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Interspecific and intraspecific hybrid sterility is a typical and common phenomenon of
postzygotic reproductive barrier in rice. This is an indicator of speciation involved in the
formation of new species or subspecies, and it significantly hampers the utilization of
favorable genes from distant parents for rice improvement. The Oryza genus includes
eight species with the same AA genome and is a model plant for studying the nature of
hybrid sterility and its relationship with speciation. Hybrid sterility in rice is mostly controlled
by nuclear genes, with more than 50 sterility loci genetically identified to date, of which 10
hybrid sterility loci or pairs were cloned and characterized at the molecular level.
Comparing the mapping results for all sterility loci reported indicated that some of these
loci from different species should be allelic to each other. Further research revealed that
interactions between the multiple alleles at the hybrid sterility locus caused various genetic
effect. One hypothesis for this important phenomenon is that the hybrid sterility loci are
orthologous loci, which existed in ancient ancestors of rice. When one or more ancestors
drifted to different continents, genetic divergence occurred because of adaptation,
selection, and isolation among them such that various alleles from orthologous loci
emerged over evolutionary time; hence, interspecific hybrid sterility would be mainly
controlled by a few orthologous loci with different alleles. This hypothesis was tested and
supported by the molecular characterization of hybrid sterility loci from S1, S5, Sa,
qHMS7, and S27. From this, we may further deduce that both allelic and non-allelic
interactions among different loci are the major genetic basis for the interspecific hybrid
sterility between O. sativa and its AA genome relatives, and the same is true for
intraspecific hybrid sterility in O. sativa. Therefore, it is necessary to raise the near-
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isogenic lines with various alleles/haplotypes and pyramided different alleles/haplotypes
from sterile loci in the same genetic background aiming to study allelic and non-allelic
interaction among different hybrid sterility loci in the AA genome species. Furthermore, the
pyramiding lines ought to be used as bridge parents to overcome hybrid sterility for rice
breeding purposes.
Keywords: allelic variation, hybrid sterility, interspecific hybrid, rice, Oryza sativa
INTRODUCTION

Reproductive barriers are very common and important
phenomena in biology, being widely observed in animal and
plant populations. Reproductive isolation was classified into pre-
zygotic and post-zygotic isolation mechanisms (Smith, 1989).
The former prevents the formation of hybrids, and the latter acts
after the formation of a hybrid and includes hybrid necrosis,
weakness, hybrid sterility, and lethality (Stebbins, 1950).

Hybrid sterility is generally thought to be the most pervasive
post-zygotic isolating mechanism, which provides an initial
driving force for genetic differentiation and thus plays a key role
in speciation (Orr and Presgraves, 2000). One of the major
challenges in biology is to understand the origin of species, so
the relationship between the hybrid sterility and the formation of
new species, or subspecies, is a subject of major interest in
evolutionary biology (Darwin, 1859; Coyne and Orr, 2004). Yet,
the introgression of favorable genes from distantly relatives
through wide crossing and heterosis utilization between
subspecies or species are hindered by the hybrid sterility.

Various causes have been ascribed to explain hybrid sterility, such
as meiotic irregularities (Yao et al., 1958), chromosomal aberrations
(Henderson, 1964), and cytoplasmic-nuclear interactions (Shinjyo,
1975). Recent reports have also speculated that structural variation at
particular trait loci may contribute to the intersubspecific hybrid
sterility between the O. sativa L. ssp. indica and O. sativa L. ssp.
japonica accessions (Shen et al., 2017; Wang et al., 2018).

Nevertheless, most known cases of sterility arise from a
disharmonious interaction between nuclear genes derived from
their respective parents (Stebbins, 1958; Grant, 1981). Genes for
hybrid sterility have been reported frequently in fungi, animals,
and plants (Brideau et al., 2006; Lee et al., 2008; Bikard et al.,
2009). This prominence indicates that gene interactions are
critically involved in generating hybrid sterility.

Hybrid sterility occurs widely in hybrids of Asian cultivated
rice species, especially between the Asian and African rice
species, and between the cultivated rice species and their wild
relatives. Because Oryza genus had broad genetic diversity and
well-characterized genetic base, it is perhaps one of the best
model plants to study the nature of hybrid sterility. Based upon
published reports of more than 50 sterility loci genetically
identified, and 10 hybrid sterility loci or pairs cloned and
characterized at the molecular level, this review examines the
links between the evolutionary relationship of the Oryza genus
and hybrid sterility, the genetic models of hybrid sterility, the
allelic variation of orthologous loci for hybrid sterility, the non-
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allelic interactions for hybrid sterility, and strategies for
overcoming hybrid sterility in rice improvement.
HYBRID STERILITY AND THE
CLASSIFICATION, ORIGIN, AND
EVOLUTIONARY RELATIONSHIPS OF THE
ORYZA GENUS

