
ORIGINAL RESEARCH
published: 07 December 2020
doi: 10.3389/fpls.2020.541960

Frontiers in Plant Science | www.frontiersin.org 1 December 2020 | Volume 11 | Article 541960

Edited by:

Roger Deal,

Emory University, United States

Reviewed by:

Emanuel Peres,

University of Trás-os-Montes and Alto

Douro, Portugal

Jiwan Han Han,

Aberystwyth University,

United Kingdom

*Correspondence:

Zhiguo Cao

zgcao@hust.edu.cn

Specialty section:

This article was submitted to

Technical Advances in Plant Science,

a section of the journal

Frontiers in Plant Science

Received: 11 March 2020

Accepted: 13 November 2020

Published: 07 December 2020

Citation:

Lu H and Cao Z (2020) TasselNetV2+:

A Fast Implementation for

High-Throughput Plant Counting From

High-Resolution RGB Imagery.

Front. Plant Sci. 11:541960.

doi: 10.3389/fpls.2020.541960

TasselNetV2+: A Fast Implementation
for High-Throughput Plant Counting
From High-Resolution RGB Imagery
Hao Lu and Zhiguo Cao*

Key Laboratory of Image Processing and Intelligent Control, School of Artificial Intelligence and Automation, Huazhong

University of Science and Technology, Wuhan, China

Plant counting runs through almost every stage of agricultural production from seed

breeding, germination, cultivation, fertilization, pollination to yield estimation, and

harvesting. With the prevalence of digital cameras, graphics processing units and deep

learning-based computer vision technology, plant counting has gradually shifted from

traditional manual observation to vision-based automated solutions. One of popular

solutions is a state-of-the-art object detection technique called Faster R-CNN where

plant counts can be estimated from the number of bounding boxes detected. It has

become a standard configuration for many plant counting systems in plant phenotyping.

Faster R-CNN, however, is expensive in computation, particularly when dealing with

high-resolution images. Unfortunately high-resolution imagery is frequently used in

modern plant phenotyping platforms such as unmanned aerial vehicles, engendering

inefficient image analysis. Such inefficiency largely limits the throughput of a phenotyping

system. The goal of this work hence is to provide an effective and efficient tool

for high-throughput plant counting from high-resolution RGB imagery. In contrast to

conventional object detection, we encourage another promising paradigm termed object

counting where plant counts are directly regressed from images, without detecting

bounding boxes. In this work, by profiling the computational bottleneck, we implement a

fast version of a state-of-the-art plant counting model TasselNetV2 with several minor yet

effective modifications. We also provide insights why these modifications make sense.

This fast version, TasselNetV2+, runs an order of magnitude faster than TasselNetV2,

achieving around 30 fps on image resolution of 1980×1080, while it still retains the same

level of counting accuracy. We validate its effectiveness on three plant counting tasks,

including wheat ears counting, maize tassels counting, and sorghum heads counting.

To encourage the use of this tool, our implementation has been made available online at

https://tinyurl.com/TasselNetV2plus.

Keywords: plant counting, real-time processing, wheat ears, maize tassels, sorghum heads, pytorch

implementation

https://www.frontiersin.org/journals/plant-science
https://www.frontiersin.org/journals/plant-science#editorial-board
https://www.frontiersin.org/journals/plant-science#editorial-board
https://www.frontiersin.org/journals/plant-science#editorial-board
https://www.frontiersin.org/journals/plant-science#editorial-board
https://doi.org/10.3389/fpls.2020.541960
http://crossmark.crossref.org/dialog/?doi=10.3389/fpls.2020.541960&domain=pdf&date_stamp=2020-12-07
https://www.frontiersin.org/journals/plant-science
https://www.frontiersin.org
https://www.frontiersin.org/journals/plant-science#articles
https://creativecommons.org/licenses/by/4.0/
mailto:zgcao@hust.edu.cn
https://doi.org/10.3389/fpls.2020.541960
https://www.frontiersin.org/articles/10.3389/fpls.2020.541960/full
https://tinyurl.com/TasselNetV2plus

