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The development of high-throughput genotyping and phenotyping has provided access
to many tools to accelerate plant breeding programs. Unmanned Aerial Systems
(UAS)-based remote sensing is being broadly implemented for field-based high-
throughput phenotyping due to its low cost and the capacity to rapidly cover large
breeding populations. The Structure-from-Motion photogrammetry processes aerial
images taken from multiple perspectives over a field to an orthomosaic photo of a
complete field experiment, allowing spectral or morphological trait extraction from the
canopy surface for each individual field plot. However, some phenotypic information
observable in each raw aerial image seems to be lost to the orthomosaic photo,
probably due to photogrammetry processes such as pixel merging and blending. To
formally assess this, we introduced a set of image processing methods to extract
phenotypes from orthorectified raw aerial images and compared them to the negative
control of extracting the same traits from processed orthomosaic images. We predict
that standard measures of accuracy in terms of the broad-sense heritability of the
remote sensing spectral traits will be higher using the orthorectified photos than with
the orthomosaic image. Using three case studies, we therefore compared the broad-
sense heritability of phenotypes in wheat breeding nurseries including, (1) canopy
temperature from thermal imaging, (2) canopy normalized difference vegetation index
(NDVI), and (3) early-stage ground cover from multispectral imaging. We evaluated
heritability estimates of these phenotypes extracted from multiple orthorectified aerial
images via four statistical models and compared the results with heritability estimates
of these phenotypes extracted from a single orthomosaic image. Our results indicate
that extracting traits directly from multiple orthorectified aerial images yielded increased
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estimates of heritability for all three phenotypes through proper modeling, compared
to estimation using traits extracted from the orthomosaic image. In summary, the image
processing methods demonstrated in this study have the potential to improve the quality
of the plant trait extracted from high-throughput imaging. This, in turn, can enable
breeders to utilize phenomics technologies more effectively for improved selection.

Keywords: High-throughput phenotyping, unmanned aerial systems, canopy temperature, normalized difference
vegetation index, ground cover, wheat

INTRODUCTION

In the past 20 years, spectacular advances in “next-generation”
DNA sequencing have rapidly reduced the costs of genotyping
and provided almost unlimited access to high-density genetic
markers, thus allowing genetic improvement of several
economically important crops worldwide (Crossa et al.,
2017). Accurate plant trait (i.e., phenotypes) observations
have long been the key to enhancing genetic gains through
classical plant breeding (Eathington et al., 2007) and also to
training prediction models and predict the performance of
non-phenotyped individuals from their marker scores (Hayes
and Goddard, 2001). Thus, phenotyping plays an essential
role in the success of standard phenotypic selection as well
as genomic selection models. Reflecting this, the lack of
methods for rapid and accurate phenotyping on large sets of
germplasm under field conditions remains a bottleneck to
genomic selection and plant improvement (Cabrera-Bosquet
et al., 2012; Araus and Cairns, 2014). High-throughput
phenotyping (HTP) platforms are needed to measure plant
traits non-invasively (Reynolds and Langridge, 2016), reduce
the labor of manual phenotyping (Cabrera-Bosquet et al.,
2012; Cobb et al., 2013), and measure multiple traits, plots,
or both efficiently and simultaneously (Barker et al., 2016;
Wang et al., 2018).

Unmanned Aerial Systems (UAS)-based remote sensing is
being broadly implemented for field-based high-throughput
phenotyping due to its low cost and the capacity to cover large
field trials with thousands or tens-of-thousands of plots (Shi
et al., 2016). Recently, multi-rotor UAS in various sizes have
been widely deployed at a low altitude (<50 m) in HTP of
plant canopy spectrum features (Haghighattalab et al., 2016; Li
et al., 2018), plant growth status (Chu et al., 2017; Singh et al.,
2019), and crop water use (Thorp et al., 2018). With the rapid
development of low-cost consumer-grade sensors and platforms,
UAS phenotyping holds great potential to be an integral part of
plant genomics and breeding for precise, quantitative assessment
of complex traits on large populations.

Structure-from-Motion (SfM) based photogrammetry is a
process widely used to quantify plant phenotypes from aerial
images (Shi et al., 2016). In SfM, a large number of aerial
images taken from multiple perspectives over a field are used
to create an orthomosaic image of a complete field experiment.
Then plant traits can be extracted from a defined area (i.e., a
shapefile of boundary coordinates for individual plots) within
the orthomosaic image. However, during the generation of the
orthomosaic image through SfM photogrammetry, pixels within

the overlapped area from multiple raw images are blended.
For instance, there are multiple optional blending modes such
as mosaic and average for orthomosaic image generation in
Agisoft Photoscan (Agisoft, 2018). The blending of pixel values
has the potential to introduce changes in values intrinsic
to the raw images.

Here, we use a complex plant trait – canopy temperature
(CT) – as an example of a trait difficult to accurately quantify in
the field environment. CT is an indicator of plant water stress
and is often correlated with grain yield (Balota et al., 2007).
Compared to measuring CT by sensors on the ground (Crain
et al., 2016), using the aerial vehicles integrated with thermal
imaging sensors can rapidly cover the observation area and
potentially reduce diurnal temperature variations. Sagan et al.
(2019) compared the performance of measuring CT in soybean
and energy sorghum using three commercial thermal cameras
on a UAS platform. They demonstrated a high correlation
(R2 > 0.9) between temperature extracted from orthomosaic
images and ground measurements at noon time assuming minor
temperature changes in a short period of UAV-based imaging.
By contrast, on much larger field trials with many thousands
of entries, longer measurement windows (i.e., hours) often give
raise to temperature fluctuations. In such cases, a single CT value
extracted from an orthomosaic image may not accurately reflect
the actual temperature at each imaging time point. Yet, variation
in CT during the measurement window could be thoroughly
characterized and accounted for by extracting thermal values
directly from the series of raw images, rather than the single
orthomosaic image.

