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Genomic selection models were investigated to predict several complex traits in
breeding populations of Zea mays L. and Eucalyptus globulus Labill. For this, the
following methods of Machine Learning (ML) were implemented: (i) Deep Learning
(DL) and (ii) Bayesian Regularized Neural Network (BRNN) both in combination with
different hyperparameters. These ML methods were also compared with Genomic Best
Linear Unbiased Prediction (GBLUP) and different Bayesian regression models [Bayes
A, Bayes B, Bayes Cπ, Bayesian Ridge Regression, Bayesian LASSO, and Reproducing
Kernel Hilbert Space (RKHS)]. DL models, using Rectified Linear Units (as the activation
function), had higher predictive ability values, which varied from 0.27 (pilodyn penetration
of 6 years old eucalypt trees) to 0.78 (flowering-related traits of maize). Moreover, the
larger mini-batch size (100%) had a significantly higher predictive ability for wood-
related traits than the smaller mini-batch size (10%). On the other hand, in the BRNN
method, the architectures of one and two layers that used only the pureline function
showed better results of prediction, with values ranging from 0.21 (pilodyn penetration)
to 0.71 (flowering traits). A significant increase in the prediction ability was observed
for DL in comparison with other methods of genomic prediction (Bayesian alphabet
models, GBLUP, RKHS, and BRNN). Another important finding was the usefulness of
DL models (through an iterative algorithm) as an SNP detection strategy for genome-
wide association studies. The results of this study confirm the importance of DL for
genome-wide analyses and crop/tree improvement strategies, which holds promise for
accelerating breeding progress.

Keywords: deep learning, Bayesian regularized neural network, genomic prediction, machine learning, single-
nucleotide polymorphisms, tropical maize, eucalypt
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INTRODUCTION

Artificial neural networks (ANNs) are computational methods
of interest in the area of Machine Learning (ML) research,
which has proved to be a powerful tool in several studies of
genomic prediction (Drummond et al., 2003; Gianola et al.,
2011; González-Recio and Forni, 2011; González-Recio et al.,
2014; Leung et al., 2015; Glória et al., 2016; Romagnoni
et al., 2019; Yin et al., 2019; Grinberg et al., 2020), due to
its ability of dealing with a wide variety of high-dimensional
problems in a computationally flexible manner (González-
Recio et al., 2014; Ranganathan et al., 2018). In this regard,
Gianola et al. (2011) pointed out that this method may be
useful for the prediction of complex traits when the number
of unknown variables is much larger than the number of
samples (high-dimensional genomic information), since ANNs
have the ability to capture non-linearities, adaptively (Gianola
et al., 2011). Moreover, Pérez-Rodríguez et al. (2012) found
that Bayesian Regularized Neural Networks (BRNNs) and Radial
Basis Function Neural Networks (RBFNNs) (non-linear models)
had higher predictive accuracy and smaller predictive mean-
squared error than Bayesian linear regression models (Bayesian
LASSO: BL, Bayesian Ridge Regression: BRR, Bayes A and Bayes
B) for grain yield and days to heading in wheat.

Over the last several years, complex ANN architectures have
been implemented to predict complex traits in several plant
species (Ma et al., 2017; Khaki and Wang, 2019). For instance,
Deep Learning (DL), a form of ML, has gained increasing interest
in prediction studies, which typically use multiple hidden layers,
trying to learn functions that connect the input data (inputs
layer) and response variables (output layer) in absence of a model
(Sheehan and Song, 2016). However, unlike traditional neural
networks, algorithms of DL consider many hidden layers during
the training of network (Sheehan and Song, 2016; Min et al.,
2017), which transform the input data into a more abstract
representation at each stacked layer (Khaki and Wang, 2019).
In this regard, LeCun et al. (2015) pointed out that the use of
multiple hidden layers in DL can reveal non-linear relationships
between input data and response variables and can perform
extremely intricate functions that are sensitive to minute details
and insensitive to large irrelevant variations. Moreover, the use of
non-linear functions is a powerful alternative to linear regression
because it offers the most flexible curve-fitting functionality,
which seeks to minimize the standard error of the estimate to
increase the prediction accuracy (Abebe et al., 2018).

Rachmatia et al. (2017) implemented Deep Belief Network
(DBN), one of the architectural DL methods, for developing
genomic prediction models in maize and found that DBN
outperformed other methods of prediction such as Reproducing
Kernel Hilbert Space (RKHS), BL, and best linear unbiased
predictor (BLUP). In another study, Montesinos-López et al.
(2018) compared DL with the genomic BLUP (GBLUP)
method using nine published genomic datasets (three of maize
and six of wheat), in which the DL method had a better
performance in most cases. Importantly, they corroborated that
there are no universally best prediction machines, and thus,
several available methods should be tested in a given breeding

population. Khaki and Wang (2019) designed a deep neural
network approach to predict crop yield that took advantage of
state-of-the-art modeling and solution techniques. The authors
pointed out that a salient feature of this learning model is that
they treat the response variables as an implicit function of the
input variables (e.g., genes and environmental components),
which could be a non-linear function and highly complex.

In this study, genomic prediction models based on DL
and BRNN were investigated to predict complex traits in two
economically important plant species: Eucalyptus globulus Labill.
and Zea mays L. E. globulus is one of the most widely planted
hardwood tree species in temperate regions of the world, mostly
used as raw material for pulp and paper industry due to its high-
quality cellulose pulp, low lignin, and lipid content (Aumond
et al., 2017). This species is also used for the production of
essential oils in the pharmaceutical industry (Shao et al., 2020).
Notably, E. globulus has been successfully grown in a broad
range of environmental conditions, and it stands out as the
targets of multiple breeding programs to improve economically
important traits such as tree growth and wood quality (Ballesta
et al., 2019). On the other hand, Z. mays is one of the
world’s leading cereal grains along with rice and wheat (Reeves
et al., 2016). This species plays an important role in food
security and has many uses, including biofuel, animal feed,
pharmaceutical, and agro-industrial products (Suleiman et al.,
2013). Due to the importance of maize in the global context,
several efforts have been undertaken addressing the efficient use
of germplasm materials (Maldonado et al., 2019). Therefore, in
these two important outcrossing species, we have assessed ML
architectures, which were compared with GBLUP and different
linear Bayesian regression models (Bayes A, Bayes B, Bayes Cπ,
BRR, and BL) and the non-linear model RKHS. One of the
main difficulties in implementing DL models is to find the best
hyperparameter configuration, which requires time and some
basic understanding of hyperparameters to optimize (Pérez-
Enciso and Zingaretti, 2019; Zingaretti et al., 2020). In this
regard, we evaluated the importance of mini-batch and activation
function hyperparameters in terms of predictive ability (PA) and
computational time required. The findings of this study can be
useful as a guide to the analysis of DL for the genomic prediction
of complex traits, facilitating its implementation in operational
breeding programs.

