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Phenotyping individual trees to quantify interactions among genotype, environment,
and management practices is critical to the development of precision forestry and to
maximize the opportunity of improved tree breeds. In this study we utilized airborne
laser scanning (ALS) data to detect and characterize individual trees in order to generate
tree-level phenotypes and tree-to-tree competition metrics. To examine our ability to
account for environmental variation and its relative importance on individual-tree traits,
we investigated the use of spatial models using ALS-derived competition metrics and
conventional autoregressive spatial techniques. Models utilizing competition covariate
terms were found to quantify previously unexplained phenotypic variation compared
with standard models, substantially reducing residual variance and improving estimates
of heritabilities for a set of operationally relevant traits. Models including terms for
spatial autocorrelation and competition performed the best and were labelled ACE
(autocorrelation-competition-error) models. The best ACE models provided statistically
significant reductions in residuals ranging from −65.48% for tree height (H) to −21.03%
for wood stiffness (A), and improvements in narrow sense heritabilities from 38.64%
for H to 14.01% for A. Individual tree phenotyping using an ACE approach is
therefore recommended for analyses of research trials where traits are susceptible to
spatial effects.

Keywords: spatial analysis, tree competition, environment, tree phenotyping, airborne laser scanning, heritability,
field trial

INTRODUCTION

The development of a precision approach to forestry can improve the efficiency and sustainability
of managed forests. The aspiration is to utilize improved tree breeds, planted on the most suitable
sites, and managed to optimize production, while minimizing costs and environmental impacts by
targeted applications of inputs such as fertilizers (Dungey et al., 2018). A critical requirement for
precision forestry is accurate and cost-effective methods to characterize individual trees (Tsaftaris
et al., 2016; D’odorico et al., 2020). This capability could not only be utilized in trials to support
research into improved breeds for tree growth and quality, but also in assessment of trees for
inventory of forest stands at different stages of the production cycle. Traditional forest inventory
and trial measurement rely on ground-based measurement of traits such as tree diameter, height,
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and volume. Such measurements are time consuming and error-
prone. Remote sensing offers the potential for high throughput,
accurate, and spatially explicit phenotyping, providing an
essential foundation for precision management (Fahlgren et al.,
2015). At this stage, airborne laser scanning has been most
successfully adopted for forest inventory internationally, typically
using area-based methods to characterize patches of the order
of 0.04 ha in size (White et al., 2013; Maltamo et al., 2014).
Alternative methods, identifying and delineating individual trees
using ALS, have been developed and evaluated on New Zealand
radiata pine stands (Pont, 2016).

Radiata pine (Pinus radiata D. Don) is the dominant tree
species in the New Zealand forest estate comprising 90%
of the planted area (Forest Owners Association, 2019). The
New Zealand radiata pine forest estate comprises a monospecific,
even aged, intensively managed forest crop. Considerable
levels of variation in tree attributes remain, due to genetics,
environment, and silviculture (Dungey et al., 2006). Forest tree
breeding requires the evaluation of large numbers of trees and
sufficient replication due to genetic variability, resulting in trials
containing thousands of trees, and occupying several hectares
(Dungey et al., 2009).

A standard approach to mitigate the effects of environmental
variation in genetics trials is the use of spatial terms in analytical
models (Dutkowski et al., 2006). A useful method is the separable
first-order autoregressive model (AR1) in two dimensions (Cullis
et al., 1998), utilizing inverse distance-weighted correlations
across rows and columns in the trial, allowing for differing
spatial correlations in the row and column directions. This
successfully accounts for various forms of environmental effects
in trial analyses (Cullis et al., 2014). Competition is a form of
negative autocorrelation, where neighbors of a larger tree are
more likely to be smaller, and vice versa (Griffith and Arbia,
2010). Autocorrelative methods such as AR1 models do not
distinguish positive and negative autocorrelation and as a result
the two effects are confounded (Griffith and Arbia, 2010). In
order to accurately account for environmental variation, methods
to quantify both positive (site) and negative (competition)
autocorrelation are needed (Cappa and Cantet, 2008; Costa et al.,
2013; Dong et al., 2020).