Lu and Cao TasselNetV2+

1. INTRODUCTION

Plant counting runs through almost every critical stage in
agricultural production spreading from seed breeding (Wiles
and Schweizer, 1999; Mussadiq et al., 2015; Guo et al., 2018),
germination (Baofeng et al., 2016; Primicerio et al., 2017),
cultivation (Yu et al., 2013; Liu et al., 2018), fertilization (Vos
and Frinking, 1997; Boissard et al., 2008), pollination (Guo et al.,
2015; Lu et al., 2017a; Sadeghi-Tehran et al., 2017), to yield
estimation (Nuske et al., 2014; Ghosal et al., 2019; Zabawa et al.,
2019), and harvesting (Häni et al., 2019; Jin et al., 2019). It
also plays an important role in phenotyping functional traits of
plants becausemany traits of interest are quantity-related, such as
density (Madec et al., 2019) and the number of leaves (Giuffrida
et al., 2015). This task is typically addressed withmanual efforts in
traditional agriculture. Manual counting, however, is subjective,
tedious, error-prone, labor-intensive and inefficient due to
fatigue of humans. Indeed agricultural practitioners have tried to
automate this task over past decades (McDonald and Chen, 1990;
Gomes and Leta, 2012; Kamilaris and Prenafeta-Boldú, 2018).
Unfortunately this goal is not that easy to achieve due to versatile
varieties of plants and intrinsic/extrinsic variations in reality.
An automated plant counting system therefore is often limited
to a controlled environment or a certain application scenario
such that manual counting still takes place in most regions of
the world.

With the prevalence of low-end digital cameras, high-
performance graphics processing units (GPUs) and effective
deep learning-based technology, computer vision has received
much attention in plant counting due to increased reliability
and decreased costs. Plant counting has thus gradually shifted
from traditional manual counting to vision-based automated
solutions. The most popular solution in plant counting comes
from the success of a widely-used object detection framework
called Faster Region-based Convolutional Neural Network
(Faster R-CNN) (Ren et al., 2015). Faster R-CNN leverages a
so-called region proposal network to identify potential object
locations specified by bounding boxes, then passes these boxes
into a classifier to assign object labels and confidence scores, and
finally suppresses overlapped boxes per the confidence scores
with a non-maximum suppression operator. The population of
plants can be easily inferred from the number of bounding
boxes detected. Faster R-CNN has been substantially applied
to plant science and agriculture engineering communities to,
for example, estimate ear density (Madec et al., 2019), detect
maize tassels (Liu et al., 2020), localize sweet pepper (Halstead
et al., 2018), identify crop seedlings (Quan et al., 2019), etc.
However, it is expensive in computation due to the use of high-
capacity ImageNet-pretrained models (Deng et al., 2009), such
as VGG-16 (Simonyan and Zisserman, 2014) and ResNet (He
et al., 2016), especially when dealing with high-resolution images.
To acquire sufficient spatial resolution, high-resolution imagery,
unfortunately, cannot be avoided in modern plant phenotyping
platforms such as unmanned aerial vehicles. The problem is

that it is intractable to directly train/test high-resolution images
with Faster R-CNN due to GPU memory limitation. It has
been reported in Madec et al. (2019) that the maximum image

size acceptable for training Faster R-CNN is about 500 × 500
pixels. To address this, pre-splitting images becomes a common
practice during both training and inference, rendering inefficient
image analysis. For instance, according to Madec et al. (2019),
the inference of around 100 high-resolution images can take
more than 1 h. Such inefficiency largely limits the throughput
of phenotyping. In modern high-throughput plant phenotyping
systems, it is important that an image analysis tool can process
high-resolution images within a short period of time.