MATERIALS AND METHODS

Phenotypic and Genotypic Data
Maize Experiment
The panel was composed of 322 inbred lines representing
a core collection of tropical maize germplasm of the State
University of Maringa, Parana State, Brazil. All inbred lines
were obtained from selfing and selection in nurseries, starting
from populations and hybrids released by Brazilian public and
private sector corn breeding programs. This maize panel was
sown in the growing season 2018 in two locations of southern
Brazil: Cambira and Sabaudia. The experimental design in both
trials was an alpha-lattice with 24 incomplete blocks, and three
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replications per inbred line. The following traits related to
flowering were evaluated: Male and Female Flowering time (MF
and FF, respectively), measured in each line as the number of days
from sowing to anther extrusion from the tassel glumes and to
visible silks, respectively, and the Anthesis-Silking Interval (ASI)
calculated as the difference between MF and FF (Maldonado
et al., 2019). The target population of maize was genotyped using
genotyping by sequencing (GBS) (Elshire et al., 2011; Glaubitz
et al., 2014). The raw database of GBS was filtered considering a
minor allele frequency (MAF) > 0.05, resulting in 291,633 high-
quality SNPs. Subsequently, missing data were imputed through
LDkNNi imputation (linkage disequilibrium k-nearest neighbor
imputation) (Money et al., 2015). SNPs with a MAF < 0.01 and
a proportion of missing data per location > 10% were eliminated
from the imputed dataset, resulting in a total of 290,973 SNPs.
Finally, a subset of 10,000 SNPs was randomly selected for
genomic prediction analyses.

Eucalypt Experiment
This breeding population was composed of 62 full-sib and 3
half-sib families of E. globulus located in the La Poza sector,
Purranque, administrative region of Los Lagos, Chile. The
experimental design was a randomized complete block, with 30
blocks, single-tree plots, and a spacing of 2.5 m between the
trees within a block. The traits were assessed in this breeding
population: pilodyn penetration (WD), stem straightness (ST),
branch quality (BQ), diameter at breast height (DBH), and tree
height (TH). WD was indirectly estimated based on pilodyn
penetration (in millimeters) at breast height using a Pilodyn 6J
Forest (PROCEQ, Zurich, Switzerland) according to Valenzuela
et al. (2019). ST was evaluated in the first 2/3 of the total height
of the tree, considering an ordinal scale of seven levels, in which
0 represents trees with curvature in the first third of the total
height of the tree, and 6 represents trees that could present a
slight curvature in the upper third of the tree without loss of
productivity (Ballesta et al., 2019). BQ was evaluated according to
different criteria of quality (i.e., diameter, angle, and distribution
of branches in the tree), considering an ordinal scale of six
levels, in which 1 represents a tree with serious limitations and 6
represents a tree with all branching variables in good condition
(Mora et al., 2019). Total tree height was measured using a
Suunto R© hypsometer, while DBH was measured with a diameter
tape at 1.3 m above ground level. Genomic DNA was isolated
from leaf tissue of 646 individuals randomly selected from the
breeding population (approximately 10 individuals per family)
and genotyped using the EUChip60K SNP system (GeneSeek,
Lincoln, NE, United States) (Silva-Junior et al., 2015). The
genotyping quality was evaluated using Genome Studio software
(Illumina, San Diego, CA, United States). Subsequently, SNPs
with a MAF < 0.05 and a proportion of missing data > 10% were
eliminated. A final set of 14,442 SNPs was retained.

Heritability Estimates
Narrow-sense heritability (ĥ2) of E. globulus was estimated as
follows:

ĥ2
= σ2

a/(σ
2
a + σ2

e )

where σ2
a and σ2

e are the additive and residual variances,
respectively. Due to the mix families (half-sib and full-sib) in
E. globulus, only additive variance was considered. On the other
hand, in Z. mays, broad-sense heritability (Ĥ2) was computed as:

Ĥ2
= σ2

G/(σ2
G + σ2

e )

where σ2
G is the total genotypic variance (i.e., σ2

G = σ2
a + σ2

d;
additive and dominance genetic variance, respectively). Thus, the
additive and dominance ratios were estimated as:

ĥ2
a = σ2

a/(σ
2
a + σ2

d + σ2
e )

ĥ2
d = σ2

d/(σ
2
a + σ2

d + σ2
e )

All estimates and calculations described in this section were
performed using the R package sommer (Team R. C., 2013;
Covarrubias-Pazaran, 2016). The additive and dominance
relationship matrices were estimated using the A.mat (Endelman,
2011) and D.mat (Su et al., 2012) functions, respectively.

Genomic Prediction Models
Bayesian Alphabet
Genomic prediction linear Bayesian models were fitted using the
following approaches: Bayesian Ridge Regression (BRR; Gianola,
2013), Bayesian Lasso (BL; Legarra et al., 2011), Bayes A (Hayes
and Goddard, 2001), Bayes B (Hayes and Goddard, 2001), and
Bayes Cπ (Habier et al., 2011). The models were adjusted as
follows:

yi = µ+

p∑
j=1

Aijaj + εi

yi = µ+

p∑
j=1

Aijaj + Dijdj + εi

where y is a vector of phenotypes pre-corrected for non-
genetic effects (i.e., block effect; experimental design); µ is an
overall constant; Aij and Dij are genotype indicator variables for
individuals i at locus j; aj and dj for j= 1, 2, . . . p are the additive
(aj) and dominance (dj) genetic effect of the jth SNP; and εi is
the residual associated to the observation on individual i, with
distribution ε ∼ N(0, Iσ2

ε ), where I is an identity matrix, and σ2
ε is

the residual variance. Genotypes in A matrix were coded as 0 for
“aa,” 1 for “Aa,” and 2 for “AA” to capture additive effects, while
that for modeling dominance effects in D matrix, the genotypes
“aa,” “Aa,” and “AA” were coded as 0, 1, and 0, respectively.