The Oryza genus has eight AA genome species of diploid
chromosome, of which six are wild and two are cultivated
(Vaughan, 1989). One of the cultivated species, O. sativa L., has a
global distribution and is now classified as two subspecies: O. sativa
L. ssp. japonica and O. sativa L. ssp. indica. The japonica subspecies
is further classified as three subpopulations, tropical, temperate, and
aromatic, while the indica subspecies contains two subpopulations,
indica and aus (Garris et al., 2005) or six subpopulations (Wang
et al., 2018). Another cultivated species is O. glaberrima Steud.,
which is localized in West Africa and commonly referred to as
African rice (Morishima et al., 1963). The six wild species are O.
rufipogon Griff. and O. nivara Sharma et Shastry from Asia; O.
longistaminataA. Chev. et Roehr. andO. barthiiA. Chev. from sub-
Saharan Africa; O. meridionalis Ng from Australia, and O.
glumaepatula Steud. from South America (Vaughan et al., 2003).
Hybrid sterility in rice was frequently observed between and within
the AA genome species and was thought to serve as an important
indicator for studying these species’ relationships, besides their
morphological, physiological, ecological traits, and molecular
markers (Kato et al., 1928; Chu et al., 1969; Morishima, 1969; Lu
et al., 1998; Naredo et al., 1998; Lu et al., 2000; Vaughan et al., 2003).

The origin and evolutionary relationship of the AA genome
nevertheless remain quite contentious, with different opinions and
arguments being advanced. Most researchers now believe that the
domestication of rice from wild to cultivated species occurred
independently in Africa and Asia, respectively (Londo et al., 2006;
Vaughan et al., 2008). Recent studies confirmed that O. glaberrima
was domesticated directly from an O. barthii subgroup in a single
domestication center along the Niger river (Wang et al., 2014).

One hypothesis is that japonica was derived from indica
(Chang, 1976; Oka, 1988), while according to an alternative
hypothesis both indica and japonica were originated
independently from their wild ancestors (Second, 1982; Bautista
et al., 2001; Cheng et al., 2003). Based on an analysis of their whole
chloroplast genome sequences, the maternal genome of japonica
may have been derived from O. rufipogon and that of indica may
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have originated from O. nivara, which would support the
independent domestication theory (Wambugu et al., 2015). By
employing the indica-japonica specific insertion/deletion markers
to evaluate the genetic relationships within the genus Oryza, Chin
et al. (2017) recently provided more evidence of indica and
japonica evolving independently.

All the above studies concerned with rice’s origin and
evolutionary history relied on evidence from either archaeological
analyses or genetic markers. Given that the strength of reproductive
isolation is significantly and positively correlated with parental
divergence (Coyne and Orr, 2004), comparative analyses of the
timing and evolutionary progression of genetic changes underlying
reproductive isolation genes could us better understand the
mechanisms of speciation (Moyle and Payseur, 2009). With the
advent of molecular biology and in recent years genomic studies
especially, the hybrid sterility genes, also called “speciation genes”,
provide an unique angle of view for understanding the genetic,
origin and evolution of theOryza genus. For instance, the molecular
evolution analysis of the S5 locus, one of the important female
sterility loci in indica-japonica hybrids, revealed that indica and
japonica subspecies of the Asian cultivated rice O. sativa were
domesticated independently from wild species (Du et al., 2011).
This result thus supported the independent origin theory of indica
and japonica and was consistent with the finding reported by
Wambugu et al. (2015). The cloning of S1 locus, which is the
most important genetic factor causing the hybrid sterility between
two cultivated species, provides experimental evidence for the
independent origin of Asian cultivated rice and African cultivated
rice (Xie et al., 2019b).
GENETIC MODELS FOR THE GENETIC
MECHANISM OF HYBRID STERILITY
IN RICE

Two genetic models are generally accepted for explaining the
genetic mechanism underpinning hybrid sterility in rice
according to the Mendelian inheritance: allelic interaction
(Kitamura, 1962) and epistatic interaction (Oka, 1957; Oka,
1974). The former proposes that a genetic interaction between
two divergent alleles on a single locus causes the abortion of
gametes carrying a specific allele, while the latter proposes that
epistatic interactions between two loci cause hybrid sterility.

To date, more than 50 hybrid sterility loci in rice have been
identified from gene mapping populations generated from various
germplasm lines (Supplementary Table 1). Some of these loci cause
pollen sterility, some cause female gamete abortion, and a few cause
the abortion of both. Yet most of these loci seem to act
independently on hybrid sterility, which could be explained by
the one-locus interaction model; for those showing epistatic
interactions, they fit the two-loci interaction model.