Tree traits of primary importance to breeders and forest
managers include size, wood quality and disease susceptibility.
Height, diameter at breast height (DBH) and total stem
volume are widely used fundamental measures of tree size and
productivity, able to be estimated from tree-based analyses of
ALS (Lindberg et al., 2013; Dalponte et al., 2018). Dothistroma
needle blight (Dothistroma septosporum (Dorog.) M. Morelet) is
a foliar disease causing considerable productivity losses (Watt
et al., 2011), and wood stiffness is an wood quality characteristic
important for structural uses of timber (Carson et al., 2014).
Individual tree crown metrics derived from the ALS were shown
to correlate with these aforementioned tree size, disease, and
wood quality traits, and to provide accurate estimates of genetic
parameters such as heritabilities (Pont, 2016).

Competition metrics express the growth potential of
a tree relative to nearby trees, generally considering
the size and proximity of those trees (Pretzsch, 2010;

Burkhart and Tomé, 2012). The inclusion of such competition
metrics in analytical models was of interest to partition
competition effects from general environmental effects. Spatially
registered crown metrics from tree-based analysis of ALS
quantifying tree size and locations are suitable for derivation of
individual tree competition metrics. In a review of competition
metrics for use with individual tree analysis of ALS (Suárez,
2010), distance weighted size ratios were utilized. Such ratios,
initially used by Hegyi (1974), were expressed in terms of tree
diameters:

CI =
n∑

j−1

(
dj/di

Lij

)
where, di = DBH of reference tree i, dj = DBH of competitor tree
j, Lij = distance between reference tree i and competitor j.

It is hypothesized that spatial models including autoregressive
and competition terms reduce unexplained variation compared
to conventional models lacking spatial terms. The ability to more
accurately quantify spatial effects reduces model residuals and
thereby improves heritability estimates. The study was carried
out in a genetics trial, providing the unique opportunity to
work within an experimental design of known spacing and
documented genetics. Environmental effects due to competition
and site related variation were evident in the selected trial,
providing the opportunity to examine models accounting for
these effects in a controlled setting.

MATERIALS AND METHODS

Genetics Trial Site
The genetics trial BC 35-3 was established in 2007 by the Radiata
Pine Breeding Company Ltd., in compartment 76 at Kaingaroa
forest (38.53◦ S, 176.66◦ E) in the central North Island of
New Zealand. The trial was designed to evaluate Dothistroma
needle blight resistance for families in a breeding program and
used an incomplete block design with single tree plots (Dungey
et al., 2009). The trial site covered a total area of 2.8 ha and
sloped gently (<5 degrees) to the southeast. The trial comprised
75 blocks, with 25 replicates and 3 incomplete blocks per replicate
(Figure 1). Each block measured 19.2× 19.2 m, with tree spacing
on a uniform grid of 3.2 × 3.2 m. Blocks were established with
36 trees from different families in a 6 × 6 grid. Six control
families were present in every block and the remaining 90
families were assigned across the three incomplete blocks for each
replicate, with randomized spatial locations within the blocks
and replicates. The surrounding stand was also established with
radiata pine in 2007 at a density of 1000 stems ha−1 and thinned
to 786 stems ha−1 in 2012.

Initial inspection of the trial data showed evidence of spatial
autocorrelation, with reduced height and diameter growth and
increased levels of Dothistroma infection associated with small
gullies within the trial (Figures 2, 3). Favorable conditions
for Dothistroma are known to occur in gullies, where moist
conditions persist, indicating the possibility of reduced tree
growth associated with Dothistroma infection (Bulman et al.,
2004). In addition to observable site effects, the trial had missing
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FIGURE 1 | Trial layout with blocks outlined in white on the canopy height
model image derived from the ALS data at 0.25 m resolution and used for tree
detection.