For the BRR model, the marker effect (aj) is distributed
as follows: aj|σ2

a ∼ N(0, σ2
a), and the common variance (σ2

a)
is treated as unknown and p

(
σ2
a
)
∼ χ−2 (σ2

a
∣∣ df a, Sa), with

degrees of freedom and scale parameter df a and Sa, respectively.
The BL method assumes that the conditional prior distribution
of each marker effect follows a double exponential (DE),
p
(
aj
∣∣ , σ2

ε

)
= DE

(
aj
∣∣ 0, λ, σ2

ε

)
, where is the regularization

parameter and σ2
ε is a specified scaled inverse Chi-squared prior

density p
(
σ2

ε

)
∼ χ−2 (σ2

ε

∣∣ df ε, Sε

)
, with degrees of freedom df ε

and scale parameter Sε (Park and Casella, 2008). Bayes A assumes
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that the conditional prior distribution of a marker effect aj is
assumed to be Gaussian with null mean and marker-specific
variance σ2

aj , independent from each other. In this model, the
variance of each marker is assumed to be distributed scaled
inverse Chi-squared, with p(σ2

aj) = χ−2
(
σ2
aj

∣∣∣ df , S2
)

, where df

and S2 are known degrees of freedom and scale parameters,
respectively (Pérez and de Los Campos, 2014). The Bayes B
method assumes that only a few loci contribute with some
genetic variance and that some genetic markers have zero effect,
such that the prior distribution of the effects of all markers is
given by:

p
(

aj

∣∣∣ σ2
aj
, π
)
=

{
0 with probability π

N(0, σ2
aj
) with probability (1−π)

where π is the proportion of markers with null genetic effects.
A scaled inverse Chi-square prior distribution χ−2(df a, Sa) is
assumed for σ2

aj(j = 1, . . . , p), which is equal for all markers
(Meuwissen et al., 2001; Pérez and de Los Campos, 2014). Bayes
Cπ is similar to Bayes B, in which all markers are considered
to have a common variance (σ2

a) and promote the selection of
variables. The marker effects are assumed to be aj|σ2

aj ∼ N(0, σ2
a),

and the inclusion of each marker in the model is modeled by an
indicator variable δj, which is equal to 1 if the marker j is fitted in
the model and is 0 otherwise.

The Bayesian models for maize data were implemented in the
library BGLR (Pérez and de Los Campos, 2014) of R 3.6.1. All
models were run with 1,000,000 iterations, a burn-in period of
100,000, and a thin of 50. For eucalypt data, the results of the
Bayesian alphabet models (implemented in BGLR package) are
available in Ballesta et al. (2019), which were used in this study
for comparison purposes.

Genomic Best Linear Unbiased
Prediction (GBLUP) and Reproducing
Kernel Hilbert Spaces (RKHS)
The GBLUP was performed using the R package sommer
(Covarrubias-Pazaran, 2016). The additive and dominance
relationship matrices were estimated using the A.mat
(Endelman, 2011) and D.mat (Su et al., 2012) functions,
respectively.

In the RKHS model (Gianola et al., 2006), the genomic
relationship matrix used in GBLUP is replaced by a kernel
matrix (K), which enables non-linear regression in a higher-
dimensional feature space. This model considers that K ′xixi =

exp
(
−

h‖xi−x′i‖
2

p

)
, where h is a bandwidth parameter that

controls the rate of decay between pairs of markers, and
‖ xi − x′i ‖

2 is the Euclidean distance between any two pairs of
genotypes i and i′ normalized to range from 0 to 1. The RKHS
model was implemented in the library BGLR (Pérez and de
Los Campos, 2014) of R 3.6.1., which was run with 1,000,000
iterations, a burn-in period of 100,000, and a thin of 50.

BAYESIAN REGULARIZED NEURAL
NETWORK

The regularization process of BRNN was obtained by considering
the weights (feature vector in the feature space, which represent
the strength of connections between neurons) as random
variables with a given prior distribution (defined below)
according to Glória et al. (2016). In general, the structure of
BRNN consists of three parts: (I) an input layer, which is given
by genomic information of individuals (independent variables),
(II) one hidden layer with n neurons that connect the input
and output layers, and (III) an output layer with only one
neuron that produces as output the prediction values of interest
(Glória et al., 2016). The neurons allow the connection of
the different layers inside a network, and the strength of the
connection between neurons is called weight (Glória et al., 2016).
The means of estimated weights measure the influence of the
predictor variables on the response variable (learned information
from training data). The posterior distribution for the weights
from BRNN proposed by Gianola et al. (2011) can be accessed
according to Bayes theorem:

P (w | Y, α, γ, M) =
P (Y | w, γ, M) P (w | α, M)

P (Y | α, γ, M)

where P (w | Y, α, γ, M) is the posterior distribution of the
connection strengths, P (Y | w, γ, M) is the likelihood function,
P (w | α, M) is the prior distribution for the weights vector, and
P (Y | α, γ, M) is the marginal likelihood of the data; Y represents
the observed data (markers genotypes matrix and the adjusted
phenotypic values); w is the unknown weights vector; M denotes
the architecture of the neural network used; α and γ are the
regularization parameters that control the compensation between
the smoothing of the network and goodness of fit (Gianola et al.,
2011; Okut et al., 2011; Glória et al., 2016).

Ten BRNN-based architectures were tested, in which the
following hyperparameters were considered to find the optimal
architecture that increases the PA of genomic prediction:
activation functions (i.e., linear: purelin; log-sigmoid: logsig;
tangent sigmoid: tansig) and layers number (1–3 layers). The
architectures tested with one layer (and one neuron) were
brnn1, brnn2, and brnn3, in which each one considered the
activation function purelin, logsig, and tansig, respectively.
The architectures brnn4, brnn5, brnn6, brnn7, and brnn8
considered two layers, with two neurons and one neuron in
each layer, respectively. The architectures brnn4, brnn5, and
brnn6 consider in both layers a repetition of the activation
function purelin, logsig, and tansig, respectively. Brnn7 and
brnn8 used a combination of activation functions, in which
brnn7 considered the activation functions tansig and purelin,
in the first and second layer, respectively, while for brnn8, the
activation functions logsig (layer 1) and purelin (layer 2) were
considered. The architectures brnn9 and brnn10 considered three
layers, a combination of the three activation functions and two,
two, and one neuron in layers 1, 2, and 3, respectively. Brnn9
used tansig, logsig, and purelin activation functions in layers
1, 2, and 3, respectively, while brnn10 used logsig (layer 1),
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tansig (layer 2), and purelin (layer 3) activation functions (details
about architectures are shown in Supplementary Table S1). All
architectures of BRNN studied were fitted through the trainbr(x)
function implemented in neural networks toolbox of Matlab
2019a (Beagle et al., 2019).

Long Short-Term Memory Network
(LSTM)
LSTMs are a special kind of recurrent neural network (RNN)
designed to learn long-term dependencies (Pouladi et al., 2015;
Pérez-Enciso and Zingaretti, 2019). These networks are one of the
most popular methods of RNN for their favorable convergence
properties, adding additional interactions per module (or cell)
and allowing one to overcome the vanishing gradient problem,
which is a difficult task in RNN (Pouladi et al., 2015; Le et al.,
2019). A typical LSTM network is composed of memory blocks
called cells (Sak et al., 2014; Hua et al., 2019; Le et al., 2019).
These cells are a recurrently connected subnet that contains
memory cell in charge of remembering the temporal state
of the neural network and gates responsible for controlling
the flow of information and avoid the long-term dependency
problem (Figure 1).