An additional confounding factor for thermal imaging is
more technical, specifically the flat field correction (FFC) from
the thermal camera that may negatively impact the thermal
image quality. The FFC consists of a re-calibration of the
thermal camera core while the camera is working1. FFC is
helpful to regulate the thermal data within a defined range
of temperature readings but leads to continual recalibration
and hence, yields varying values during image acquisition,
including temperature differences from the same target in two
consecutive images. The error may be compensated using the
temperature references on the ground, but the referencing
target may not be present in every image. This adds additional
complexity to the field operations and image processing. If
images with inaccurate thermal measurements are used for
mosaicking, the CT values extracted from the orthomosaic
image will likely reflect artifacts from both the FFC and the

1www.flir-vue-pro.com/news
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variability of thermal values from changing ambient conditions
during the measurement window. To reduce this effect, Deery
et al. (2016) proposed an approach to extract CT from images
on a frame-by-frame basis. However, this method requires
automation if it is to be used for processing data from large
nurseries and for genetic studies with thousands or tens-of-
thousands of plots.

Based on the issues described above, measurements of CT
using thermal cameras are hypothesized to be substantially
influenced by the SfM processing required for mosaicking.
Meanwhile, other types of remote sensing datasets are expected
to have similar issues from the SfM processing pipeline. For
example, the canopy normalized difference vegetation index
(NDVI) and the leaf ground cover are widely used remote-
sensing traits associated with grain yield and agronomic traits
(Rutkoski et al., 2016; Duan et al., 2017). During aerial image
acquisition, the reflectance measurements from the canopy
changes according to the camera position and the solar angle.
This reflectance change can be accurately quantified using a
goniometer system and the bidirectional reflectance distribution
function (BRDF) under natural illumination conditions on
the ground (Sandmeier and Itten, 1999). Also, the leaf area
may appear in different densities depending on camera view
angles at nadir or off-nadir. Therefore, a single orthomosaic
image composed of blended pixels can be expected to
have similar problems to reflect variability throughout the
measurement window.

According to the theory of SfM processing and the issues
previously described, the overall objective of this study is
to enhance quality of trait extraction from field-based data
collection and measurement using high-throughput phenotyping
by UAS remote sensing. For this purpose, we developed a
set of image processing methods to extract phenotypes from
orthorectified aerial images. We then compared these extracted
remote-sensed phenotypes with the same phenotypes extracted
from orthomosaic images. In addition to evaluation of CT, we
investigated applying this trait extraction method to NDVI and
the early-stage ground cover (GC). We fitted four competing
linear mixed models to each trait and compared the models
using estimates of broad-sense heritability and the Bayesian
Information Criterion. Broad-sense heritability is a measure
of the proportion of phenotypic variance that is due to all
genetic effects relative to unaccounted error variance (Holland
et al., 2003). The main purpose of estimating heritability
is to understand the level of genetic control of a given
phenotype which directly relates to the expected gain from
different selection strategies, which is the fundamental concept
of plant breeding. A high heritability value is indicative of
higher precision and less error and is also connected to higher
predictive ability for a given trait (Crain et al., 2017). In
comparing methods for analysis of a fixed dataset, a higher
heritability reflects that a given method accounts for more
variance through decreasing the experimental error. We illustrate
the proposed approach using data from three wheat breeding
nurseries planted at different locations and in different years
as case studies, whereby each nursery provided data on one
type of phenotype.

MATERIALS AND METHODS

Plant Material and Field Layout
Spring wheat (Triticum aestivum L.) breeding lines used for CT
measurements were from the International Maize and Wheat
Improvement Center (CIMMYT) wheat breeding program. The
trials were planted on November 21, 2017, at Norman E
Borlaug Experiment Station (27◦22′57.6′′N, 109◦55′34.7′′W) in
Ciudad Obregon, Sonora, Mexico during the 2017–18 season.
The experiment consisted of 1800 unique spring wheat entries
distributed in 60 trials. Each trial was arranged as an alpha lattice
design in two blocks. Plots served as experimental units and were
1.7 m × 3.4 m in size, consisting of raised bed planting on two
beds spaced 0.8 m apart with paired rows on each bed at 0.15 m
spacing for each plot. Details are in the Supplementary Table 1.

Winter wheat (Triticum aestivum) breeding lines from Kansas
State University wheat breeding program were used for canopy
NDVI and early-stage ground cover measurements. One trial
for canopy NDVI measurements was sown on September 19,
2017 at the KSU Ashland Bottom Agronomy Farm (39◦7′54.2′′N,
96◦37′12.6′′W), Manhattan, Kansas, and the other trial for early-
stage ground cover measurements was sown on September 17,
2018 at the KSU farm (39◦7′56.4′′N, 96◦37′10.1′′W). A total of
146 and 150 winter wheat entries were planted during the 2017–
18 and 2018–19 season, respectively. During each season, the
entire field experiment was arranged in two blocks. The entries
included breeding lines and check varieties. In each block, a
breeding line was planted in a single plot, while the checks were
planted multiple times. The experimental plot was an individual
six-row plot with 20 cm (8′′) row spacing with plot dimensions of
1.5 m × 2.4 m. Details of each field experiment are listed in the
Supplementary Table 1.

To improve the geospatial accuracy of orthomosaic and
orthorectified images, ground control points (G) consisting
of bright white/reflective square markers were uniformly
distributed in the field experiment before image acquisition and
surveyed to cm-level resolution. The GCPs in Obregon, Mexico
were surveyed using a Trimble R4 RTK (Trimble Inc., Sunnyvale,
California, United States) Global Positioning System (GPS). The
GCPs in Kansas were surveyed using the Precis BX305 Real-Time
Kinematic (RTK) Global Navigation Satellite System (GNSS) unit
(Tersus GNSS Inc., Shanghai, China).