FIGURE 2 | Trial layout with blocks outlined in white on an image of a digital
terrain model (derived from the ALS data at 0.8 m resolution) shaded to
indicate relative elevation and reveal a number of gullies evident as dark areas.

trees. Missing trees typically occur due to mortality, and in
this trial dead, unhealthy, and highly malformed trees were
also removed during the 2012 operational thinning of the
surrounding stand. The resulting gaps in the trial grid created
potential for competition effects (Fins et al., 1992).

Field Measurement of Tree Traits
A ground-based assessment of a number of tree traits was
carried out in July 2014 when the trial was aged 7 years,
following standard tree breeding measurement methodologies
(Jayawickrama, 2001). Measurements of tree diameter at breast
height (DBH), height (H), and outerwood stress wave velocity
(A), and degree of needle loss caused by Dothistroma needle
blight (D38), were carried out. Tree DBH was measured using
a fiberglass girth tape with diameter gradations at millimeter
intervals (Friedrich Richter Messwerkzeuge GmbH & Co.,
Speichersdorf, Germany). Tree H was measured using a Vertex

FIGURE 3 | Heatmap presenting ground measured degree of Dothistroma
infection (D38) for each tree (white indicates no data). Areas with elevated
infection coincided with the gullies identified within the trial.

IV (Haglof, Sweden). Total stem volume (V) was estimated for
each tree using the standard volume equation V182 (Goulding,
1995):

V = DBHa
(

H2

H − 1.4

)b

ec

where a = 1.79068, b = 1.07473, c = −10.03201, and e
is Euler’s number.

Outerwood stress wave velocity (A) was measured using a
HITMAN ST300 (Fibre-gen Ltd., Christchurch, New Zealand)
with the probes placed 1 m apart, avoiding knots and defects
that could affect readings. The measure A is correlated with wood
stiffness, an important engineering property for structural uses
of timber (Carson et al., 2014). Degree of needle loss (D38) was
assessed at age 38 months as a percentage of needles infected
or lost, estimated visually in 5 percent increments (Van Der Pas
et al., 1984). Individual tree D38 measurements are presented in
Figure 3 where indication of increased infection in association
with gullies crossing the trial (see Figure 2) was evident.

Airborne Laser Scanning Data
The discrete return ALS data were acquired in early 2014 using an
Optech Pegasus scanner with a pulse rate of 100 kHz, a maximum
scan angle of ± 12◦, a 25% swath overlap, and a 0.25 m footprint
size. The data were georeferenced to the NZGD2000 NZTM
coordinate system and all returns were classified as ground and
above ground (using Terrascan TerraSolid software). The average
point density of the point cloud over the trial area was 17 total
returns per m2 and 7 last returns per m2.

Crown Metrics
A canopy height model (CHM) with 0.25 m resolution was
extracted from ALS data collected over the trial and image
defects referred to as pits were removed using the standard
image processing method closing (Ronse and Heijmans, 1991;
Andersen et al., 2006). Individual trees were detected and crown
boundaries determined on the CHM image using the calibrated
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TABLE 1 | Individual tree crown metrics used in candidate competition metrics
with most highly correlated tree size trait and Pearson’s r.

Abbreviation Description Units Trait r

CR =
√

CAp
π

Crown radius derived from crown
area (CAp).

m DBH 0.679

CL Crown length, difference between
crown highest point and average
height of crown boundary points.

m H 0.476

GAP Two-dimensional ground area of
crown growing space from watershed
segmentation polygon.

m2 DBH 0.518

CAP Two-dimensional ground area of
crown determined from crown
boundary polygon.

m2 V 0.574

ACG Ratio of crown and growing space
areas (CAP/GAP ).

− H 0.297

m2 V 0.598

CST Surface area of triangulated crown
CHM heights.

m2 V 0.574

CVF The volume between the crown
upper surface and the ground (Chen
et al., 2007).

m3 V 0.844

CVP The volume between the crown upper
surface and the base of the crown.

m3 DBH 0.541

ITC method (Pont et al., 2015). The method uses watershed
segmentation with operator calibration to determine the level of
image smoothing and has been shown to provide tree detection
accuracy of 95% for New Zealand radiata pine across a range of
stand densities and crown sizes. Detected trees were matched to
ground trees with an automated least squares approach (Hauglin
et al., 2014) and unmatched trees used to identify and manually
correct segmentation errors.