The first step for constructing a LSTM network is to determine
what kind of information is not required and will be removed
from the memory cell state. This process is implemented by a
sigmoid function (called forget gate), which is determined by a
vector with values ranging from 0 to 1, corresponding to each
number in the cell state (Le et al., 2019). This function takes the
part from the old output (ht−1) at time t − 1, and the current
input (Xt) at time t, for calculating the components that control
the cell state and hidden state of the layer:

CLt = σ (WCL [ht−1, XCL]+ bCL)

where CL represents the components of the LSTM layer (input
gate [it], forget gate [ft], and output gate [ot]), σ is the sigmoid
function, while W and b are the weight matrices and bias
(respectively). The learnable weights and bias of the LSTM layer
are the input weights W (Input Weights), the recurrent weights R
(Recurrent Weights; associated with ht−1), and the bias b (Bias).
These matrices are concatenations of their weights and bias in
each component, respectively (Beagle et al., 2019).

W =


Wi
Wf
Wg
Wo

 , R =


Ri
Rf
Rg
Ro

 , b =


bi
bf
bg
bo


where i, f, g, and o indicate the input gate, forget gate, cell
candidate, and output gate, respectively.

The next step is divided into two parts: (1) deciding whether
the new information should be updated or ignored (0 or 1)
through a sigmoid layer (it), and (2) deciding the level of
importance (−1 to 1) of values that passed through a hyperbolic
tangent (tanh) layer (gt). Next, these two parts are combined to
trigger an update to the memory cell state, wherein this new
memory is then added to old memory Ct−1 (at time t − 1)

resulting in Ct (at time t).

gt = tanh (Wn [ht−1, Xt]+ bn)

Ct = ft∗Ct−1 + it∗gt

The last step is to decide the output values, which is performed
by multiplication between the value obtained from the output of
the sigmoid layer and the new values created by the hyperbolic
tangent (Tanh) layer from the cell state (Ct) (ranging between−1
and 1).

ht = Ottanh(Ct)

The LSTM layer, by default, uses the Tanh function to compute
the state activation function. Pouladi et al. (2015) replaced the
Tanh function by a Rectified Linear Units (ReLU) learning
strategy, for genotype imputation and phenotype sequences
prediction. This study shows that the ReLU methods have a
better performance in training (less error) compared to other
LSTM models and better phenotype prediction compared to
the results of the sparse partial least squares method. In this
model, the recurrent weight matrix is initialized to an identity
matrix and the biases are set to zero (Pouladi et al., 2015).
Considering the previous observations, six LSTM architectures
were tested with different activation functions (Tanh or ReLU)
and subsets of the training set to evaluate the gradient of
the loss function and update of the weights (mini-batch). The
architectures lstm1, lstm3, and lstm5 used the ReLU activation
function, while for lstm2, lstm4, and lstm6, the Tanh activation
function was used. The mini-batch considered 10, 50, and 100%
of the training dataset. In this sense, lstm1 and lstm2 used a
mini-batch of 10%, while for lstm3 and lstm4, a mini-batch
of 50% was considered. For lstm5 and lstm6, a mini-batch
of 100% was used (details about architectures are shown in
Supplementary Table S2). All architectures of LSTM networks
were implemented in Matlab (Beagle et al., 2019) (details
about scripts are shown in Supplementary Data Sheet S1).
LSTM is named in other parts of the manuscript as “Deep
Learning” (DL).

Estimates of SNP Effects From ML
Models
Glória et al. (2016) were the first to empirically test the BRNN
model for estimating marker effects (considering from one to
three layers) through methods proposed by Dimopoulos et al.
(1995) and Goh (1995), which are based on partitioning the
connection weights to determine the relative importance of the
SNP markers and the sensitivity of the network for each SNP,
respectively. However, models of DL typically consider multiple
hidden layers and different types of layers (e.g., fully connected
or normalization layers) for reducing the regression errors (Khaki
and Wang, 2019), which prevents the use of methods proposed by
Goh and Dimopoulos. In this sense, Wang et al. (2012) proposed
an estimation of SNP effects by using the vector of genotype
effects (or breeding values, a), the diagonal matrix of weights for
variances of SNPs (D), and a matrix relating genotypes of each
locus (Z), which represent substitution effects for each marker
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FIGURE 1 | Diagram of a Long Short-Term Memory (LSTM) block. This block is a recurrently connected subnet that contains memory cell and gates functional
modules. Xt, ht−1, and Ct−1 are the inputs of the LSTM unit, which correspond to the input of the current time step, the output from the previous LSTM unit, and the
memory of the previous unit, respectively. Ct denotes the memory of the current unit and ht denotes the output of the current network (outputs of LSTM unit). The
LSTM block is divided into three parts: gates forget (blue), update (green), and output the cell (yellow). Each part is composed of a sigmoid function (σ), which
computes the gates activation function (ft: forget gate, it: input gate, ot: output gate) from input weights (WX t ), recurrent weights (Wht−1), and bias (b). The update
and output parts use a hyperbolic tangent (Tanh) function to calculate the input update (gt ) and the memory of the current unit (ht ), respectively.

locus (coding {AA, Aa, aa} as {0, 1, 2}). It is assumed that the
vector of genotype effects (or breeding values) is a function
of SNP effects (VanRaden, 2008; Strandén and Garrick, 2009;
VanRaden et al., 2009; Misztal et al., 2012; Wang et al., 2012), such
that:

a = Zu

where u is a vector of SNP marker effects. Therefore, considering
the equation of Strandén and Garrick (2009), the SNP effects is
given by:

û = DZ′
[
ZDZ′

]−1â

Wang et al. (2012) created an iterative algorithm for the
estimation of D from â and Z. In the present study, D was
estimated for three iterations of this algorithm, which proceeded
as follows:

1. ût = DtZ′
[
ZDtZ′

]−1 where â is the genotype effects (or
breeding values),
D0 is the identity matrix, when t = 0.

2. D∗t+1 = û2
it2pi(1− pi) where i is the ith SNP of Z matrix

3. Dt+1 =
tr(Dt0)
tr(D∗t+1)

D∗t+1
4. t = t + 1
5. Exit if t> 3, else loop to step 2.