In this paper, we advocate another promising plant counting
paradigm—object counting. Instead of detecting object bounding
boxes, object counting directly regresses object counts from an
image. This is a much direct way when only the population of
objects is concerned. Indeed the transductive principle suggests
never to solve a harder problem than the target application
necessities (Vapnik, 1998)—estimating object counts does not
have to localize where objects are. Compared with object
detection, object counting has many appealing advantages,
for instance: (i) cheap manual annotations: learning object
counting models only requires dotted annotations, rather than
more expensive bounding boxes annotations used in object
detection; (ii) simplified network architectures: object detection
generally builds on multi-scale architectures such as feature
pyramid networks (Lin et al., 2017; Tan et al., 2019) that
have extensive decoding stages, while object counting, especially
for local count regression models (Lu et al., 2017c; Xiong
et al., 2019a), only needs an encoder; (iii) robust to partially
overlapping instances: object detection tends to under-estimate
object counts due to the existence of non-maximum suppression
where partially overlapping instances are likely to be suppressed,
while object counting naturally takes overlapping instances into
account during ground-truth generation; and (iv) light-weight
computational requirement: a light-weight object counting
model trained from scratch can deliver sufficiently accurate
counting accuracy, while object detection models generally
require ImageNet-pretrained models, with also large GPU
memory consumption.

In fact, object counting is a long-standing topic in computer
vision. It can at least date back to early 2000s when counting is
still a by-product of face/pedestrian detectors (Viola and Jones,
2001; Dalal and Triggs, 2005). Object counting then is gradually
accepted as an independent research topic after the first counting-
by-regression approach (Chan et al., 2008) appears where the
global object count can be regressed from an image. The idea
of counting by regression is further amplified by Lempitsky
and Zisserman (2010) who introduce the concept of the density
map. The density map is generated from dotted annotations
with Gaussian smoothing such that each pixel is assigned with
a value that corresponds to the object density, which transforms
counting into a dense prediction problem (Lu et al., 2019, 2020).
It has become the basic building block for many object counting
models (Chen et al., 2013; Arteta et al., 2014) including recent
deep counting networks (Zhang et al., 2015, 2016; Sindagi and
Patel, 2017; Li et al., 2018; Liu et al., 2020; Ma et al., 2019; Xiong
et al., 2019b). Most state-of-the-art counting networks, however,
are also inefficient due to the use of pretrained VGG-16, which
hinders their applicability in high-resolution imagery in plant

Frontiers in Plant Science | www.frontiersin.org 2 December 2020 | Volume 11 | Article 541960

https://www.frontiersin.org/journals/plant-science
https://www.frontiersin.org
https://www.frontiersin.org/journals/plant-science#articles

Lu and Cao TasselNetV2+

FIGURE 1 | The number of processed frames per second with different image resolution. TasselNetV2+ is an order of magnitude faster than TasselNetV2. Frames

per second are averaged over 100 independent trials on random input tested on GTX 1070 GPU, i7-8700 CPU, and 16 GB RAM.

counting. In plant science community, many attempts have also
been made for direct counting by regression (Giuffrida et al.,
2015, 2018; Rahnemoonfar and Sheppard, 2017; Wu et al., 2019).
In particular, in our previous work we propose TasselNet (Lu
et al., 2017c), a counting network based on the idea of local
count regression, to count in-field maize tassels, demonstrating
that even a low-capacity network can achieve reasonably good
counting accuracy. We remark that, the idea of local count
regression is particularly suitable for counting plants, because this
paradigm is robust to size variations of plants. Such robustness is
important because a plant per se is a self-changing system such
that its physical size varies over time. Xiong et al. (2019a) further
extends TasselNet to TasselNetV2 and applies this new version
to wheat spikes counting. We observe that TasselNetV2 turns
out to be a generic tool for plant counting and even achieves
comparable accuracy in crowd counting against state-of-the-art
deep counting networks in computer vision. Unfortunately both
TasselNet and TasselNetV2 are only implemented in a research-
orientated software, i.e., MATLAB, making them infeasible for
practical deployment1.