Watershed segmentation resulted in growing space polygons,
one per detected tree, which completely tiled the image, each
including a tree crown and a portion of any adjacent gap
between trees. Tree crown boundaries were then delineated
within each growing space polygon to exclude any gap area. For
tree crowns with no adjacent gaps, growing space and crown
polygons were identical. The CHM image gray values within
each crown represent heights above ground. Growing space
boundaries, crown boundaries, and crown elevation values were
used to derive a total of nine crown size metrics (Table 1)
correlated with the traits of interest (Pont, 2016). Crown volumes
(CVF and CVP) quantified three-dimensional crown size, while
surface areas from projected polygon outlines (GAP and CAP)
and from surface areas of three-dimensional crown surfaces
(CSC and CST) provided two-dimensional measures of crown
sizes. Crown length and radius (CL and CR) provided one-
dimensional measures and the ratio of crown and growing space
areas (AGC) provided a dimensionless measure of crown size.
These crown size metrics were then used in competition metrics
described subsequently.

Competition Metrics
Rouvinen and Kuuluvainen (1997) presented a set of competition
metrics, CI10, CI11, and CI12, derived from the original by

Hegyi (1974). Those competition metrics were evaluated by
Suárez (2010) using ground measured DBH and using DBH
estimated from LiDAR CHM crown metrics. Those competition
models were generalized in our study to utilize the crown metrics
(see Table 1) derived from the ALS CHM as:

CIA =
n∑

j−1

(
cj/ci

Lij

)

CIB =
n∑

j−1

(
cj/ci

Lij

2
)

CIC =
n∑

j−1

(
(cj/ci)

2

Lij

)

where ci = crown metric for reference tree i, cj = crown metric
for competitor tree j, Lij = distance between reference tree i
and competitor j.

Two methods were used for determining the neighboring trees
included in the calculation of the competition metrics described
above. In the area method (NA), all trees within a fixed radius
were included, an approach used in a number of previous studies
(Hegyi, 1974; Pukkala et al., 1994; Rouvinen and Kuuluvainen,
1997; Suárez, 2010). The grid spacing in the trial was used to
estimate a radius of 8.273 m to include an average of twenty trees
surrounding the central tree. In the boundary method (NB), only
trees sharing a segment boundary (as delineated on the CHM)
with the target tree were included (Suárez, 2010). Processing
of the CHM included a 50 m buffer around the trial and
competition metrics using both neighborhood methods included
trees surrounding the trial, a distinction with competition metrics
which often only account for trees measured within plots or
trials (Dutkowski et al., 2006). The use of 9 crown metrics
(Table 1) and 3 model formulations (CIA, CIB, CIC) gave 27
competition metrics. Use of the two neighborhood methods (NA
and NB) with the 27 metrics gave a total of 54 competition
metrics for evaluation.

Spatial Models
The following general individual tree linear mixed model was
used as the basis of all spatial models:

y = Xb+ Zu+ e

where y is a vector of individual tree observations of a specific
trait (H, DBH, V, D38 or A), b is a vector of fixed effects, u is a
vector of random effects, and e is a vector of random residuals.
The terms X and Z correspond to design matrices relating the
observations in y to the fixed and random effects in b and u,
respectively (Dungey et al., 2012).

We fitted a model without spatial terms, as routinely used
in estimating variance components and genetic parameters
including narrow sense heritabilities, referred to as Base model
(B) (Dutkowski et al., 2006). Fixed effects in vector b included
the overall mean and a factor with two levels to account for the
effects of control versus non-control material. Random terms
in vector u included the additive genetic effects of individual
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TABLE 2 | Models fitted for each trait to compare improvements from random terms to account for spatial autocorrelation (AR1) and addition of competition covariates
derived from analyses of the ALS tree crown metrics.