Finally, the vector of prediction of SNP effects is given by ût .
In each model (Bayesian alphabet models, GBLUP, RKHS,

BRNN, and LSTM), the PA was measured as the average of
Pearson correlation coefficient between observed and predicted
phenotypes in the validation set. The GP methods evaluated
in this study were assessed by 50 cycles of cross-validation, in
which the dataset was divided randomly into two independent

training (90%) and validation (10%) groups. In the dataset of
Z. mays, 290 genotypes were randomly selected as training
dataset at each cycle of cross-validation, and the remainder
32 genotypes were used as validation samples. Similarly, in
E. globulus, each cycle of cross-validation was performed
considering 581 trees (randomly selected) as training dataset and
the remainder 65 trees as validation set. The Tukey–Kramer test
was performed to compare the PA values for each trait among the
evaluated models.

RESULTS

The Importance of Hyperparameters in
DL and BRNN Architectures
Tables 1, 2 show the PA, obtained by cross-validation, of
the hyperparameter combinations in each architecture tested
for DL (LSTM) and BRNN, respectively. The lstm5 network
had the highest PA values among all the DL networks tested.
Moreover, lstm5 was statistically different from all models for
ASI (environment CAM, maize) and WD (eucalypt). In the
DL models, the use of ReLU as the activation function in
the architectures lstm3 (mini-batch = 50%) and lstm5 (mini-
batch = 100%) was more efficient in terms of PA values. In
the architectures with smaller mini-batches (10%), ReLU was
the function with higher PA values in the eucalypt population,
while the hyperbolic tangent (Tanh) function was better in
maize (Table 1). This result indicates that the ReLU function
is more efficient in terms of PA than Tanh when the mini-
batch size increased. This finding may be due to the fact that
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the optimization and backpropagation of the error by the ReLU
function is more efficient when gradient estimates are less noisy
and have larger partial data (large mini-batch), whereas Tanh
is more efficient when subsets of the training set are smaller
(small mini-batch) and gradient estimates are noisier (Masters
and Luschi, 2018; Thafar et al., 2019). On the other hand,
methods with mini-batch of 100% (lstm5 and lstm6) were the
most efficient in terms of the computational time required for the
genomic prediction of genotype effects in the cross-validations,
performing up to four times faster than the mini-batches of 10%
(Supplementary Table S3).

In BRNN architectures, the brnn1 and brnn4 networks
showed the best PA. In the flowering traits, the PA of the brnn4
network was the highest within Bayesian models, while that in
wood-related traits, the highest PA was in brnn1. Although the
PA values of the brnn1 model were slightly lower than brnn4 in

flowering traits of maize, the predictions of both networks were
very competitive, and these evidenced no significant differences
(Table 2). Notably, brnn1 was the most efficient in terms of the
computational time required in comparison with brnn4, with
differences of up to 12.4 h (Supplementary Table S4). This result
is due to fact that the architectures that used one layer converged
faster than architectures with two or three layers. On the other
hand, the activation functions in the Bayesian architectures are
related to the PA values, since the architectures with one or two
layers were more efficient (in terms of PA) when the purelin
activation functions were used and showed lower PA when the
logsig function was used.

The above results indicated that lstm5 and brnn1 were the
most efficient architectures in the prediction of the study traits,
due to their high PA values and low computational time required.
Therefore, these architectures were selected to compare PA values

TABLE 1 | Predictive ability of complex traits in maize (FF, female flowering; MF, male flowering; ASI, anthesis-silking interval) and eucalypt (WD, pilodyn penetration; ST,
stem straightness; BQ, branch quality; TH, tree height; DBH, diameter at breast height) for six deep learning models, considering different hyperparameters: activation
function (Rectified Linear Units: lstm1, lstm3, and lstm5; hyperbolic tangent: lstm2, lstm4, and lstm6) and mini-batch (10%: lstm1 and lstm2, 50%: lstm3 and lstm4,
100%: lstm5 and lstm6).

Model Zea mays Eucalyptus globulus

FF MF ASI WD ST BQ TH DBH

Sabaudia Cambira Sabaudia Cambira Sabaudia Cambira

lstm1 0.533b 0.724b 0.623a 0.764ab 0.455a 0.552b 0.317d 0.469b 0.422b 0.368cd 0.377d

lstm2 0.545ab 0.740ab 0.631a 0.757b 0.492a 0.548bc 0.271e 0.416c 0.382c 0.350d 0.369d

lstm3 0.558ab 0.742ab 0.639a 0.763ab 0.486a 0.561b 0.395b 0.481b 0.388c 0.423b 0.472b

lstm4 0.539ab 0.737ab 0.628a 0.751b 0.475a 0.506c 0.365c 0.345d 0.343d 0.408bc 0.404cd

lstm5 0.565a 0.751a 0.639a 0.776a 0.528a 0.610a 0.471a 0.557a 0.460a 0.496a 0.556a

lstm6 0.558ab 0.730ab 0.627a 0.765ab 0.488a 0.537bc 0.408b 0.558a 0.436ab 0.474a 0.452bc

Predictive ability values followed by a common letter are not significantly different according to the Tukey–Kramer test at a level of significance of 0.01.

TABLE 2 | Predictive ability of complex traits in maize (FF, female flowering; MF, male flowering; ASI, anthesis-silking interval) and eucalypt (WD, pilodyn penetration; ST,
stem straightness; BQ, branch quality; TH, tree height; DBH, diameter at breast height) for Bayesian regularized neural network models, considering different
hyperparameters: activation function (pureline: brnn1, brnn4, brnn7, brnn8, brnn9, and brnn10; logsig: brnn2, brnn5, brnn8, brnn9, and brnn10; tansig: brnn3, brnn6,
brnn7, brnn9, and brnn10) and number of layers (one layer: brnn1, brnn2, and brnn3, two layers: brnn4, brnn5, brnn6m brnn7, and brnn8, three layers:
brnn9, and brnn10).

Model Zea mays Eucalyptus globulus

FF MF ASI WD ST BQ TH DBH

Sabaudia Cambira Sabaudia Cambira Sabaudia Cambira

brnn1 0.481ab 0.617ab 0.548ab 0.709a 0.447a 0.461a 0.454a 0.469a 0.419a 0.491a 0.490a

brnn2 0.410c 0.548cd 0.436c 0.609c 0.272b 0.230c 0.211f 0.333de 0.349d 0.374bc 0.399c

brnn3 0.307d 0.294e 0.311d 0.673ab 0.337ab 0.453a 0.271e 0.398c 0.311e 0.349c 0.390c

brnn4 0.486a 0.652a 0.584a 0.710a 0.423a 0.460a 0.466a 0.459a 0.412ab 0.504a 0.501a

brnn5 0.444abc 0.607ab 0.543ab 0.672ab 0.333ab 0.379ab 0.223f 0.412c 0.391bc 0.410b 0.463ab

brnn6 0.413bc 0.593bc 0.439c 0.618c 0.406a 0.459a 0.371d 0.427bc 0.374c 0.380bc 0.409c

brnn7 0.434abc 0.604ab 0.533ab 0.322d 0.413a 0.407ab 0.385cd 0.345d 0.208g 0.378bc 0.400c

brnn8 0.444abc 0.596bc 0.497b 0.641bc 0.415a 0.286bc 0.397bc 0.315e 0.260f 0.409b 0.432bc

brnn9 0.440abc 0.581bcd 0.521b 0.637bc 0.407a 0.454a 0.407b 0.422bc 0.374c 0.375bc 0.403c

brnn10 0.426abc 0.532d 0.520b 0.647bc 0.39ab 0.416a 0.231f 0.443ab 0.222g 0.301d 0.253d

Predictive ability values followed by a common letter are not significantly different according to the Tukey–Kramer test at a level of significance of 0.01.
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with Bayes A, Bayes B, Bayes Cπ, BL, GBLUP, RKHS, and BRR in
the prediction of the study traits.