In this work, we implement a fast version of TasselNetV2,
TasselNetV2+, based on PyTorch (Paszke et al., 2019). By
profiling the computational bottleneck, we make several minor
yet effective modifications to TasselNetV2 to improve its
efficiency. These modifications are based on a novel framework
view of TasselNetV2, which decomposes TasselNetV2 into

1The MATLAB implementation of TasselNetV2 can be found at https://tinyurl.

com/TasselNetV2.

an encoder, a counter and a normalizer, allowing module-
specific optimization and diagnosis. In particular, we find
the main computational bottleneck of TasselNetV2 lies in
the poor implementation of the normalizer. We address this
issue with a novel mathematically-equivalent reformulation that
enables an efficient GPU-based implementation. In addition,
we notice a large portion of model parameters are included
in the first convolutional layer of the counter, which also
introduces many floating-point calculations. Inspired by a
common practice in image classification (Lin et al., 2013;
He et al., 2016), we make the same observation that the
first convolutional layer of the counter can be safely replaced
with global average pooling without performance loss. This
simple modification significantly reduces model parameters,
improves efficiency, and more importantly, enables flexible
adaptation to different object sizes. Further, we also slightly
improve the efficiency of the encoder by moving forward the
last downsampling layer. Such a modification enlarges the
receptive field (RF) by 17% so that extra context can be seen
by the network. Altogether these modifications significantly
improve the efficiency of TasselNetV2 by more than an order
of magnitude, achieving around 30 fps on image resolution
of 1980 × 1080 (tested on a low-end GTX1070 GPU), as
shown in Figure 1. More importantly, these modifications have
no negative effect on counting accuracy. To encourage the
use of this tool, we has released our implementation online.
We believe TasselNetV2+ will facilitate many counting-related
tasks in plant phenotyping systems. In short, we make the
following contributions:

Frontiers in Plant Science | www.frontiersin.org 3 December 2020 | Volume 11 | Article 541960

https://tinyurl.com/TasselNetV2
https://tinyurl.com/TasselNetV2
https://www.frontiersin.org/journals/plant-science
https://www.frontiersin.org
https://www.frontiersin.org/journals/plant-science#articles

Lu and Cao TasselNetV2+

• TasselNetV2+: a fast version of TasselNetV2 with significant
optimization in efficiency;

• A framework view of TasselNetV2 as a concatenation of an
encoder, a counter and a normalizer, which allows module-
specific optimization and diagnosis;

• A novel reformulation of local-count normalization that
enables an efficient GPU-based implementation.

2. DATASETS AND METHODS

2.1. Plant Counting Datasets
Since the focus of this work is on the methodology part,
we leverage three publicly available plant counting datasets in
our evaluation.

The Wheat Ears Detection (WED) dataset was collected in
France with a wheat field phenotyping platform using a Sony
ILCE-6000 digital camera in 2017. Images were captured from a
trial of 120 2×10 m microplots with 20 contrasting genotypes at
2.9 m distance to the ground. The image resolution was 6, 000 ×
4, 000. The number of ears in each image varied from 80 to
170. The dataset included 236 images. 30, 729 wheat ears were
identified and manually annotated with bounding boxes. More
details about the dataset can be found in Madec et al. (2019).

TheMaize Tassels Counting (MTC) dataset was collected from
four experimental fields across China between 2010 and 2015
with 6 different maize cultivars. The images were captured from a
5-meter-height imaging device with a CCD digital camera (E450
Olympus). The image resolutions were 3648× 2736, 4272× 2848
and 3456 × 2304. The dataset had 361 images, with 186 training

FIGURE 2 | Example images on three plant counting datasets. Panels (A,B) are from the Wheat Ears Detection (WED) dataset, panels (C,D) are from the Maize

Tassels Counting (MTC) dataset, and panels (E–H) are from the Sorghum Heads Counting (SHC) dataset.

Frontiers in Plant Science | www.frontiersin.org 4 December 2020 | Volume 11 | Article 541960

https://www.frontiersin.org/journals/plant-science
https://www.frontiersin.org
https://www.frontiersin.org/journals/plant-science#articles

Lu and Cao TasselNetV2+

FIGURE 3 | A framework view of TasselNetV2. Given an input image, TasselNetV2 processes it through an encoder with a few convolutional and downsampling

layers, passes it into a counter to regress local counts, and finally, normalizes the local counts with a normalizer to generate the final output.

images and 175 testing images. The number of maize tassels
varied from 0 to around 100. Each maize tassel was manually
annotated with a single dot. More details can be found in Lu et al.
(2017c).