UAS, Sensors, and Image Acquisition
The UAS used for image acquisition was a DJI Matrice 100
(DJI, Shenzhen, China). The flight plans were created using
Litchi Android App (VC Technology Ltd., United Kingdom)
and CSIRO mission planner application2 for DJI Matrice100.
Accordingly, the flight speed, the flight elevation above the
ground, and the width between two parallel flight paths
were adjusted based on the overlap rate and the camera
field of view. Both cameras were automatically triggered with
the onboard GNSS unit following a constant interval of
distance traveled. A summary of flight settings is listed in the
Supplementary Table 2.

2https://uavmissionplanner.netlify.app/
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To collect the thermal image from the spring wheat nurseries,
a FLIR VUE Pro R thermal camera (FLIR Systems, United States)
was carried by the DJI Matrice 100. Ten 0.25 m × 0.25 m square
white metal sheets mounted on 0.50 m posts were used as GCPs.
Two data collections were conducted between 11AM and 1PM
on March 2 and March 19, 2018, during the grain filling stage.
The aerial image overlap rate between two geospatially adjacent
images was set to 80% both sequentially and laterally to ensure
optimal orthomosaic photo stitching quality. Both flights were
set at 60 m above ground level (AGL) at 5 m/s and could cover
the 3600 breeding plots in around 16 min. To preserve the
image pixel information, the FLIR camera was set to capture
Radiometric JPEG (R-JPEG) images.

A MicaSense RedEdge-M multispectral camera (MicaSense
Inc., United States) was used to collect winter wheat canopy
images in both the 2017–18 and the 2018–19 seasons. White
square tiles with a dimension of 0.30 m × 0.30 m were used
as GCPs. Nine and four GCPs were placed and surveyed in the
field during the 2017–18 and 2018–19 season, respectively. All
UAS flights were conducted between 11AM to 2PM. A total of
five UAS flights were made during the grain-filling stage in the
2017–18 season, and four UAS flights were made in the early Fall
establishment period for 2018–19 season. Detailed flight dates are
listed in the Supplementary Table 2. The aerial image overlap
rate between two geospatially adjacent images was set to 80% both
sequentially and laterally to ensure optimal orthomosaic photo
stitching quality. All UAS flights were set at 20 m AGL at 2 m/s
and could cover 360 (2017–18 season) and 336 (2018–19 season)
plots in 14 and 11 min, respectively. To preserve the image pixel
intensity, the MicaSense RedEdge-M camera was set to capture
uncompressed TIFF images.

Orthomosaic and Orthorectified Images
Generation
In this study, models fitted to a trait extracted from the
orthomosaic image were used as a benchmark control, against
which to compare estimates from models fitted to the same
traits extracted from multiple individual orthorectified images.
Unlike the approach proposed by Deery et al. (2016), in this
study we still needed to generate the orthomosaic image of a
complete field as a starting point to calculate the position of
each individual image. Through the photogrammetry process,
pixels in a raw image were projected to their real geographical
location. Following this orthorectification, each individual raw
image was converted to an orthorectified image. Therefore, there
was no need to manually identify field plots in each orthorectified
image because the same shapefile with plot boundaries could
be used to identify a plot existing in different orthorectified
images. Generating orthomosaic and orthorectified images from
raw images consisted of (step 1) image preprocessing (including
radiometric calibration), (step 2) GCPs detection, (step 3)
photogrammetry process, (step 4) and export of orthomosaic
image and orthorectified images (as shown in Figure 1), as
explained below in detail. The procedure was implemented using
Python, and the source code is available online3.

3github.com/xwangksu/bip

The image preprocessing procedure for the multispectral
images converted the pixel value in each raw spectral image to
reflectance before the photogrammetry process. Pixel values in
raw thermal images, however, were not converted to temperature
values in this step. As each trigger of the MicaSense RedEdge-M
camera generated five images of every single spectral band (Blue,
Red, Green, Near-infrared, and RedEdge), the completeness
check removed images having less than five bands. According
to the altitude (i.e., the camera height above the mean sea
level) embedded in the image properties, images were divided
into two groups – images captured on the ground and images
captured in the air. The MicaSense radiometric calibration
panels were then automatically detected from images captured
on the ground if existing. Following the MicaSense radiometric
calibration procedure4, calibration factors of all five bands were
calculated and then applied to images captured in the air,
converting raw images to reflectance images for subsequent
photogrammetry process.

The GCPs detection procedure automatically identified the
GCP in each image captured in the air if existing and matched
the GCP with the surveyed position of the closest GCP from
the image position. As white square tiles with the pre-known
size were used as GCPs in the wheat field, clear patterns of
GCPs could be detected through image processing. According to
the image position (i.e., the longitude and latitude) embedded
in the image properties, the surveyed GCP, whose coordinates
were geographically close to the image position, was matched
with the detected GCP in the image. Sufficient space (i.e.,
> 20 m) was left between every two GCPs during placement
in the field to avoid having multiple GCPs in a single image
and to enable sufficiently accurate geolocation of the UAS to
determine which GCP was being imaged. All image file names
and detected GCP coordinates were saved in a list for geospatial
optimization in the photogrammetry process. Due to the low
resolution of the thermal camera and the unclear pattern of GCPs
in thermal images, GCPs were manually detected during the
photogrammetry process of thermal images.

The photogrammetric processing of aerial images included
sparse point cloud generation, geospatial optimization, dense
point cloud generation, and 3-dimensional (3D) model
generation. The process was implemented using the Agisoft
PhotoScan Python API (Version 1.4.0, Agisoft LLC, Russia).
An orthomosaic image of a complete field experiment was
exported after the process. All images used to generate the
orthomosaic image were exported as orthorectified images with
the image boundary (i.e., the northwest and southeast corners)
coordinates and the original camera position (i.e., longitude,
latitude, and altitude) where the image was captured embedded
in the image properties.

