying the initiation of sugar
accumulation. GA is widely used to expand berry size at an early
stage of grape development; this expansion could be involved
in the regulation of cell wall formation genes, cytoskeleton
and cell-wall modification proteins, and cell-wall relaxation
process by GA. GA is also reported to contribute to sugar
accumulation by alleviating glucose inhibition on the expression
of VvCWINV/VvSuSy. The same regulation was found in ABA;
both alleviate glucose’s repression on the VvCWINV/VvSuSy
expression by an HXK dependent pathway. Additionally, VvMSA
could respond to ABA to directly promote hexose transporter
genes and promote sugar accumulation. BR could upregulate
expression of VvCWIN, VvHT3, 4, 5, 6, and VvSUC12, 27, and
facilitate to sugar accumulation during the véraison stage of grape
development. More work is needed to fill the gaps in this network.

CONCLUSION AND PROSPECTS

The present status of our knowledge on the regulation of sink
strength in grapevine is summarized in Figure 3. The pattern of
sugar accumulation during berry development is clearly obtained
from previous studies. Grapevine genome sequencing has made

a valuable contribution to identify additional genes encoding
sugar transporters and metabolic enzymes. These genes are
involved in the complex molecular biology of sugar transport
and accumulation. However, most research showed only the
average levels of the gene expression and enzyme activity for
whole berries or grape heterotrophic suspension-cultured cells
system. In contrast, sugar concentration is different in the flesh
tissue (low hexose concentration near the brush, high at the
stylar end). Active uptake of d-glucose in the flesh is only
detected at a specific stage (véraison), while it can be detected
at both pre- and post-véraison stage in isolated skin pieces
(Coombe, 1992). So advanced studies are needed to determine
the precise function of these genes in specific phloem locations
of the grapevine so that the precise tracking of sugar allocation
is revealed. Moreover, the proteins or transcription factors that
modulate sugar transporters and metabolic enzymes could be
further explored at the transcription or post-transcription levels.
The potential regulation of the sugar transporters and metabolic
enzymes would provide practical benefits, maximizing crop yield,
and improving food quality.

Additionally, the role of various hormones in the regulation of
sink size and activity is currently in progress in fruits (Figure 3).
Although it is well established that ABA and BR promote sugar
accumulation in grape, the mechanisms of these promotions
remain to be elucidated. Cytokinin and GA are well known
to be involved in berry expansion, promoting sink capacity,
but no clear relationship has been established between sugar
accumulation and endognous/exogenous cytokinin in grape.
Several studies have contributed to the regulation of auxin
regarding sink size and activity; however, the disparities in the
expression levels of auxin-related genes reflect their complex
regulation in cell expansion and sugar accumulation. To use
hormones more effectively in grape production, we need a
finely tuned regulation of hormone concentration and type that
controls cell expansion/sugar allocation at given tissue locations
during grape berry development.
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