The Sorghum Heads Counting (SHC) dataset was collected
from a trail with 1440 plots in Australia during the 2015–2016
growing season. The images were captured using an unmanned
aircraft vehicle at flight heights of 20 m and a flight speed of 3 m/s
with a commercial RGB camera. The resolution of the camera was
5472×3648. In the released dataset, there were two subsets called
“dataset1” and “dataset2” with 52 cropped images and 40 post-
processed images, respectively. The cropped image resolution in
dataset1 was 1154× 1731. Forty processed images were of varied
resolutions. These two subsets were chosen because only they
were labeled with dotted annotations. More details can be found
in Guo et al. (2018).

Some example images of the three plant counting datasets are
illustrated in Figure 2.

2.2. Recapping TasselNetV2
As the baseline of this work, here we first recap
TasselNetV2 (Xiong et al., 2019a). TasselNetV2 extends
TasselNet (Lu et al., 2017c)—the simplest implementation of
local count regression, i.e., learning a mapping from local image
features to local region counts. TasselNetV2 is inspired by an
observation that the theoretical RF is wasted in TasselNet such
that TasselNet is weak in modeling context. It addresses this issue
by changing all fully-connected layers into convolutional ones to
allow arbitrary sizes of input. Instead of sampling and operating
on small image patches, TasselNetV2 processes full images. In
this way, hidden RF can be freed to benefit some plant counting
tasks where context is an important cue, such as wheat spikes
counting (Xiong et al., 2019a).

The network architecture of TasselNetV2 is shown in Figure 3.
It includes 7 convolutional layers and 3 max pooling layers.

Concretely, it is defined by C3(16)-M-C3(32)-M-C3(64)-C3(64)-
C3(64)-M-C8(128)-C1(128)-C1(1), where Ck(m) denotes a 2D
convolutional layer withm-channel k×k filters, followed by batch
normalization (BN) (Ioffe and Szegedy, 2015) and ReLU (Nair
and Hinton, 2010), andM is a 2-stride max pooling operator with
2 × 2 kernel size. The last C(1) is the prediction layer where BN
and ReLU are not included.

In local count regression, an image is mapped to a (redundant)
count map where each local count in the count map corresponds
to a r×r local region. The relative order between r and the output
stride s determines whether the count map is redundant. Note
that r ≥ s. The count map is redundant when r > s, because
in this case every two adjacent local regions have a r−s

r overlap.
Only when r = s that the overlap disappears. According to the
network definition above, r = 64 and s = 8 in TasselNetV2, so
the resulting count map is redundant. A normalizer must follow
for de-redundancy such that the sum of the final normalized
count map can reflect the image count exactly. We call r × r
the base input size of the network. The base input size is only
related to the network architecture. This is a different concept
from the input image size that can be arbitrarily large in theory.
For example, given an input I ∈ R

r×r×3, TasselNetV2 defines a
transformation f such that f (I) :Rr×r×3 → R; if I′ ∈ R

H×W×3

where H,W ≫ r and are assumed to be divisible by s, then

f (I′) :RH×W×3 → R
H
s ×

W
s . This suggests the output size of the

count map is irrelevant to the base input size when the input
image size is larger than the base input size. We will use this
concept extensively throughout this paper.

2.3. Profiling Computational Bottlenecks
Despite TasselNetV2 exhibits remarkable counting performance
on counting maize tassels and wheat spikes (Xiong et al., 2019a),
its efficiency does not meet the requirement of high-throughput
high-resolution image analysis (Figure 1). It is thus natural to
consider whether there is room for efficiency improvement.

Frontiers in Plant Science | www.frontiersin.org 5 December 2020 | Volume 11 | Article 541960

https://www.frontiersin.org/journals/plant-science
https://www.frontiersin.org
https://www.frontiersin.org/journals/plant-science#articles

Lu and Cao TasselNetV2+

FIGURE 4 | Time profiling of TasselNetV2. It is clear that the main

computational bottleneck lies in the normalizer. From low resolution to high

resolution, the normalizer takes up 91.72, 93.31, 93.62, 94.25% of the total

processing time, respectively.

FIGURE 5 | Visualization of redundancy. The lighter the color is, the more

redundant the regions are. The redundancy gradually grows from border to

center and then remains constant in central areas.