From the mapping loci, 10 hybrid sterility loci or pairs of
epistatic interaction were cloned and characterized at the
molecular level, for which the genetics of seven loci—S1, S5,
S7, Sa, Sc, hsa1, and qHMS7—follow the one-locus interaction
Frontiers in Plant Science | www.frontiersin.org 3
model (Chen et al., 2008; Long et al., 2008; Yang et al., 2012;
Kubo et al., 2016; Yu et al., 2016; Shen et al., 2017; Xie et al., 2017;
Koide et al., 2018; Yu et al., 2018; Xie et al., 2019b). Most loci
contain two or more closely linked genes interacting to cause
gamete sterility, which can take these recognized forms: a single
Mendelian factor, such as two genes at Sa, qHMS7 and hsa1 locus
(Long et al., 2008; Kubo et al., 2016; Yu et al., 2018); three genes
at S1 and S5 loci (Yang et al., 2012; Xie et al., 2017; Koide et al.,
2018; Xie et al., 2019b); and genomic structural variation at the Sc
locus (Shen et al., 2017). All can be regarded as interaction
between different alleles from a single Mendelian factor to
control hybrid sterility.

The other three pairs (S27/28, DPL1/DPL2, and DGS1/DGS2)
follow the two-loci interaction model (Mizuta et al., 2010;
Yamagata et al., 2010; Nguyen et al., 2017). These gamete-
essential genes were interchromosmal duplicated segment from
their ancestral loci. The reciprocal loss of one of the duplicated
genes caused the sterility in hybridization in the divergent
species. Therefore, genetic segregation and recombination gave
rise to gametes lacking any duplicated functional genes in the
hybrids, thus leading to hybrid sterility (Mizuta et al., 2010;
Yamagata et al., 2010; Nguyen et al., 2017).

However, the molecular mechanisms underlying each of the
loci are in fact complex though the genetic basis of reproductive
isolation seems simple according to classical genetic analysis. Not
only are the genes involved in hybrid sterility characterized by
very different functional categories, the way in which they
interact to cause sterility is also distinct, and this topic has
been reviewed before (Ouyang and Zhang, 2013; Xie et al.,
2019a). However, it is necessary to recheck hybrid sterility
from different perspectives.
SEVERAL HYBRID STERILITY LOCI FROM
DIFFERENT SPECIES SHOULD CONFER
MULTIPLE ALLELES

In reviewing the progress made in the genetic mapping study of
hybrid sterility loci/QTL between O. sativa and its AA genome
relatives, six “hot spots” from different species were frequently
identified (Figure 1). Comparing the mapping results for all
these sterility loci suggested that some sterility loci arising from
multiple species should be allelic to each other, since they were
located to the same chromosome region and were identified as
having similar genetic activity.

The interspecific hybrid sterility locus S1 on chromosome 6 was
first identified in the cross between O. sativa (T65wx) and O.
glaberrima (W025) (Sano et al., 1979). It is frequently reported by a
large number of studies between the two cultivated rice species, O.
sativa (indica/japonica) and O. glaberrima (Koide et al., 2008;
Garavito et al., 2010; Zhou et al., 2010; Li J. et al., 2012). The S1
locus functions as a “gamete eliminator”: both male and female
gametes carrying the allele of O. sativa are aborted in the
heterozygote, for which the type of pollen abortion was of an
empty abortion phenotype. The S10 locus, inducing both male and
September 2020 | Volume 11 | Article 555572
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female gametes’ abortion in an intraspecific hybrid cross between
T65wx (japonica type) and PTB 10 (indica type), was mapped onto
the similar chromosome position as S1 on chromosome 6 (Sano
et al., 1994), with some later studies indicating that S1 and S10 are
allelic to each other (Heuer and Miézan, 2003; Zhu et al., 2005).
Chen et al. (2009) detected one main-effect QTL, qpsf6, for pollen
and spikelet fertility on the short arm of chromosome 6 close to the
SSR marker RM587, from the cross between an indica rice cultivar
RD23 of O. sativa and an accession of O. longistaminata.
Comparing their position and effect indicated that this QTL
coincides with the gamete eliminator S1 (Chen et al., 2009).
Recently, a genetic study found that S1 also was a major sterility
locus in the hybrid combinations obtained from O. sativa crossed
withO. rufipogon,O. nivara, andO. barthii, respectively (Yang et al.,
2016), which strongly suggests there was an orthologous hybrid
sterility locus controlling hybrid sterility between O. sativa and its
AA genome relatives in this area on rice chromosome 6.

The pollen killer locus S22, initially derived from the cross
between O. glumaepatula and O. sativa, was subsequently
identified as two closed but linked loci, S22A and S22B. Since the
sterile alleles S22A and S22B are closely linked and contributed to
hybrid sterility in the one-locus allelic interaction model, the S22A
and S22B loci were regarded as a single Mendelian locus in their
initial mapping experiments (Sobrizal et al., 2000a; Sakata et al.,
2014). A pollen killer locus S29(t), which induced hybrid sterility in
the cross betweenO. glaberrima andO. sativa, was mapped onto the
similar position to S22 on chromosome 2, whose comparative
mapping indicated that S29(t) corresponded to S22B (Hu et al.,
2006; Sakata et al., 2014). S53(t), caused pollen sterility in an O.
sativa–O. meridionalis hybrid, was identified on the same
chromosome region harboring S22B (Li et al., 2018b). The male
Frontiers in Plant Science | www.frontiersin.org 4
gametes carrying the O. sativa allele were viable whereas those
carrying the O. glumaepatula/O. meridionalis allele were aborted in
the S22B and S53(t) loci; hence, these loci from different species
should be allelic to each other with multiple alleles. This implies
there might be another orthologous hybrid sterility locus between
the Asian cultivated rice O. sativa and the African rice O.
glaberrima, and its wild relatives O. glumaepatula, O. meridionalis
on rice chromosome 2.