Plot-Level Traits Extraction
Extraction of plot-level phenotypic values from orthomosaic and
orthorectified images consisted of (1) cropping single-plot images
from an orthomosaic of the complete field or from multiple
orthorectified images, each of which covered a small portion of

4github.com/micasense/imageprocessing

Frontiers in Plant Science | www.frontiersin.org 4 October 2020 | Volume 11 | Article 587093

https://github.com/xwangksu/bip
https://github.com/micasense/imageprocessing
https://www.frontiersin.org/journals/plant-science
https://www.frontiersin.org/
https://www.frontiersin.org/journals/plant-science#articles


fpls-11-587093 October 15, 2020 Time: 17:12 # 5

Wang et al. Improved Accuracy of HTP UAS

FIGURE 1 | Workflow to generate orthomosaic and orthorectified images from raw images.

FIGURE 2 | Workflow for plot-level trait extraction from orthomosaic and orthorectified images.

the entire field, (2) converting pixel values to trait values through
raster calculation, and (3) summarizing the plot-level trait in each
image (as shown in Figure 2). The procedure was implemented
using Python, and the source code is available online5.

Following the generation of the orthomosaic image of an
entire field, a field map – a shapefile of polygons delineating the

5github.com/xwangksu/traitExtraction

four corners of each plot was generated semi-automatically in
Quantum Geographic Information System (QGIS, www.qgis.org)
with the HTP Geoprocessor plugin (Wang et al., 2016).
Specifically, the four corner points of the entire experiment field
were first manually defined in QGIS. Then the coordinates of
the four corners of the polygon for each plot were automatically
calculated with the pre-known plot geometric size (length and
width) using a QGIS Python script. Finally, each plot polygon
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was assigned a plot ID using the HTP Geoprocessor plugin
(Wang et al., 2016). According to the field map, an image of
each plot could be cropped from the orthomosaic image of the
entire field experiment and saved as a GeoTiff image. Unlike
the orthomosaic image of the complete field experiment, each
orthorectified image only covered a small portion of the entire
field. Therefore, only the plots that were completely included
in the orthorectified image were cropped and saved as GeoTiff
images. As a result, each plot was represented by a single
cropped orthomosaic GeoTiff image and multiple orthorectified
GeoTiff images.

To extract the CT trait, the pixel values within each GeoTiff
image containing the thermal infrared band were directly used
as indicators of absolute temperature measurements, as (1) the
R-JPEG images have temperature data embedded in each pixel6

and (2) Sagan et al. (2019) has demonstrated the absolute
temperature can be converted from the pixel value following a
linear equation:

T(◦C) = K × ThermalIR − T0 (1)

where ThermalIR is the pixel value within the thermal infrared
band of the GeoTiff image, T is the absolute temperature
measurement in Celsius degrees, and K and T0 are constant
parameters. In this study, K and T0 were set as 0.04 and
−273.15 (Flir Systems Inc., 2017; Williamson et al., 2019;
Song and Park, 2020).

To generate the NDVI trait from the GeoTiff image from the
five-band multispectral GeoTiff image, the following equation
was used during raster calculation:

NDVI =
NIR− Red
NIR+ Red

(2)

where NIR and Red are the near-infrared and red band of
the multispectral GeoTiff images, respectively, and NDVI is the
output raster layer.

For the canopy GC calculation, the five-band multispectral
GeoTiff image was first converted to an RGB GeoTiff image by
rendering the Red, Green, and Blue bands. Then the RGB image
was converted to a Hue-Saturation-Value (HSV) GeoTiff image.
Finally, a binary image was generated from the Hue band of
the HSV image by manually selected threshold values leaving
white pixels representing the canopy area in the RGB image. In
this study, the threshold value was selected from the first image
data set (October 3, 2018) and was applied to the subsequent
image data sets.

For extraction of CT and NDVI traits, we used the mode of
all non-zero values (Figure 2) in a plot area as the plot-level
CT and NDVI, respectively. This was intended to compensate
for noise from the non-vegetative pixels within the plot area,
although most of the plots were fully covered by canopies during
image acquisition. The plot-level early-stage ground cover (GC in
Figure 2) was calculated as the overall percentage of white pixels
within the binary image. As a result, each type of plot-level trait
extracted from the orthomosaic image had only one observation

6www.flir.com/products/vue-pro-r

per plot, whereas the same traits extracted from orthorectified
images had multiple observations, one per orthorectified image
in which that given plot appeared complete.

Orthomosaic and orthorectified images collected on two
dates (Supplementary Table 2), were used to extract two
independent datasets for the CT trait. Similarly, images collected
on five and four dates were used to extract five and four
independent datasets for the NDVI and the GC traits, respectively
(Supplementary Table 2).

Statistical Analysis
Four general linear mixed models (models I to IV) were specified
and fitted to each of the traits extracted, namely CT, NDVI
and GC. For each trait, a null model (Model I) was fitted
to observations extracted from the orthomosaic image (one
observation per plot; Model Ia) and to the average of the multiple
observations per plot, as extracted from the orthorectified images
(Model Ib). The remaining three models (II, III, and IV) were
fitted to the traits extracted from orthorectified images (i.e.,
multiple observations per plot) and were intended to recognize
different aspects of the data collection process. Model fitting
was implemented using the ASReml-R (Ver. 4) package in
R (Butler et al., 2009; Gilmour et al., 2015), with variance
components estimated by residual maximum likelihood (REML)
(Butler et al., 2009; Gilmour et al., 2015). Additional details for
each model follow.