Model Abbreviation Fixed terms Random terms

Base B control replicate + iblock:rep + pedigree

Base + AR1 BA control pedigree + units + AR1

Base + Competition BC control replicate + iblock:rep + pedigree + competition

Base + AR1 + Competition BAC control pedigree + units + AR1 + competition

genotypes for pedigreed material, the effects of replicates and the
effects of incomplete blocks within replicates. We also fitted a
standard spatial model using an auto-regressive order 1 random
term, commonly referred to as AR1xAR1, and abbreviated
to AR1 hereafter (Dutkowski et al., 2006). We referred to
this standard spatial model as Base plus AR1 (BA). In this
model vector e was partitioned into spatially correlated (ξ ) and
uncorrelated (η) residuals and replicate was removed as a fixed
effect. The spatially correlated error ξ , was modeled by using
a first-order separable autoregressive process in the row and
column directions (Gilmour et al., 1997; Costa et al., 2001; and
Dutkowski et al., 2002).

Competition metrics were then introduced as covariates
to those models, referred to as Base plus Competition (BC)
and Base plus AR1 plus Competition (BAC). Covariate values
were standardized by subtracting the mean and dividing by
the standard deviation (Butler et al., 2009). Control and the
overall mean appeared as the only fixed terms, and the additive
genetic effects of individual trees appeared as a random term,
in all models. Trees were assigned to grid rows and columns,
and missing values added to ensure a complete grid for AR1
models. A nugget effect (referred to as units) was added to
models having an AR1 spatial term, as this has been shown
to be significant in several studies (Suontama et al., 2015).
Incomplete block by replicate was tried as a random term in
all models, but it became non-significant when an AR1 spatial
term was added, so it was dropped from those models (Dungey
et al., 2012). The set of models evaluated are summarized in
Table 2.

The B and BA models were fitted to each of the 5 traits
(H, DBH, V, D38, A), requiring 10 model runs. The BC and
BAC models were fitted for the 5 traits by 54 competition
metrics, requiring 270 model runs. The total number of
model runs being 280.

Model Evaluation
Models can be compared with log-likelihood (LL) ratio tests if
they have the same fixed effects, and if one model has a subset
of the random effects in the other model (nested models) (Isik
et al., 2017). Models with the same fixed effects that are not
nested can be compared with information criteria, Akaike’s (AIC)
or Schwarz’s Bayesian Information Criteria (BIC). In our study
we evaluated four nested models with the same fixed effects
(control only), presented in Table 2. We evaluated models under
the premise that all models including some spatial component
were alternative approaches to accounting for spatial variation
compared to the base model. If LLM and LLB are the REML

log-likelihoods for a test and base models, respectively, the test
statistic (D) is given by:

D = 2 (LLM − LLB)

where Akaike Information Criteria (AIC) and Bayesian
Information Criteria (BIC) used to rank models (Dutkowski
et al., 2006) are derived as follows:

AIC = −2LLRi + 2ti

BIC = −2LLRi + 2tilog v

where LL is the log-likelihood of the model, ti is the number of
variance parameters in model i, and ν = n − p is the residual
degrees of freedom.

Narrow sense heritabilities (h2) were estimated for each
model fit, using the additive genetic variance as a ratio of the
phenotypic variance, expressed as the sum of the additive and
residual variances:

h2
=

VarA

VarA + VarE

where VarA is the additive genetic variance and VarE is the
residual variance.

In the case of models with an AR1 term, the residual is
represented by the units component (Dutkowski et al., 2002).
Models where competition covariates terms were fitted for
each trait (BC, and BAC) were ranked by LL and the best
model selected. All models tested were ranked by LL (higher
being better), and then associated h2 and residual variance
components were examined. Two metrics were derived to express
the improvements of spatial models compared to the base model,
the change in h2, and in residual (ε), compared to the standard
(base) model, multiplied by 100 to be expressed as percentages:

1h2
=

h2
M − h2

B
h2

B

1ε =
εM − εB

εB

where the subscripts M and B represent the spatial and base
models, respectively.