The major locus Sa conferring the indica-japonica hybrid
male sterility was identified on chromosome 1 with the genetic
background of a japonica variety (Zhuang et al., 1999). Work by
Li et al. (2018b) identified a pollen killer S51(t) on chromosome 1
from O. meridionalis. The sterile pollen in the heterozygotes of
S51(t) and Sa showed a similarly empty abortion phenotype
under I2-KI staining. Additionally, both S51(t)j and Saj, the
japonica alleles, were aborted and were incapable of being
transmitted to the progeny via the male gametes. According to
a comparison of the location and the genetic mode of locus
action, the S51(t) can be allelic to Sa (Li et al., 2018b).

The hybrid sterility locus S20 was identified on the distal end
of the short arm of chromosome 7, from the cross between
japonica rice (Taichung 65) and African rice Acc. IRGC104038
(Doi et al., 1999). An examination of map positions also revealed
that S20 was highly likely to be allelic to S54(t) and S56(t), which
were respectively identified in the hybridization crossed
combinations between O. sativa (japonica) and O. meridionalis
(Li et al., 2018b) and between O. sativa (japonica) and O.
glumaepatula (Zhang et al., 2018). Just like S20, the japonica
alleles of S54(t) and S56(t) were aborted and could not be
inherited in progeny via male gametes, so plants with normal
pollen fertility were homozygous for O. meridionalis and O.
FIGURE 1 | Loci with good co-linear relationship and similar genetic action for hybrid sterility in rice.
September 2020 | Volume 11 | Article 555572
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glumaepatula allele in the inbreeding population raised from the
semisterile individuals (Li et al., 2018b; Zhang et al., 2018).

The hybrid sterility locus S21 was identified on the distal end
of the long arm of chromosome 7, from the cross of japonica rice
(Taichung 65) and African rice Acc. IRGC104038 (Doi et al.,
1999). But a new allele of S21 was identified from O. rufipogon
Acc. IRGC105715 (Miyazaki et al., 2007). Using the O.
glumaepatula introgression lines with the background of O.
sativa (Taichung 65), the pollen semi-sterile locus S23(t) was
also located on the long arm of chromosome 7 and was thought
to be allelic to S21 from O. glaberrima and O. rufipogon after
comparing their map positions (Sobrizal et al., 2000b; Miyazaki
et al., 2007). The pollen killer locus S55(t)/qHMS7, from O.
meridionalis, has a map position similar to that of S21 identified
from O. rufipogon, O. glaberrima, and S23(t) identified from O.
glumaepatula (Doi et al., 1999; Sobrizal et al., 2000b; Miyazaki
et al., 2007; Li et al., 2018b; Yu et al., 2018). This congruence
pointed to a major pollen sterility locus on the long arm of
chromosome 7 that is capable of inducing sterility in the
hybridization combinations arising from O. sativa crossed with
O. glaberrima, O. rufipogon, O. glumaepatula, and O.
meridionalis, respectively, whose sequence analysis was based
on the cloning of S23 and qHMS7 (Yu et al., 2018; Fang
et al., 2019).

S36 and S25 are two F1 pollen sterility loci, both found on the
distal end of the short arm of chromosome 12 from the
interspecific cross of O. sativa (japonica) and O. nivara, and
the intersubspecific cross of O. sativa, respectively (Kubo et al.,
2001; Win et al., 2009). The pollen sterility locus Se and hybrid
male sterility QTL qS12, both from the intersubspecific cross
between japonica and indica, were mapped onto the short arm of
chromosome 12 (Zhu et al., 2008; Zhang H. et al., 2011). Further,
the pollen killer S39(t) identified from the interspecific cross
between O. sativa ssp. japonica and O. glaberrima was likewise
mapped onto the same chromosome region of S36 and S25 (Xu
et al., 2014). Those pollen grains carrying the japonica allele were
sterile in the heterozygous state. Having a similar map position
and same genetic activity, S25, S36, S39, qS12, and Se might
therefore be multiple alleles on the same locus responsible for
hybrid sterility in rice.