Model I
Model I was developed to fit a single observation per plot,
with this single observation being either extracted from a
single orthomosaic image per plot (ym, Model Ia) or by
averaging multiple plot-level observations (yr̄) extracted from
orthorectified images (Model Ib). Specifically,

Model Ia : ym,ijkl = µ(Ia) + G(Ia)
i + B(Ia)

j + R(Ia)
k(j) + C(Ia)

l(j)
+ e(Ia)

ijkl

(3)

Model Ib : yr̄,ijkl = µ(Ib)
+ G(Ib)

i + B(Ib)
j + R(Ib)

k(j) + C(Ib)

l(j)
+ e(Ib)

ijkl

(4)

where superscripts (Ia) and (Ib) indicate the model that each
parameter corresponds to. Within each model, µ represents
the intercept, Gi is the random effect of the ith entry assumed
distributed as iid Gi ∼ N(0, σ2

G), Bj is the random effect of
the jth block assumed distributed as iid Bj ∼ N(0, σ2

B), Rk(j) is
the random effect of the kth row nested within a block and
assumed distributed as iid R(j)k ∼ N(0, σ2

R), Cl(j) is the random
effect of the lth column nested within block and distributed
as iid C(j)l ∼ N(0, σ2

C) Finally, e(Ia)
ijkl ∼ N(0, σ2

e(Ia)) and e(Ib)
ijkl ∼

N(0, σ2
e(Ib)) are model-specific left-over residuals unique to the

ijklth plot.

Model II
Given the multiple observations on each plot that were extracted
from orthorectified images (yr), it is possible to assess the
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variability between observations within a plot (i.e., within-plot
variance) by expanding Model I as follows.

Model II : yr,ijklm = µ(II)
+ G(II)

i + B(II)
j + R(II)

k(j) + C(II)
l(j)

+ (R× C)(B)
(II)
kl(j) + ε

(II)
ijklm (5)

where µ, Gi , Bj , Rk(j), and Cl(j) are defined as for Model I.
Meanwhile, (R× C)(B)

(II)
kl(j) is the random effect of an individual

plot identified by the combination of the kth row and the
lth column within the jth block, assumed iid distributed (R×
C)(B)

(II)
kl(j) ∼ N(0, σ2

R×C(B)(II)), and ε
(II)
ijklm is the leftover residual

noise of the observation collected on the mth orthorectified
image of the ijklth plot, and assumed as iid distributed ε

(II)
ijklm ∼

N(0, σ2
ε(II)) Notably, in Model II, left-over residual terms ε

(II)
ijklm are

unique to each ijklmth observation within a given plot and thus
represent technical replication (i.e., subsampling) of plots in the
data collection process.

Model III
Recall that each orthorectified image includes multiple plots
in the camera field of view (Figures 3–5) and that images
were captured by the UAS following a serpentine trajectory
(moving along the column direction and turning around at
the boundary rows) to cover the entire field. Therefore, for
Model III, we consider replacing the specification of spatial
effects of row and column with a clustering effect of image, as
follows:

yr,ijn = µ(III)
+ G(III)

i + B(III)
j + I(III)

n + G× B(III)
ij + ε

(III)
ijn (6)

where µ, Gi, and Bj are defined as for Model II. In turn, I(III)
n is

the random effect of the nth image and is assumed distributed as
iid I(III)

n ∼ N(0, σ2
I(III)) Meanwhile, each plot is identified by the

combination of the ith entry in the jth block, namely (G× B)
(III)
ij

and assumed iid (G× B)
(III)
ij ∼ N(0, σ2

G×B(III)) Finally, ε(III)
ijn is the

left-over residual noise of the observation collected on the nth

orthorectified image of the ijth plot, assumed distributed as iid
ε
(III)
ijn ∼ N(0, σ2

ε(III)) Much like in Model II, residual terms ε
(III)
ijn

in model III are unique to an observation within a plot and
thus represent technical replication (i.e., subsampling) in the data
collection process.

Model IV
Model IV extends Model III to recognize that orthorectified
images on a given plot are captured from different angles. Thus,
Model IV incorporated camera view angle as an explanatory
covariate in the linear predictor. This angle is defined from the
center of the field plot to the camera’s position where the image
is captured. As the UAS’s altitude could not be held constant
during image acquisition, the absolute camera height above the
ground level could not be accurately measured. Therefore, only
the latitude and longitude (i.e., y and x coordinates) values of

both the plot center and the camera were used to calculate
the camera azimuth angle (Figure 3). Model IV was specified
as follows:

yr,ijn = µ(IV)
+ Xijnβ

(IV)
+ G(IV)

i + B(IV)
j + I(IV)

n

+ G× B(IV)
ij + ε

(IV)
ijn (7)

where Xijn is the camera azimuth angle corresponding to the nth

orthorectified image for the ijth plot, β is the associated partial
regression coefficient, and all remaining terms are defined as
in Equation (6).

Model Comparison
Specific model comparisons were targeted to address questions
of interest. Specifically, Model Ib was compared to Model Ia to
evaluate the effect of an averaged plot-level observation extracted
from multiple orthorectified images compared to a single
observation extracted from blended pixels in an orthomosaic
image. Next, Model II was compared to Model I to investigate
the effect of subsampling on estimation of the additive genetic
variance (and functions thereof) based on multiple plot-level
observations extracted from orthorectified images (II) compared
to a single plot-level observation extracted from an orthomosaic
image (Ia) or from the average of multiple orthorectified images
(Ib). Furthermore, a comparison between Models II and III were
intended to consider alternative ways of accounting for spatial
variation, namely through rows and columns (II) vs. image
clusters (III). Finally, Model IV expanded Model III to adjust
for potential technical effects of the UAS with respect to the
camera view angle.