RESULTS

Spatial models provided statistically significant improvements
in LL over a base model for all traits (H, D, V, D38, and A),
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TABLE 3 | ASReml model fit statistics Log-likelihood (LL) and test statistic (D) and
results heritability (h2) with its standard error (SE), by trait and model, ordered by
decreasing Log-likelihood (LL) within trait and traits are ordered by decreasing
improvement in residual (1ε%) from the best model, improvement in heritability
(1h2%) is also shown.

Trait Model LL D h2 SE 1 h2% 1ε%

H BAC −1291 <0.001 0.4117 0.0950 38.64 −65.48

BC −1381 <0.001 0.3011 0.0679 1.39 −32.90

BA −1758 <0.001 0.3425 0.0770 15.34 −24.87

B −1800 <0.001 0.2969 0.0660 − −

DBH BAC −8406 <0.001 0.3753 0.0899 33.55 −63.65

BC −8440 <0.001 0.2954 0.0657 5.13 −38.90

BA −8930 <0.001 0.2950 0.0671 4.99 −8.58

B −8948 <0.001 0.2810 0.0636 − −

V BAC 5757 <0.001 0.3642 0.0856 22.47 −56.26

BC 5742 <0.001 0.2980 0.0649 0.21 −31.89

BA 5347 <0.001 0.3140 0.0678 5.60 −8.87

B 5334 <0.001 0.2973 0.0640 − −

D38 BAC −6024 <0.001 0.4912 0.0931 34.88 −50.31

BC −6096 <0.001 0.3546 0.0705 −2.63 −14.43

BA −6210 <0.001 0.4926 0.0922 35.28 −40.18

B −6276 <0.001 0.3642 0.0713 − −

A BAC 1052 <0.001 0.4862 0.1101 14.10 −21.03

BC 1047 <0.001 0.4221 0.0764 −0.93 −0.30

BA 1038 0.002 0.4531 0.0819 6.34 −9.63

B 1033 <0.001 0.4261 0.0772 − −

the ranking order in Table 3 was BAC, BC, BA. Spatial BAC
models resulted in reductions in residual ranging from −65.48%
for H to −21.03% for A, and improvements in h2 from 38.64%
for H to 14.10% for A. Results confirmed prior research that
auto-regressive order 1 (AR1) models are able to account for
spatial effects from a wide variety of sources (Isik et al., 2017).
Results also showed the utilization of a competition covariate in
combination with an AR1 term explained additional variation,
substantially reducing the residual and improving h2 for all traits
except D38. The tree size traits DBH, H, and V benefited the most
from competition covariates, and the greatest improvements in
residual and h2 relative to a BA model were −55% and 29%,
respectively from a BAC model for DBH.

The use of competition covariates in spatial models without
an AR1 term (BC models) resulted in statistically significant
improvements in LL, and reductions in residuals. However,
the BC models did not generally result in increased h2, the
best improvements being 5.13% and −2.63% for D and D38,
respectively. The sign and strength of Pearson’s correlation
coefficients (r) were examined to elucidate the relationships
between crown metrics and traits (see Table 4).

The crown metric CVF (see Table 1) appeared in the
competition metric for the top performing BAC models for all
traits except A. Models with competition metrics based on the
CVF crown metric were consistently ranked highest, but only
marginally higher than models with the CR and CAP crown
metrics (results not shown). Those three metrics represented
crown size in terms of volume, radius, and projected area,
respectively. Moderate to strong correlations were observed for

TABLE 4 | Best performing (least Log-Likelihood) crown metrics in BAC models
compared to the BA model by trait.

Trait Model Crown metric N/CI r

H BAC CVF NB CIA −0.5436

BA

DBH BAC CVF NB CIA −0.5990

BA

V BAC CVF NB CIA −0.5423

BA

D38 BAC CVF NA CIA 0.3971

BA

A BAC ACG NA CIA 0.1328

BA

The competition crown metric, neighborhood definition (N) and competition index
(CI) used are shown along with Pearson’s correlation coefficient (r) for the trait
and crown metric.

competition metrics with tree size traits (H, DBH, and V, with r
from−0.54 to−0.60) and with disease expression (D38, r = 0.40).
Results associated higher competition metrics with reduced tree
size, and increased disease levels.