The six hot spots mentioned above each includes at least two
hybrid sterile alleles from different interspecific hybrid crosses,
and researchers believe these loci should be allelic to each other,
though their allelic relationship has yet to be tested. Nonetheless,
the existence of these multiple alleles implies that the hybrid
sterility among AA genome species of genus Oryza could be
governed by a few orthologous loci. It is thus imperative to clarify
the allelic relationships of these loci, although any robust
confirmation of this allelism is difficult to obtain due to their
diverse genetic backgrounds. Based upon this consideration, the
near-isogenic lines (NILs) of 5 hybrid sterility loci (S1, S39, S44,
S53, and S21/qHMS7) have been developed in the same genetic
background, using 35 rice accessions from eight species of AA
genome as donors and one japonica cultivar (Dianjingyou 1) as
the recurrent parent. And the allelic relationship confirmation
is ongoing.
Frontiers in Plant Science | www.frontiersin.org 5
THE ALLELIC INTERACTION AMONG
DIFFERENT ALLELES OF ORTHOLOGOUS
LOCI AND NON-ALLELIC INTERACTION
AMONG DIFFERENT LOCI INDUCE
INTERSPECIFIC HYBRID STERILITY
BETWEEN O. SATIVA AND AA GENOME
SPECIES

One hypothesis for multiple alleles from different species is that
these hybrid sterility loci are orthologous loci, which existed in
ancient ancestors. When one or more ancestors drifted to different
continents, genetic divergence occurred because of adaptation,
selection, and isolation among them. With this accumulated
genetic differentiation, the various alleles may divide the original
function, lose it altogether, or introduce a new function (Lynch and
Force, 2000). Hence, interspecific hybrid sterility would be mainly
controlled by a few orthologous loci with different alleles/
haplotypes. This hypothesis was proven by the molecular
characterization of cloned hybrid sterility loci in rice.

The hybrid sterility locus qHMS7, which confers pollen semi-
sterility in the hybrid between O. meridionalis and O. sativa ssp.
japonica Dianjingyou 1 (DJY1), was cloned and molecularly
characterized (Yu et al., 2018). The O. sativa allele of ORF2
(ORF2-D) and ORF3 (ORF3-D) respectively encoded the toxin
and antidote, whileORF2-mer was non-functional andORF3 was
absent in O. meridionalis, which induced the pollens carrying the
O. meridionalis allele to be aborted (Yu et al., 2018). The
analyzed gene structure of the qHMS7 locus indicated that
ORF2 was present in all sequenced accessions, with a total 27
haplotypes of ORF2 identified, yet only one haplotype of ORF3
(ORF3-D) was identified in parts of O. rufipogon and most of
Asian-cultivated rice accessions, but none in O. meridionalis, O.
longistaminata, O. barthii, and O. glaberrima (Yu et al., 2018).
So, qHMS7 was not only detected in the cross of O. sativa–O.
meridionalis (Yu et al., 2018; Li et al., 2018b) but also in the
crosses of O. sativa–O. glaberrima and O. sativa–O. rufipogon as
S21 (Doi et al., 1999; Miyazaki et al., 2007). The pollen semi-
sterility locus S23 in O. sativa–O. glumaepatula has a similar map
position to qHMS7 (Sobrizal et al., 2000b; Fang et al., 2019).
Sequence analysis revealed that S23 was allelic to qHMS7, the
ORF2 andORF3 of S23 have the same “Toxin-Antidote” function
when compared with qHMS7; however, the genetic effect of S23
differs from qHMS7 in two ways (Fang et al., 2019). On the one
hand, F1 pollen fertility was semi-sterility (51.16 ± 1.29%) for
qHMS7 and no homozygote for O. meridionalis was obtained,
indicating the pollen grains carrying O. meridionalis allele had
aborted completely; whereas, for S23, its F1 pollen fertility was
higher (63.15 ± 13.49%) than that of qHMS7 and a few
homozygotes of O. glumaepatula was found available,
indicating that the pollen grains carrying the O. glumaepatula
allele were not completely sterile (Yu et al., 2018; Fang et al.,
2019). On the other hand, the pollen sterility of F1 hybrid could
only be observed in a short photoperiods, but not in a long
photoperiods at the S23 locus, yet no phenotypic differences were
observed in different environments at the qHMS7 locus (Li et al.,
September 2020 | Volume 11 | Article 555572
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2018b; Yu et al., 2018; Fang et al., 2019). The allele on O. sativa
interacted with the respective alleles from O. meridionalis and O.
glumaepatula, resulting in hybrid sterility with different genetic
effects; accordingly, the allele on O. glumaepatula should differ
from that on O. meridionalis. More research should reveal the
nature of interactions occurring between the different haplotypes
in rice.