Prediction Ability for Complex Traits in
Maize and Eucalypt
The predictive abilities of complex traits for each of the nine
methods: BL, BRR, Bayes A, Bayes B, Bayes Cπ, GBLUP,
RKHS, BRNN (brnn1), and DL (lstm5) in maize and eucalypt
populations are shown in Tables 3, 4, respectively. PA values for
flowering-related traits varied between 0.42 for ASI (environment
SAB) and 0.78 for MF (environment CAM) for RKHS and
DL, respectively (Table 4). Consistently, DL had the highest
predictive ability (PA = ∼0.56) for ST and DBH in the
eucalypt population, while the BL showed the lowest PA value
in BQ (PA = 0.06). In general, there were no important
differences among Bayesian linear methods, GBLUP and RKHS,
except in computational time required, where GBLUP was the
less time-consuming model (Supplementary Tables S5, S6).
On the other hand, the DL (lstm5) model had the highest
PA for all study traits, in comparison to all models tested.
Moreover, lstm5 network had PA values significantly higher
than the other models of genomic prediction in almost all traits
(Tables 3, 4).

ML methods (BRNN and DL) required less time in
comparison to the other genomic prediction methods assessed
(Bayes A, Bayes B, Bayes Cπ, BRR, BL, and RKHS). This
may be due to the combination of hyperparameters used in
both architectures, which increase the PA of genomic prediction
and may increase computational efficiency. Moreover, the
Bayes A, Bayes B, Bayes Cπ, BRR, BL, and RKHS algorithms
are implemented via Markov chain Monte Carlo (MCMC)
for sampling from the posterior distribution of SNP effects,
which is computationally expensive (Pérez and de los Campos,
2013; Wang et al., 2015). In this regard, GBLUP was the
computationally most efficient model, running each iteration in
∼1 min (Supplementary Tables S5, S6). However, this model

TABLE 3 | Estimates of predictive ability of complex traits for different genomic
models assessed in 6 years old eucalypt trees.

Model/traits WD ST BQ TH DBH

Bayes A 0.267e 0.376d 0.216d 0.304c 0.352e

Bayes B 0.295d 0.518b 0.128g 0.319c 0.341e

Bayes Cπ 0.455b 0.544ab 0.162f 0.441b 0.394d

BL 0.301cd 0.200e 0.056h 0.204d 0.169g

BRR 0.321c 0.481c 0.309c 0.303c 0.444c

GBLUP 0.187g 0.226e 0.142g 0.159e 0.220f

RKHS 0.223f 0.225e 0.180e 0.197d 0.230f

BRNN 0.454b 0.469c 0.419b 0.491a 0.490b

DL 0.471a 0.557a 0.460a 0.496a 0.556a

ĥ2(SE)* 0.09 (0.05) 0.01 (0.03) 0.05 (0.04) 0.04 (0.04) 0.01 (0.03)

The study traits were pilodyn penetration (WD), stem straightness (ST), branch
quality (BQ), tree height (TH), and diameter at breast height (DBH) of eucalypt trees.
Predictive ability values followed by a common letter are not significantly different
according to the Tukey–Kramer test at a level of significance of 0.01.
*Narrow-sense heritability. SE, standard error.

was not better than the DL method in terms of the PA for
all traits.

Estimates of SNP Effects in DL Model
The SNP marker effects of the DL (lstm5) model, estimated
using the iterative algorithm of Wang et al. (2012), are shown
in Supplementary Data Sheet S2. The estimate of the first
iteration was similar to those obtained by the BRR model, while
the marker effect estimates of the second and third iterations
were not similar to BRR (Supplementary Figures S1, S2), since
the marker effects were re-estimated in each iteration, reducing
or increasing their values (Supplementary Figure S3). As an
example, Figure 2 shows the estimates of marker effects (in
absolute terms) for male flowering of maize plants and stem
straightness of eucalypt trees, estimated using the DL (lstm5)
method (estimates of marker effects for all traits are presented
in Supplementary Figures S4, S5). For ST, the marker effect
estimates varied from 1.2 × 10−8 to 4.0 × 10−3, with an average
of 3.8 × 10−4, considering the first iteration of the algorithm,
whereas for MF, the marker effects varied from 3.4 × 10−7 to
3.4× 10−2, with a mean of 5.9× 10−3.

The use of iterative algorithm (Wang et al., 2012) showed
that the markers with small effects were reduced in the second
iteration (Figure 2), while the markers with large effects were
increased even more in the second and third iteration. In fact, in
the second and third iteration, SNPs with large effects increased
approximately four and nine times their values (respectively) in
both methods with respect to the first iteration. Therefore, the
results from this algorithm can be used to map and identify
QTLs, an aspect highlighted by Wang et al. (2012), that is,
because the algorithm increases the differences between the SNPs
with high and low effects, enhancing the visual interpretation
of the plots (Figure 2). Based on this approach, SNPs with the
greatest effect for MF of maize (SNP effects > 0.2) and for ST
of eucalypt trees (SNP effects > 0.1) were arbitrarily considered
as QTL. In this sense, four SNPs—on chromosomes 1, 3, 4,
and 5—were associated with MF of maize plants, whereas five
SNPs—on chromosomes 4, 5, 6, and 7—were associated with
ST of eucalypt trees (Supplementary Data Sheet S3). Based on
the physical position of maize reference genome1, 147 candidate
genes were identified nearby (1 Mb) the SNPs with greatest
effect. For E. globulus, considering the physical position of the
reference genome of E. grandis2, a total of 277 candidate genes
were identified nearby (1 Mb) the five SNPs with major effect
(Supplementary Data Sheet S3).