Competition metrics based on distance-weighted crown
size metrics (CIA, CIB, CIC) were derived using area (NA)
and boundary (NB) neighborhoods. The CIA formulation,
representing a linear distance weighting of crown sizes, appeared
in the best BAC models for all traits (Table 4) and the boundary
neighbourhood definition (NB) performed best for the tree size
traits (H, DBH, and V). The exponentially weighted derivations
of competition index (CIB and CIC) were inferior.

DISCUSSION

The Autocorrelation-Competition-Error
Approach
Results from our study have confirmed the recognized general
utility of AR1 spatial models with a spatially independent
units term to take account of spatial environmental variation
(Costa et al., 2001; Dutkowski et al., 2006). However, spatial
autocorrelation can be positive, representing various site effects
such as temperature and aspect, and negative, representing
competition effects. Competition effects can result in the mutual
masking of these forms of autocorrelation (Griffith and Arbia,
2010). Where negative autocorrelation is left unaccounted
for, it can even result in insignificant spatial autocorrelation
test statistics. The inclusion of competition effects to reduce
residual variation was described in a theoretical approach,
focused on competition of genetic origin, and showed failure
to account for competition resulted in biased model estimates
and increased residual variation (Costa et al., 2013). Our study
was a practical demonstration of the presence of both positive
(site) and negative (competition) autocorrelation, and the best
models combined AR1 and competition terms to explain these
respective environmental sources of variation. Models having
an explicit competition term and a generic term to account for
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positive autocorrelation are referred to as ACE (autocorrelation-
competition-error) models. Results confirmed our hypothesis
that models including autoregressive and competition terms
reduce residuals and improve estimates of heritabilities compared
to conventional models without spatial terms.

The success of ACE models was attributed to three
key features. Firstly, it was critical to separate negative
and positive autocorrelation, representing variation due to
competition and other environmental effects, respectively, which
were otherwise confounded. Secondly, the inverse-distance
weighted competition metrics employed successfully accounted
for competition. Thirdly, we observed there are potentially
numerous positively auto-correlated environmental effects on
tree growth besides competition, which were robustly accounted
for by an autoregressive model component. We suggest ACE
models as a useful approach to analyses of tree and plant growth
due to the ubiquity of both competition and site effects. Thus,
we propose that it will be beneficial for modelers to test for,
and quantify, those effects with ACE models, when possible, as
a useful evolution of the currently recommended practice of
applying AR1 models.

The competition and crown metrics utilized were
parsimonious, easy to derive, and to interpret, which will
aid application of ACE models. The competition metrics were
of a widely recognized and applied form, utilizing positions and
relative sizes of neighboring trees (Maleki et al., 2015). The crown
metrics represented fundamental crown morphological features,
and were derived from analysis of the CHM, a model of the
upper surface of the canopy derived from the three-dimensional
point cloud created by laser scanning (Pont et al., 2013). This
is referred to as a raster-based approach, and is contrasted
with point- and voxel-based methods which derive numerous
measures from the three-dimensional point cloud, a majority of
which are statistical measures of point dispersion (Zhen et al.,
2016). The latter methods can yield large numbers of metrics,
but we note that studies evaluating such metrics have typically
found that a more limited set of crown morphological metrics,
representing crown features such as diameter, length, area,
and volume, were typically among the most useful variables
in models estimating tree attributes (Vauhkonen et al., 2016).
Raster based metrics derived using the methods described in this
study permit the use of widely available point cloud data, either
from ALS or photogrammetric methods (Krause et al., 2019),
making the methods flexible and amenable to operational uses in
forestry. Future research could compare the efficacy of ALS and
photogrammetric data sources with ACE models.