Two metrics were selected for model comparisons,
specifically the broad-sense heritability (H2) or
repeatability, and the Bayesian Information Criterion (BIC)
(Neath and Cavanaugh, 2012).

For all models, variance component estimates were used
to compute H2 as follows. Specifically, to Models Ia and Ib
(Equations 3 to 4), H2 was calculated as,

H2
=

σ2
G

σ2
G +

σ2
e
r

(8)

Using estimates of the entry-level variance σ2
ε and the plot-

level variance σ2
e from Models Ia and Ib, and r defined as the

number of plots per entry (i.e., number of blocks). For Models
II, III, and IV (Equation 5 to 7), the calculation of H2 included
plot-level variance estimates (i.e., σ2

R×C(B)(II) , σ2
G×B(III) , σ2

G×B(IV)),
and estimates of σ2

ε characterizing subsampling, weighted by the
number of subsamples (n) per plot, calculated as the harmonic
mean number of observations across plots. Specifically, for
model II

H2
=

σ2
G

σ2
G +

σ2
R×C(B)

r +
σ2
ε

rn

(9)
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FIGURE 3 | Illustration of the camera azimuth angle. The RGB image was captured by the UAS showing a small part of the field. The blue dot represented the
camera projected position on the ground. Red dots represented the center of each plot. The camera azimuth angle (θ) was the angle between the true east (as 0◦)
and the vector from the plot center to the camera position.

And for each of Models III and IV:

H2
=

σ2
G

σ2
G +

σ2
G×B
r +

σ2
ε

rn

(10)

As Models Ia, Ib, and II have different response variables, and
BIC is used for model comparison assuming the same set of
observations on the response variable, BIC is only used for
Models II, III and IV in this study. Values of BIC were obtained
from the ASReml-R (Ver. 4) package output. Smaller values of
BIC are considered to indicate better fitting models.

Data Availability
Data associated with these experiments, including the cropped,
plot-level orthomosaic images and corresponding orthorectified
images, can be accessed at the public repository7.

RESULTS AND DISCUSSION

Orthomosaic and Orthorectified Image
Generation and Gross Description
Using a case-study approach, we illustrate differences in image
generation, gross description and corresponding trait extraction
from orthomosaic images and orthorectified images. Specifically,
for CT we used the March 2, 2018 dataset from spring wheat field
(Figure 4), for NDVI we used the April 4, 2018 data from the
winter wheat field (Figure 5), and for GC we used the November
3, 2018 data from the winter wheat field (Figure 6).

For the CT trait, gross differences in trait extraction
are directly observable in a side-by-side comparison of the

7http://people.beocat.ksu.edu/~xuwang/Data_2019_FPS/

orthomosaic image with two of the orthorectified images
(Figures 4A vs. 4B,C). Notably, all three images in Figure 3 show
ranges in CT from 25◦C (blue pixels) to 45◦C (red pixels), as
shown in the corresponding scales. Consider the individual plot
marked with a star; the orthomosaic image seems to indicate a
relatively low plot-level CT, based on more yellow pixels for that
plot (Figure 4A). In contrast, the two orthorectified images show
relatively high CT for the said star-marked plot, based on more
orange and red pixels (Figures 4B,C). As observed, plot-level CT
observations extracted from orthorectified images can disagree
with the information available from the orthomosaic image,
although not all orthorectified images reveal huge difference from
the orthomosaic image on a given plot.

Similarly, directly observable differences were apparent
between an orthomosaic and two orthorectified images for NDVI
in wheat plots (Figure 5). Values of NDVI range from 0 (red
pixels) to 0.8 (blue pixels) in all three images (Figure 5). For
instance, consider the subset of six plots inside the yellow dashed
rectangle in each of the three images. Although the difference
is subtle, it is still visually detectable that more blue pixels in
one orthorectified image (Figure 5C) than the other (Figure 5B).
This perceived difference could be due to variation in reflectance
over time due to the change of solar angle and different camera
view angles. Another possible explanation may be digital artifacts
of the camera, as it seemed that plots located at the east and
south sides of both orthorectified images (Figures 5B,C) showed
higher NDVI (i.e., more blue pixels) than plots in the remaining
area of each image.

As for visual inspection of images of GC, we could not
detect obvious GC differences between the orthomosaic image
(Figure 6A) and the orthorectified images (Figures 6B,C). As GC
is sensitive to the view angle from the camera to the plot, this
observation supports that both ortho images (either orthomosaic
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FIGURE 4 | Orthomosaic and orthorectified images of CT. Raw thermal images for CT were captured on March 2, 2018, at 60 m AGL and were processed to
generate (A) an orthomosaic image of the partial field and multiple orthorectified images of sections of the field, two of which are depicted here (B,C). Black
polygons delimited by thin dotted lines within each image delineate plot boundaries. Black polygons in thick dashed lines highlight a field section of interest common
to the three images. In each image, a black star marks the same plot. The range of temperature (in Celsius degree) is marked in each image. The continuous blue
areas (B,C) are non-effective pixels due to orthorectification to the raw images.

or orthorectified) have been processed to apply corrections in the
position of ground pixels caused by the perspective of the camera
view angle. However, it is still unclear if pixel intensity may vary
between orthomosaic and orthorectified images.

Taken together, the case studies presented here support
potential variation in traits extracted from orthomosaic and
orthorectified images. The main interest of a breeder is to
quantify the genetic component of such variation; yet other
sources of variation need to be considered and accounted for
as well, namely environment factors (e.g., spatial effects) and
imaging patterns due to the technology used for data collection
(i.e., camera view angles and digital processing artifacts).
Specifically, the illustrations presented above raised questions
about the information contained in plot-level orthomosaic
images generated by the photogrammetry process, as it was
perceived to fail to accurately reflect trait variation that was
directly apparent on plot-level observations originated from
orthorectified images. Our concern is that the blending of pixel

information that underlies the photogrammetry generation of
orthomosaic images could lead to loss of information, thus
undermining the quality of phenotypic data.