Before optimization, a prerequisite is to figure out where the
computational bottleneck is.

From Figure 3, an important insight of this work is that, by
decomposing the architecture, TasselNetV2 can be viewed as a
concatenation of an encoder, a counter and a normalizer: the
encoder specializes in encoding the image representation; the
counter maps the image representation to the local count; and the
normalizer normalizes redundant local counts and outputs the
final image-level count. Such decomposition is essential to allow
module-specific diagnosis and profiling.

Given the framework view of TasselNetV2, we profile the time
usage of each module in detail. The profiling results are shown in
Figure 4. We surprisingly find that most of time consumption
comes from the normalizer, and its occupancy even increases
with increased image resolution. Since the bottleneck is found,
the next step is to figure out why it wastes so much time. In what
follows, we discuss this problem and our solution in detail.

Algorithm 1: CPU implementation of redundant count
normalization in TasselNetV2.

1 import numpy as np
2 def normalizer_v2(Cr, imH, imW, r, s):
3 # Input:
4 # Cr: redundant count map
5 # imH/imW: image height/width
6 # r: base input size
7 # s: output stride
8 # Output:
9 # c: image-level count
10 Cu, P = np.zeros((imH, imW)), np.zeros((imH, imW

))
11 H, W = np.arange(0, H-r+1, s), np.arange(0, W-r

+1, s)
12 Cr = Cr.reshape(-1)
13 i = 0
14 for h in H:
15 for w in W:
16 average_count = Cr[i] / r**2
17 Cu[h:h+r, w:w+r] += average_count
18 P[h:h+r, w:w+r] += np.ones((r, r))
19 i += 1
20 Cn = Cu / P
21 c = Cn.sum()
22 return c

2.4. Reformulating Local-Count Normalizer
Let us first elaborate on how the normalizer works. As
aforementioned, given an input image I ∈ R

H×W×3,

TasselNetV2 produces a redundant count map Cr ∈ R
H
s ×

W
s .

To remove redundancy, a normalizer is followed to generate a
normalized count map Cn ∈ R

H×W . Notice that the spatial
resolution is first reduced by s times and then recovered to the
input resolution. TasselNetV2 achieves this by averaging each
local count value c ∈ Cr into to a r × r region, i.e., each element
of the r × r region is assigned with an averaged count of c

r2
(the

sum of the local region still equals to c). By applying this rule to
all local counts in Cr and rearranging them following the same
spatial order and the output stride, an upsampled count map
Cu ∈ R

H×W can be acquired. Cu is still redundant. TasselNetV2
addresses this by constructing a reference map P ∈ R

H×W that
records how many times each location is counted. P can be
an indicator of redundancy, as visualized in Figure 5. The final
normalized count map Cn ∈ R

H×W therefore can be computed
by Cn = Cu ⊘ P, where ⊘ denotes the element-wise division
operator. Finally, the image-level count cI can be computed by
aggregating Cn, i.e.,

cI =

W∑

x=1

H∑

y=1

Cn(x, y), (1)

where Cn(x, y) is the value of Cn indexed by x and y.
The normalization process above can be implemented by
Algorithm 1.

Algorithm 1 is a CPU-based sequential implementation. It
is easy to verify that most time consumption takes place in the
two nested for loops, leading to inefficient normalization. One

Frontiers in Plant Science | www.frontiersin.org 6 December 2020 | Volume 11 | Article 541960

https://www.frontiersin.org/journals/plant-science
https://www.frontiersin.org
https://www.frontiersin.org/journals/plant-science#articles

Lu and Cao TasselNetV2+

FIGURE 6 | Time profiling of TasselNetV2 with the GPU-based normalizer. The GPU-based normalizer speeds up the inference significantly. From low resolution to

high resolution, the normalizer only takes up 56.62, 52.36, 49.48, 49.15% of the total processing time, respectively.

possible solution may be to parallel this process with additional
computational resources, while a more elegant way may be
to pose the question: Can we speed up the normalizer at the
algorithmic level? Our answer is positive. Our solution comes
from a mathematically-equivalent reformulation of Equation (1),
which takes the form

cI =

W∑

x=1

H∑

y=1

Cn(x, y)