Generality of ACE Models
An autoregressive model relates a characteristic of a target tree
to the same characteristic of its neighbors, reflecting Tobler’s
first law of geography (Tobler, 1970). Autoregressive models
make no attempt to explain effects or cause, and therein lies
their power. We postulate that an AR1 term can effectively
account for spatial effects from multiple sources and scales,
particularly once a separate term for competition is included. As
a hypothetical example of scale independence, consider a group
of neighboring trees where height growth is being positively
affected by soil fertility at a short scale, and negatively affected by

temperature at a much larger scale. There could also be additional
unknown influences on growth, all operating at different scales.
An autoregressive model is agnostic to the factors or scales at play
and utilizes the integrated result of all such effects on neighboring
trees as a robust proxy for the effects on the target tree. The ACE
approach could therefore robustly account for environmental
variation of unknown sources and scales with an AR1 term, and
is also amenable to the addition of terms representing explicit
environmental effects as they are elucidated in future research.

Traits Have Distinct Environmental
Responses
The ACE approach was shown to be beneficial for a range of
traits, but it was also apparent that the relative amounts of
variation due to genotype, competition, and site were distinct
by trait. Tree DBH and V apparently had strong overall spatial
variation, predominantly due to competition, while H also
exhibited strong spatial variation due to nearly equal amounts
of competition and site effects. The weaker competition effect
noted for Dothistroma infection agreed with a predominant site
effect due to the localized spread of the disease, reliant on a
water-borne transmission, and re-infection of trees from fallen
needles (Bulman et al., 2013) and the known tendency for the
disease to occur in gullies due to increased moisture and reduced
air movement (Bulman et al., 2004). The smaller, but evident,
competition effect for D38 could reflect reduced tree growth
resulting from the disease, or increased infection of smaller trees.

Applications
There are several important operational applications for tree
level phenotyping which could be supported by the ACE
modeling approach, ranging from trial, stand, and forest levels,
for breeding, research, and management objectives. The use of
ALS data provides accurate tree locations and sizes for use in
competition metrics. It should be noted the modeling approach
is even applicable to conventional ground measurement of trials,
where remote sensed crown metrics are not available. In that case
competition metrics could be derived from ground measured tree
size, or other traits. The use of ACE models including known
genetics in analysis of a genetics trial was shown to substantially
reduce model residuals and improve heritabilities, potentially
improving breeding values, tree selection, and future breeds.
The benefits of improved tree breed selection for forest sites are
accentuated in the context of climate change (Dungey et al., 2018;
D’odorico et al., 2020; De Los Campos et al., 2020). The ACE
method is also advocated for use in general research trial analyses
to improve accuracy and precision of results by accounting for
environmental variation. In this study ACE models were applied
to tree size (H, DBH, V), disease expression (D38) and wood
quality (A), representing a set of traits of primary importance to
tree breeders and forest managers.

CONCLUSION

Crown metrics utilized in competition metrics substantially
reduced residual variation and improved heritabilities for
a range of operationally relevant traits. Tree height, DBH,

Frontiers in Plant Science | www.frontiersin.org 7 January 2021 | Volume 11 | Article 596315

https://www.frontiersin.org/journals/plant-science
https://www.frontiersin.org/
https://www.frontiersin.org/journals/plant-science#articles


fpls-11-596315 December 23, 2020 Time: 12:38 # 8

Pont et al. Improved Heritabilities From Spatial Models

volume, Dothistroma infection and stiffness exhibited significant
variation attributable to spatial environmental effects. Analyses
showed that traits exhibited distinct combinations of genotypic,
competition, and site related variation, which needs be
considered when modeling. The crown metrics and competition
metrics identified in this study were parsimonious, effective, and
warrant further investigation.

Analyses of results lead to the proposal of ACE models as
a robust and effective approach to account for environmental
variation in tree traits. Those models comprise an explicit
competition term accounting for negative autocorrelation and
a generic spatial term to account for positively autocorrelated
site effects. Inclusion of a competition term, which we derived
from individual tree crown metrics, was observed to be
critical to improving the effectiveness of spatial modeling for
environmental effects, avoiding the confounding of negative and
positive autocorrelation.

The ACE approach is recommended for wider evaluation
in tree and plant growth analyses, particularly for size and
disease attributes. The analysis of remotely sensed data using
ACE models will be developed and evaluated in future studies
to determine utility in improving accuracy of trial analyses,
identification of superior trees, tree growth research, and
precision forest management.
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