Plot-Level Traits Extraction
Plot-level observations on CT, NDVI, and GC traits from two,
five, and four datasets, each corresponding to a different data
collection date (Supplementary Table 2), were extracted from
orthomosaic and orthorectified images. For each trait, the total
number of observations extracted from orthorectified images and
the minimum, maximum, and median number of observations
per plot extracted from orthorectified images were summarized
(Supplementary Tables 3–5). The number of observations per
plot extracted from orthorectified images ranged from 3 to 49
across traits. From an experimental design standpoint, each
individual plot was assigned to a given genetic line. Thus, the
multiple observations per plot extracted from the orthorectified
images may be considered subsamples (i.e., technical replication)
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FIGURE 5 | Orthomosaic and orthorectified images of NDVI. Raw images for NDVI were captured on April 4, 2018, at 20 m AGL from the 2017–18 wheat field
experiment and were processed to generate (A) an orthomosaic image of a block in the field and multiple orthorectified images of sections of such block, two of
which are depicted here (B,C). Black polygons delimited by thin dotted lines within each image delineate plot boundaries. Yellow rectangles in dashed lines delimit
the same subset of six plots in all three images. The range of NDVI (unitless) is marked in each image. The continuous white areas (B,C) are non-effective pixels due
to orthorectification to the raw images.

for the entry that plot was assigned to. By contrast, only one
observation per plot was obtained for each trait from the
orthomosaic image for a given field.

Model Comparison
Table 1 shows estimated H2 for models Ia, Ib, II, III, and IV
fitted to each of the traits extracted, namely CT, NDVI and
GC. Table 2 shows BIC for model comparison between models

II, III, and IV fitted to each of the traits extracted, namely
CT, NDVI, and GC.

Models Ia, Ib, and II
For both CT and NDVI, the magnitude of H2 estimates for
Model Ib and Model Ia showed an inconsistent pattern across
datasets (Table 1), though estimates seemed to be numerically
greater in magnitude more often under Model Ib. In contrast,
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FIGURE 6 | RGB orthomosaic and orthorectified images used for ground cover. Raw images were captured on November 3, 2018, at 20 m AGL from the 2018–19
wheat field experiment and were processed to generate (A) an RGB orthomosaic image of two blocks of the entire field, (B,C) two orthorectified sample RGB images
illustrating different parts of the field. Black polygons in dashed lines within each image delineated plot boundaries. Red rectangles in dashed lines represented
overlapped areas between two orthorectified RGB images. The continuous black areas (B,C) are non-effective pixels due to orthorectification to the raw images.

for the GC trait, estimates of H2 were consistently greater in
numerical magnitude under Model Ia than Ib based on the four
datasets considered.

Comparing H2 estimates of all three traits between using
Model Ia and Model II, we observed that H2 estimates of the
CT trait on both two dates were improved by the latter model,

as well as all H2 estimates of the NDVI trait except the one
on the last date (Table 1). Taken together, for CT and NDVI
traits, fitting multiple observations per plot into a hierarchical
model that recognizes subsampling can help recover additive
genetic variability in the data, as indicated by greater estimates
of broad-sense heritability.
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Compared to Model Ib, Model II explicitly accommodated
technical replication in phenotypic information, causing
beneficial H2 estimates in all cases; however, the magnitude of
gains ranged from moderate to marginal.

In summary, fitting phenotypic values of some crop traits
(e.g., CT and NDVI) extracted from orthorectified images could
increase estimates of H2 in some cases, relative to the same
phenotypic traits obtained from orthomosaic images (Model Ia).
However, the estimation of H2 through fitting the GC trait could
not be improved by simply replacing the single observation
from the orthomosaic image with the average observations
extracted from multiple orthorectified images. This inconsistent
pattern was possibly due to the “mosaic” blending mode selected
during photogrammetry processing of the orthomosaic photos.
According to the Agisoft User Manual (2018), pixels were
not simply blended by averaging pixel values from different
photos in this blending mode, but through a pixel frequency
related selection – a two-step approach. It was likely to be the
reason why Model Ib and II could not always improve the trait
estimation compared to Model Ia. Further research is required to
characterize the extent of the expected benefit in terms of specific
crops traits and circumstances of the growth season and data
collection technology.

Model II vs. III
For CT and NDVI traits, H2 estimates were consistently
decreased based on variance component estimates from Model
III relative to Model II (Table 1), though the magnitude of
the difference ranges from 12 to 62%. As for BIC-based model
fit comparisons, results proved trait-specific. For CT, Model III
showed smaller BIC values, and thus, better fit than Model II.
However, for NDVI, most datasets showed better BIC-based fit
by Model II compared to Model III (Table 2).

As for GC, the H2 estimates were increased for all datasets
using Model III compared to Model II (Table 1). However, in
all cases, BIC indicated a most prevalent better fit of Model
II compared to III (Table 2). According to the result, for CT
and NDVI traits estimation, considering the image cluster effect

TABLE 1 | Estimated broad-sense heritability (H2) for models Ia, Ib, II, III, and IV
fitted to plot-level CT, NDVI, and GC observations on the case studies considered.