The Sa locus was the first cloned and molecularly
characterized hybrid sterility locus, from the indica-japonica
cross, and it comprises two adjacent genes, SaF and SaM
(Long et al., 2008). Most indica cultivars have the allele of
SaM+SaF+, whereas all japonica cultivars contain SaM−SaF−.
The alleles SaM+SaF+ and SaM+SaF− were variably present in
Oryza species having the GG, FF, CC, EE, and AA genomes,
including O. barthii,O. nivara, andO. sativa subsp. indica. Three
alleles in particular SaM+SaF+, SaM+SaF−, and SaM−SaF− were
found in the O. rufipogon populations. The mutation of SaM
most likely arose in an O. rufipogon population with the allele
SaM+SaF− and then generated the allele SaM−SaF−, whereas the
variation in SaF occurred before the evolutionary split and gave
rise to most of the current Oryza species (Long et al., 2008). We
noticed that eight AA genome species possess the alleles of
SaM+SaF+ and SaM+SaF−, but not O. sativa subsp. japonica, so
it is readily inferred that the hybrid sterility locus S51(t) detected
from O. meridionalis–japonica hybrid was one allele of Sa (Li
et al., 2018b), with neutral allele Sa-n being identified from the
indica rice and wild rice O. rufipogon (Long et al., 2008). It is
reasonable to anticipate that, with further research, a tri-allelic
system consisting of three types of Sa alleles (SaM+SaF+,
SaM+SaF−, and SaM−SaF−) will emerge, which is able to
control hybrid male sterility and fertility not only in O. sativa
but also among AA genome species of Oryza.

The hybrid sterility locus S5, controlling female semi-sterility
in hybrids between indica and japonica, consists of three closely
linked genes ORF3, ORF4, and ORF5 that function together in a
“Killer–Protector” system (Yang et al., 2012). The typical indica-
like (ORF3+ORF4−ORF5+), japonica-like (ORF3−ORF4+ORF5−),
and neutral (ORF3+ORF4+ORF5+ and ORF3−ORF4−ORF5−)
alleles were found in wild rice accessions of O. rufipogon and
O. nivara; this suggested the S5 locus already existed in wild
relatives and the ancestors of indica and japonica rice, thus
probably originating before domestication (Du et al., 2011; Yang
et al., 2012). Presently, S5 has only been identified in the
intersubspecific hybrid cross between indica and japonica, but
according to the distribution of alleles in AA genome we think S5
also had effect for interspecific hybridization crosses.

Interspecific hybrid sterility locus S1 is also a tripartite “Killer-
Protector” complex (Xie et al., 2019b). The African rice S1 allele is
composed of three adjacent genes (S1A4, S1TPR, S1A6), while the
Asian S1 allele includes only one gene, S1TP, which is a truncated
form of S1TPR (Xie et al., 2017; Koide et al., 2018; Xie et al., 2019).
Based on the analyzed gene structure of the S1 locus, the function
structure A4-TPR-A6 exists in all examined accessions of O.
glaberrima; and the nonfunction or dysfunction structureis
present in all analyzed accessions of O. sativa, O. longistaminata,
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and O. rufipogon. The accessions of O. meridionalis and O. barthii
possess both of the structures (Xie et al., 2019b).Total 7 haplotypes
and 22 allelic variations of the S1 locus were detected in the Oryza
species (Xie et al., 2019b). Further studying the relationship between
hybrid sterility and the multiple allelic interactions is needed.

Taken together, the research findings above indicate the
interaction between divergent alleles/haplotypes may lead to
hybrid sterility, even their interaction mechanisms and genetic
effects may be different. It can be further deduced that not only
the allelic interactions among different alleles of orthologous loci,
but also the non-allelic interactions among different loci,
constitutes the major genetic basis for interspecific hybrid
sterility between O. sativa and other AA genome species.

Benefit from the clone of S27 and S28, a pair of epistatic
interaction loci caused F1 hybrid sterility in the hybrid pairs O.
sativa–O. glumaepatula andO. sativa–O. nivara (Yamagata et al.,
2010; Win et al., 2011), we can trace the interaction between
different alleles that induce hybrid sterility. The S27 allele of O.
sativa is composed of two tandem mitochondrial ribosomal
protein L27 genes (mtRPL27a and mtRPL27b), and the S28
allele of O. sativa contains a loss-of-function allele for
mtRPL27a. In brief, the S27 has normal functioning and S28
has no function in the O. sativa allele, whereas only the S28 has
normal functioning and S27 is absent in the O. glumaepatula
allele. The epistatic interaction induces the abortion of pollen
grains carrying S27 and S28, both of which are inactive in F1
progeny of O. sativa and O. glumaepatula. Judging from a
comparison of their genomic sequences, mtRPL27a at S28 on
chromosome 4 is thought to be the most ancestral locus. With an
interchromosomal duplication, a new copy of mtRPL27a at S27
on chromosome 8 was generated, and likewisemtRPL27b, also at
S27 (Ueda et al., 2006). Among the eight AA genome species, the
duplicated segment of S27 was widely observed, occurring in all
except O. glumaepatula, and only part of the accessions of O.
barthii and O. longistaminata lacked this segment (Yamagata
et al., 2010). Further study showed that the interaction between
S27 and S28 loci also causes the pollen sterility in the F1 hybrid of
O. sativa and O. nivara, which inherited the duplicated segment
of S27 (Win et al., 2011). Sequence analysis revealed that the
structure of S27 allele in O. nivara is different from that of O.
glumaepatula; in the former it is composed of two inactive genes
(mtRPL27a, mtRPL27b) while in the latter species these two
genes are absent. In short, S27-niv is a loss-of-function allele of
S27. These results highlight that the mechanisms for hybrid
sterility are likely different because of epistatic interactions
between S28 loci and different alleles of S27 in divergent
rice species.