DISCUSSION

Over the last several years, many approaches have been
proposed to increase the prediction accuracy in GP studies,
such as linear models of Bayesian alphabet (Pérez and de
Los Campos, 2014; De Los Campos and Pérez-Rodríguez,
2016). However, few approaches have included non-parametric

1http://www.maizegdb.org//
2https://phytozome.jgi.doe.gov//
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TABLE 4 | Estimates of predictive ability of complex traits for different genomic models assessed in maize inbred lines.

Model/traits FF MF ASI

Sabaudia Cambira Sabaudia Cambira Sabaudia Cambira

Bayes A 0.512bc 0.635b 0.592b 0.652c 0.464b 0.510c

Bayes B 0.499bc 0.633b 0.567bc 0.661c 0.462b 0.550b

Bayes Cπ 0.487c 0.648b 0.586bc 0.644c 0.469ab 0.533bc

BL 0.498bc 0.624b 0.561bc 0.664c 0.527a 0.540bc

BRR 0.511bc 0.617b 0.594b 0.660c 0.479ab 0.543bc

GBLUP 0.531ab 0.558c 0.563bc 0.645c 0.429b 0.454d

RKHS 0.526b 0.560c 0.590b 0.667c 0.421b 0.469d

BRNN 0.481c 0.617b 0.548c 0.709b 0.447b 0.461d

DL 0.565a 0.751a 0.639a 0.776a 0.528a 0.610a

H2(SE) 0.606 (0.12) 0.847 (0.08) 0.614 (0.12) 0.778 (0.1) 0.287 (0.1) 0.295 (0.1)

ĥ2
a(SE) 0.208 (0.43) 0.506 (0.47) 0.206 (0.43) 0.758 (0.54) 0.253 (0.14) 0.274 (0.12)

ĥ2
d(SE) 0.398 (0.48) 0.341 (0.49) 0.408 (0.48) 0.020 (0.57) 0.034 (0.12) 0.021 (0.1)

The study traits were female flowering (FF), male flowering (MF), and anthesis-silking interval (ASI) of maize plants. Predictive ability values followed by a common letter
are not significantly different according to the Tukey–Kramer test at a level of significance of 0.01.
H2 is the broad-sense heritability; ĥ2

a and ĥ2
d are the additive and dominance ratios, respectively. SE, standard error.

FIGURE 2 | Estimates of marker effects obtained using the deep learning model for male flowering (MF) of maize (A,C,E) and stem straightness (ST) of 6 years old
eucalypt trees (B,D,F). Three iterations of the algorithm of Wang et al. (2012) are shown.

approaches and non-linear functions. In this study, two
ML-based approaches that implement non-parametric
methods and numerous non-linear activation functions
were used (Ho et al., 2019; Montesinos-López et al., 2019a,b;

Pérez-Enciso and Zingaretti, 2019). The results of this
study showed that the DL model had a higher PA than
GBLUP, linear (Bayes A, Bayes B, Bayes Cπ, BRR, and BL)
and non-linear (RKHS and BRNN) Bayesian regression
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models in the prediction of several complex traits in both
breeding populations.

Bellot et al. (2018) developed genomic prediction models for
human complex traits using UK Biobank data and found that
the DL model was more competitive than the penalized linear
methods. However, the predictive ability of DL was dependent
on the study phenotype. Particularly, the results of this genomic
prediction showed that DLs performed comparatively better
as narrow-sense heritability decreased and the contribution
of dominance increased. Similarly, Zingaretti et al. (2020)
implemented GP in polyploid outcrossing species (i.e., strawberry
and blueberry) and found that DL did not show clear advantages
over the linear models BL and BRR, except when the non-
additive effects (dominance or epistasis) were important. The
authors also pointed out that the use of DL methods in GP of
polyploid plants allows one to exploit its non-linearity, and it has
less restrictive assumptions in comparison to traditional linear
model-based methods. Moreover, polyploid plants might present
higher degrees of complete and partial intra-locus interactions
compared with diploid species (Zingaretti et al., 2020). These
results are not in agreement with this study, in which the PA
of DL did not evidence differences between the contributions
of the additive or dominance effects (Table 4), since DL was
the best method in the prediction (in terms of PA) of all
traits. These findings may be due to the fact that Bellot et al.
(2018) and Zingaretti et al. (2020) used the Convolutional
Neural Networks, whereas in the present study, the LSTM
method was used; however, we emphasize that other studies
must be performed to corroborate this argument. Interestingly,
Alves et al. (2020) compared the predictive performance of
GBLUP with ANN method in simulated traits considering
different levels of dominance effects. They found that ANN
had a higher prediction accuracy compared with GBLUP for
traits with moderate narrow-sense heritability (h2

= 0.30) and
dominance effects of 0 or 0.15. In the present study, the DL
approach outperformed GBLUP despite the low dominance effect
(ĥ2

d < 0.035; Table 4). This is indicative that DL is a promising
alternative tool for GP independent on the contribution of
additive and/or dominance genetic effects.

Several studies have reported that the combination of
hyperparameters critically influences the predictive performance
of the DL model, emphasizing the need to carefully optimize
hyperparameters in the ML architectures (Glória et al., 2016;
Bellot et al., 2018; Pérez-Enciso and Zingaretti, 2019; Zingaretti
et al., 2020). Particularly, Glória et al. (2016) found that a
simple architecture of BRNN outperformed other more complex
architectures (by adding layers and/or more complex activation
functions) in terms of PA. This finding implies that the
complexity of neural networks provides a decrease in PA,
increasing the standard error of prediction. In this study,
10 BRNN architectures were tested through the combination
among the number of layers (1–3) and activation functions
(purelin, logsig, and tansig). Similarly, the six architectures
tested in the DL method correspond to the combination of
the activation functions Tanh and ReLU, with different mini-
batch sizes (10, 50, and 100%). A close association between
the hyperparameter of activation function and the efficiency of

the genomic prediction was observed in the BRRN model, as
the higher PA values were observed in the brnn1 and brnn4,
which had different numbers of layers (1 and 2, respectively),
but the same activation functions (purelin). On the other hand,
the poor performance of architectures with three layers could
be due to an overfit to the training set, an aspect observed
by Glória et al. (2016). However, it is worth noting that a
combination of activation functions was used in the networks
with three layers, and these activation functions were not
repeated as in the networks with two layers. Therefore, the
reduction in the PA values could be caused by the logsig
and tansig functions. In spite of this, it was evidenced that
brnn1 and brnn4 were very competitive, revealing that the
increase in the number of layers did not present a significant
increase in the PA. Moreover, the results showed that the
increased number of layers was more expensive computationally
(Supplementary Table S4).