Date Model Ia Model Ib Model II Model III Model IV

CT

3/2/2018 0.838 0.815 0.839 0.736 0.717

3/19/2018 0.606 0.825 0.834 0.615 0.619

NDVI

4/4/2018 0.432 0.572 0.598 0.348 0.389

4/12/2018 0.529 0.579 0.590 0.492 0.492

4/19/2018 0.262 0.633 0.696 0.311 0.370

4/23/2018 0.489 0.605 0.650 0.250 0.307

5/16/2018 0.489 0.399 0.422 0.370 0.467

GC

10/3/2018 0.811 0.794 0.799 0.843 0.877

10/11/2018 0.824 0.808 0.809 0.942 0.942

10/21/2018 0.706 0.700 0.700 0.878 0.882

11/3/2018 0.502 0.417 0.419 0.727 0.731

TABLE 2 | Bayesian Information Criterion (BIC) for models II, III, and IV fitted to
plot-level CT, NDVI, and GC observations on the case studies considered.

Date Model II Model III Model IV

CT

3/2/2018 739726 620273 597315

3/19/2018 522193 512660 509143

NDVI

4/4/2018 −25028 −24832 −25417

4/12/2018 −31071 −30699 −30735

4/19/2018 −20666 −20804 −21751

4/23/2018 −23435 −23156 −24090

5/16/2018 −20888 −19871 −20777

GC

10/3/2018 −22314 −23872 −24529

10/11/2018 −19322 −15933 −15939

10/21/2018 −23489 −18529 −18552

11/3/2018 −22831 −20139 −20166

introduced in Model III as a factor could improve the phenotypic
data quality; however, the row and column effect was still
dominate for all the trait estimation in this study.

Model III vs. IV
In most cases, H2 estimates obtained using variance component
estimates from Model IV were either increased or tied with those
computed based on Model III. The one exception was for the
CT trait based on the datasets from March 2, 2018 (Table 1).
In addition, BIC estimates were smaller for model IV relative to
III for all traits and in all cases, thereby indicated consistently
improved model fit of Model IV relative to III (Table 2). Recall
that Model IV included an additional explanatory variable,
namely the camera azimuth angle from the plot center to the
camera, could be proved to improve model fit. We observed
that recent studies have confirmed that the reflectance observed
by UAS are affected by multiple solar angles (Assmann et al.,
2018) and camera view angles (Cheng et al., 2019). Compared to
previous research, the multispectral images were not collected by
the UAS at multiple discrete camera view angles intentionally in
this study. Instead, the camera azimuth angles in this study were
continuously distributed according to the flight route. Therefore,
we considered the camera’s azimuth angle as an explanatory
covariate in a more general way and aimed to improve the
trait estimation.

In general, based on broad-sense heritability, the highest H2

estimates for CT and NDVI traits were most often obtained
when Model II was used for estimation, whereas for the GC
trait, the highest H2 estimates were obtained from Model IV
(Table 1), indicating that the best fitting model may be trait-
specific. Specifically, the highest estimates of H2 for CT and
NDVI traits were obtained when row and column effects were
recognized in the modeling exercise (i.e., Model II), while for
the GC trait, accounting for multiple images and the camera
view angle yielded higher H2 estimates, as shown by Model IV.
Other technical aspects or components of experimental design
may also be considered for modeling to further explain leftover
noise and enhance genetic signal. Moreover, even within a trait,
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estimation results were not consistent. For example, for the NDVI
trait, the dataset of May 16, 2018 yielded the highest H2 estimates
when fitted with Model Ia. This indicates the need for further
research to fine-tune processing of UAS imaging technology
for efficient and accurate extraction of phenotypes relevant to
crop improvement.

Cost Comparison Between the Two
Image Processing Methods
During the Agisoft photogrammetry processing in this study,
there is no computing cost difference between generation a
single orthomosaic photo or generation of multiple orthorectified
images. The export of multiple orthorectified images takes a
longer time, though marginal relative to the entire analysis.
As the number of orthorectified images per plot has increased
compared to only one orthomosaic photo per plot, the trait
extraction will take longer time than extracting trait values from
the orthomosaic photo. Fortunately, the plot-boundary shapefile
only needs to be generated once during trait extraction from the
orthomosaic photo and the same shapefile can be used for trait
extraction from multiple orthorectified images. Therefore, the
analysis pipeline for orthophotos presented here does increase
computational time, though a relatively marginal increase
compared to overall pipeline computational requirements and
the data collection time.

CONCLUSION

In this study, we demonstrated open-source and highly
reproducible image processing methods and applied it for
processing three crop phenotypes obtained by UAS, namely
canopy temperature, canopy NDVI, and early-stage ground
coverage, to seek the potential to improve quality of trait
extraction from UAS-based remote sensing. We compared
plot-level phenotypic traits extracted from the orthomosaic
image with those obtained from orthorectified images, and we
provided evidence that phenotyping by UAS remote sensing
could be improved by extracting observations directly from
multiple orthorectified images and through proper statistical
models that are used to capture and account for technological
sources of variability.

While further research will be needed, this study shows
preliminary evidence with important practical implications for
plant breeding and genetics. First, we developed image processing
pipelines that have the potential to automatically generate
the orthomosaic and orthorectified images from aerial images,
without any need for manual manipulation. Second, we proposed
batch processing pipelines to quantify different types of plot-
level phenotypic traits, namely CT, NDVI, and GC. In addition,
we illustrate how cropping plot-level images from orthorectified
images can highly improve the efficiency to link genotypes
to phenotypes. This approach can significantly increase the
number of image samples per plot, indicating views of a plot
from different angles, and provide huge training datasets for
image-based deep learning. Finally, we proposed four statistical
linear mixed models to efficiently partition sources of variation

in each trait, specifically variation introduced by the UAS
technology and accompanying image processing, in addition
to experimental design. The models provide breeders multiple
options to investigate traits extracted from high-throughput
UAS-based imaging. Overall, through this study, it is expected
that the future of modern breeding could be further highlighted,
where in conjunction with powerful genomics and phenomics
tools, UAS remote sensing can accelerate the genetic gains in
plant breeding to meet the global demand for food, fiber, and fuel.
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