The multiple alleles causing hybrid sterility in rice were analyzed
at the molecular level for S5, Sa, qHMS7/S21/S23/S55, and S27.
Meanwhile the cloning of hybrid sterility loci also proves the data
support for the allelic relationship of these hybrid sterility loci
mentioned above with same molecular location and similar genetic
action. According to the latest research, at each hybrid sterility locus,
the number of interacting alleles does not seem to be limited to
three, of which one is neutral. It has been reported that four alleles
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characterize the S7 locus, S-7kn, S-7cp, S-7ai, and S-7n, which cause
female sterility in the indica-japonica hybrid (Yanagihara et al.,
1992). The genotype of S-7ai/S-7cp shows semi-sterility, in that the
female gametes carrying S-7cp are aborted. But in the S-7ai/S-7kn

genotype, only some of the female gametes possessing S-7ai are
aborted. On the other hand, the S-7ai/S-7n, S-7n/S-7cp, andS-7n/S-7kn

genotypes did not exhibit sterility as female gamete abortion
(Yanagihara et al., 1992). The initial loci existing in the ancestral
species likely differentiated into multiple alleles/haplotypes due to
the emergence of genetic differentiation, which accumulated in each
population; importantly, this variation was not harmful in the
populations in which they arose. Of course, the variation that
may affect fitness has been eliminated with the death of the
individual. After hybridization between divergence populations,
due to the incompatible interaction between two or more
functionally diverged genes, the gametes carrying the weak alleles
will be aborted, which may be nonfunctional, inactivated, or lack of
corresponding protectors. This also explains why the cloned hybrid
sterility loci involved in the one-locus systems are mostly composed
of more than two linked genes. These closely linked genes, which are
distinguished by minimal recombination, form a complex acted as a
single Mendelian factor that can avoid inducing the suicidal killer/
nonprotector allele in a hybrid that would result in a breakdown of
the system (Xie et al., 2019a). The evolutionary history of cloned
hybrid sterility genes has been described by many researchers (Long
et al., 2008; Yamagata et al., 2010; Du et al., 2011; Kubo et al., 2016;
Yu et al., 2018). Ouyang and Zhang (2013) proposed three
evolutionary genetic models, those of parallel divergence,
sequential divergence, and parallel-sequential divergence, to
illustrate the process going from essential genes in the ancestral
species to diverged genes based on the cloning data of hybrid
sterility genes (Ouyang and Zhang, 2018). By disentangling the
interaction between various alleles of these “speciation genes”which
underpin the timing and evolutionary progression of genetic
changes, we can understand the processes and patterns
underlying the speciation and origin of AA genome species of
rice further.
STRATEGIES FOR OVERCOMING HYBRID
STERILITY IN RICE IMPROVEMENT

During the process by which cultivated rice was domesticated from
wild ancestor thousands years ago, the cultivated rice’s genetic
diversity has been gradually eroded. More importantly, the
frequent use of a few elite parents in rice genetic improvement
programs has exacerbated this decline in genetic diversity
(Simmonds, 1976; Moncada et al., 2001). These challenges hinder
our ability to attain further improvement in yield of new varieties
while also making rice more susceptible to disease epidemics and
pest outbreaks (Tanksley and McCouch, 1997). Thus, the relatives
of O. sativa, which contain favorable genes (alleles), could be a
valuable genetic resource for rice improvement via hybridization
techniques. On the other hand, the utilization of heterosis in the
grain yield of rice has boosted rice production in the past few
Frontiers in Plant Science | www.frontiersin.org 7
decades. Current rice hybrids are mostly derived from the indica
lines. Given their limited genetic diversity, intra-subspecific hybrid
vigor now only provides rice breeders with limited yield increases,
whereas the distant hybrids derived from intersubspecific even
interspecific crosses performed stronger heterosis. However,
severe reproductive isolation, such as that incurred by
interspecific and intersubspecific hybrid sterility, limits the
extensive utilization of these rice distant hybrids (Ikeda et al.,
2009; Bolaji and Nwokeocha, 2014). Therefore, hybrid sterility
studies should also aim to overcome the reproductive barrier, so
as to enable breeders to utilize the valuable extant genetic resources
and obtain the strong vigor of these hybrids.