The hyperparameters assessed in DL showed that the ReLU
activation function was more efficient in terms of PA than
the Tanh function when the mini-batch was larger. ReLU
can represent a linear function and thus has the advantage
of preserving the properties of linear and non-linear models,
i.e., easy to optimize and backpropagate the error (Thafar
et al., 2019). Furthermore, ReLU offers better performance
and generalization in DL compared to the sigmoid and Tanh
activation functions (Bouktif et al., 2018; Nwankpa et al., 2018).
Hesamifard et al. (2017) observed that deep neural networks
with the ReLU activation function had better performance in
the classification of encrypted data compared to the sigmoid
and Tanh functions. Similarly, Li et al. (2018) showed that the
use of ReLU function greatly improves the performance over
Tanh and sigmoid functions, in sequential MNIST classification
and language modeling (using the character-level Penn Treebank
dataset). On the other hand, a large mini-batch size was more
efficient in terms of PA. Previous studies have indicated that
a small mini-batch size achieves better training stability and
generalization performance, while a larger mini-batch tends to
have degradation in the quality of the model (Li et al., 2014;
Keskar et al., 2016; Smith et al., 2017). Moreover, a smaller mini-
batch increases the velocity of model updates and the efficient use
of memory. Masters and Luschi (2018) showed that increasing
the mini-batch size provides stable convergence and acceptable
test performance. Furthermore, the training samples of the mini-
batch are randomly drawn in every step, so the resulting gradients
are less accurate and gradient estimates are noisier. In this study,
the mini-batch did not affect the efficiency of genomic prediction;
however, the time of processing was affected. In this sense, the
increasing of mini-batch significantly reduced the training time
(Supplementary Table S3), due to the fact that a large mini-batch
size has fewer training processes in each epoch and takes less step
to converge (Smith et al., 2017; Wang et al., 2017). Therefore, the
best architecture in DL was lstm5 due to its efficiency in terms of
PA and reduced computational times.

The Bayesian linear models did not show differences with
BRNN in terms of PA. This was also noted by Glória et al. (2016)
who did not observe differences among BRNN, BL, and RR-BLUP
in the prediction of quantitative traits. On the other hand, DL had
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a better result than Bayesian models in terms of PA. In this sense,
Liu and Wang (2017) found that DL outperformed traditional
statistical models (RR-BLUP, BL, and Bayes A) in the genomic
prediction of grain yield, in soybean, and stem height, in loblolly
pine. In a GP study for meat tenderness, Lopes et al. (2020) found
similar results to the current study, in which the DL model had
higher PA than all models of the Bayesian alphabet (Bayes A,
Bayes B, Bayes Cπ, BRR, and BL). Notably, in this study, ReLU
was the best activation function used for training DL, because it
is faster to learn than sigmoid and hyperbolic tangent functions,
and it has better performance during the random grid search.
The results of the present study indicated that DL can provide
superior genomic predictions for quantitative traits, despite the
relatively small sample sizes used (322 maize inbred lines and
646 half/full-sib progenies of eucalypt). The computational time
required for the prediction analysis is also expected to be reduced
in the DL method, as demonstrated in this study, since the
hyperparameter selection can reduce the time of analysis and
enhance the performance of genomic predictions.

From the genomic point of view, the molecular marker
techniques used in this study present clear differences, which
have been broadly studied and discussed (Pérez-Enciso et al.,
2015; De Moraes et al., 2018). For example, De Moraes et al.
(2018) pointed out that both techniques have differences in
linkage disequilibrium patterns, MAF, missing data, and marker
distribution. However, the results of their study, considering 13
wood quality and growth traits of Eucalyptus trees, demonstrated
that both genotyping methods are equivalent in terms of PA in
the GP models RR-BLUP and Bayes B. In this regard, the missing
marker data and MAF are two major quality control factors in
genome-wide studies (Ali et al., 2020). These factors along with
the population size may affect the PA in GP models. In this sense,
in studies of genomic prediction that consider a small population
size, the PA values can be limited (Edwards et al., 2019). In the
present study, we assessed two breeding populations that differ
in population size, genotyping method (i.e., DNA chip array
and GBS), the degree of missing marker data, and MAF values.
Despite these differences, our results indicated that DL-based
prediction models presented high PA values in both different
breeding populations, indicating that this model can help to
decrease phenotypic cost within breeding programs.

The present study leveraged the iterative algorithm of
Wang et al. (2012) to estimate the marker effects of the DL
method, which increased the differences between the markers
with high and low effects, in each iteration. Therefore, the
results of this iterative algorithm can be used to map and
identify QTLs. In this sense, Wang et al. (2014) showed the
accuracy of the iterative algorithm for the QTL identification
in 6 weeks body weight in broiler chickens. In this study, four
and five SNPs were considered as QTL due to its great effect
on the expression of traits in maize (MF) and eucalypt (ST),
respectively, according to Wang et al. (2012). Overall, 147 and
277 candidate genes were identified nearby the SNPs with a major
effect for MF and ST, respectively. In eucalypt, chromosome 4
had three candidate genes (Eucgr.D02209, Eucgr.D02250, and
Eucgr.D02208) that are described as RING zinc finger protein,
which has been related to ST by Bartholomé et al. (2016) and

Li et al. (2016) in radiata pine and maritime pine, respectively.
Li et al. (2016) also identified a protein serine/threonine
kinase associated with ST, which is in accordance with
our finding, since four candidate genes (Eucgr.D02135,
Eucgr.G02060, Eucgr.G02065, and Eucgr.G02273) presented
this same description (Supplementary Data Sheet S3). On
the other hand, candidate gene GRMZM2G111491 of maize
is a homolog of AT4G29380 in Arabidopsis thaliana, which
encodes phosphatidylinositol 3-kinase, a protein involved in the
development and germination of pollen (Xu et al., 2011). Finally,
it should be noted that the advantages of using this approach in
the QTL identification include the possibility of using a complex
model with single or multiple traits and a computational
implementation that is fast and simple (Wang et al., 2012, 2014).

CONCLUSION

Hyperparameter optimization is a fundamental step for
successfully implementing a DL model. In this sense, the results
of this study suggested that architectures with the activation
function ReLU and a mini-batch of large size were the most
optimal for the genomic prediction of complex traits in maize
and eucalypt. Furthermore, our results showed that DL had a
superior performance than GBLUP, Bayes A, Bayes B, Bayes
Cπ, BRR, BL, RKHS, and BRNN. On the other hand, the
iterative algorithm proposed by Wang et al. (2012) was first
used in marker effect estimation from a DL model. This can
be seen as a new approach for GWAS through DL, since it
allows the identification of the most relevant genomic regions
affecting the traits of interest. The results of this study confirm
the importance of DL models in genome-wide studies and
crop/tree improvement, which holds promise for accelerating
breeding progress.
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