Since hybrid sterility is partly caused by the negative
interaction between divergent alleles in the background of the
hybrid, replacing the divergent allele with the same or neutral
alleles can eliminate the hybrid sterility on the corresponding
locus. In this respect, the neutral alleles S5-n, Sa-n, Sb-n, Sd-n,
and Se-n in the intersubspecific hybrid of indica-japonica
(Ikehashi and Araki, 1986; Long et al., 2008; Li J. Q. et al.,
2012), as well as S38-n, S39-n in the interspecific hybrid of O.
sativa and O. glaberrima (Li et al., 2018a), have been identified.
The use of these neutral alleles will give a strong promises on
overcoming the interspecific and intersubspecific hybrid sterility.
In most cases, as small number of sterility loci are involved in the
hybrid cross, so it is necessary to pyramid several sterility loci
alleles by using molecular marker assistant backcrossing
methods. For example, Guo et al. (2016) polymerized four
indica alleles of pollen sterility loci (Sb, Sc, Sd, Se) and the neutral
allele of S5 locus, imparting the embryo sac sterility to the
japonica variety, with eight indica-compatible japonica lines
with different japonica backgrounds thus obtained. These
indica-compatible japonica lines are highly compatible with the
indica and effectively overcome the hybrid sterility in the
intersubspecific hybrid. In the same vein, two neutral alleles of
hybrid sterility loci were introgressed into indica rice HJX74 to
develop HJX74 wide-compatible lines that were compatible with
both japonica and indica testers (Guo et al., 2016).

Another promising strategy is to create hybrid-compatible
lines with artificial neutral alleles generated by advanced
molecular approaches, such as RNA interference technologies
and gene-editing technology. For example, the neutral allele
S1mut was created by mutagenesis and the heterozygous
hybrids harboring S1mut/S1g and S1mut/S1s did not exhibit
sterility (Koide et al., 2018). Artificial neutral S1 alleles could
also be obtained by disrupting any one of the three genes in the
S1-g (S1A4-S1TPR-S1A6), through a CRISPP/Cas9 knockout
(Xie et al., 2019). The same is true for qHMS7 (Yu et al.,
2018). The introduction of both Sa-n and Sc-n via CRISPR/
Cas9 plant genome editing can assist in overcoming unwanted
hybrid male sterility (Shen et al., 2017; Xie et al., 2017). A
combination of these strategies may provide better assurance
of hybrid fertility. With the further discovery and creation of
neutral loci and the generation of intersubspecies and
interspecies bridge parents, rice improvement will step into a
new era.
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CONCLUDING REMARKS

The Bateson-Dobzhansky-Muller model posits that hybrid
sterility arises from a disharmourose interaction between
functionally diverged genes from the hybridizing distant
parents (Bateson, 1909; Dobzhansky, 1937; Muller, 1942). This
model was first proposed in tomato by Rick (1966) and
supported by many other reports (Kitamura, 1962; Ikehashi
and Araki, 1986; Sano, 1990). According to the model,
independent mutations occur in diverging populations but
without a reduction in fitness, becoming fixed; consequently,
multiple alleles, including a neutral allele, present at the causal
orthologous loci, which then interact negatively in the
background of the hybrid (Nei et al., 1983). One locus allelic
interaction model underpins the negative interaction occurring
at a single locus as a consequence of the independent evolution of
two alleles, thereby causing a significant reduction in the fitness
of the heterozygote when compared with their homozygote
parents. Such negative interaction can also occur between two
independent loci affecting gamete development, the gametes
carrying the recessive alleles at both loci aborted during
gamete development, but gametes of other genotypes remained
normal. In this review, we rechecked and updated current genetic
models for hybrid sterility in rice. The multiple alleles should
exist at each orthologous hybrid sterility locus including, but not
limited to, the neutral allele. The major genetic basis for
interspecific hybrid sterility between O. sativa and AA genome
species in genus Oryza should be the interaction between various
alleles at a single locus, and various alleles with other loci, and the
same is true for intersubspecific hybrid sterility in O. sativa. Even
some of the sterility loci identified in individual combinations/
species existed like an orphan, but whether they harbor various
alleles in other AA genome species or not requires more study.

Currently, our understanding of hybrid sterility remains
limited to that within Asian cultivated rice and between Asian
cultivated rice and other species of AA genome, along with a few
reports on hybrid sterility among different ecotypes within O.
sativa that are available. Meanwhile, the availability of
information is very limited due to different backgrounds of the
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genetic materials used by various researchers. To better
understand these processes, it is essential to identify, clone,
and functionally characterize more hybrid sterility loci in the
genus Oryza. Efforts should also extend to investigating both the
genetic diversity and geographical distribution of the alleles of
various loci at the species level, including extant wild relatives.
Since allelic and non-allelic interactions among major sterility
loci are the foundation for understanding the relationship
between hybrid sterility and speciation, it is necessary to raise
near-isogenic lines with various alleles/haplotypes and
pyramided different loci, with the same genetic background,
based on the cloning and molecule characteristics. Then,
taking these data together, it would become possible to provide
more evidence illuminating the origin of genes responsible for
hybrid sterility and the evolutionary processes for the
establishment of new species in Oryza genus and shed light on
overcoming hybrid sterility in rice improvement.
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