=

H
s ×

W
s∑

i=1

r∑

x′=1

r∑

y′=1

cr(i)

r2 × Pi(x′, y′)

=

H
s ×

W
s∑

i=1

cr(i)

r∑

x′=1

r∑

y′=1

1

r2 × Pi(x′, y′)

, (2)

where cr ∈ R
(Hs ×

W
s)×1 is the vectorized version of Cr , cr(i)

denotes the i-th local count of cr , and Pi indicates the r × r
local region extracted from P that corresponds to cr(i). The
benefit of such a reformulation is that we can evade the
explicit computation of Cu and achieve per-region normalization
simultaneously. In addition, Pi can be efficiently constructed
with modern image manipulation operators, such as im2col in
MATLAB or fold in PyTorch. By defining another vector q ∈

R
(Hs ×

W
s)×1 where q(i) =

∑r
x′=1

∑r
y′=1

1
r2×Pi(x′,y′)

, Equation (2)

can be further simplified to

cI =

H
s ×

W
s∑

i=1

cr(i)q(i) = cTr q . (3)

This new formulation can be implemented by Algorithm 2.
It is worth noting that Algorithm 2 is a full GPU-based
implementation. We re-profile the time usage of TasselNetV2
with this new implementation. As shown in Figure 6, the time
consumption of the normalizer reduces significantly.

Algorithm 2: GPU implementation of redundant count
normalization in TasselNetV2+.

1 import torch
2 import torch.nn.functional as F
3 def normalizer_v2plus(Cr, imH, imW, r, s):
4 # Input:
5 # Cr: redundant count map
6 # imH/imW: image height/width
7 # r: base input size
8 # s: output stride
9 # Output:
10 # c: image-level count
11 _, _, H, W = Cr.size()
12 Q = torch.cuda.FloatTensor(1, r*r, H*W).fill_(1)
13 Q = F.fold(Q, (imH, imW), kernel_size=r, stride=

s)
14 Q = 1 / Q
15 Q = Q / r**2
16 Q = F.unfold(Q, kernel_size=r, stride=s).sum(1).

view(1, 1, H, W)
17 c = Cr * Q
18 c = c.sum()
19 return c

2.5. Optimizing Encoder and Counter
After addressing the main computational bottleneck, we also
take a closer look at the encoder and the counter to examine
their possibility for further optimization. Indeed we find such
possibility. For the counter, we notice that the number of
parameter of the first convolutional layer is 8 × 8 × 64 × 128 =

524, 288, while the total number parameters of the model is
638, 993. That is to say, this single layer takes up 82.05% of model
parameters. This fact motivates us to investigate the necessity
of reserving such a parameter-extensive layer. Inspired by a
common practice in image classification (Lin et al., 2013; He
et al., 2016) where fully-connected layers are replaced with a
global average pooling (GAP) layer, we apply this modification
to TasselNetV2 and surprisingly find that almost no performance
loss is observed (we will justify this point in section 3), which

Frontiers in Plant Science | www.frontiersin.org 7 December 2020 | Volume 11 | Article 541960

https://www.frontiersin.org/journals/plant-science
https://www.frontiersin.org
https://www.frontiersin.org/journals/plant-science#articles

Lu and Cao TasselNetV2+

FIGURE 7 | Receptive field comparison between TasselNetV2 and TasselNetV2+.

suggests the first convolutional layer in the counter can be safely
replaced by GAP. Note that, the sense of “global” in GAP is
relative to the base input size, rather than the input image size.
It is still implemented by a standard average pooling layer, with
the same kernel size compared to the size used in convolution,
i.e., 8× 8 for r = 64.

A very interesting property of introducing the GAP layer is
that it allows flexible manipulation of the base input size r × r
without changing the model complexity because GAP is a non-
parametric layer. Allowing the change of r enables TasselNetV2+
to adapt to different object sizes in images. It is clear that, when
resizing an image, object sizes change accordingly. r should also
change to match the object size. For instance, if an image is
upsampled by ×2, r also should be doubled. This is a hyper-
parameter that needs to be tuned when choosing an appropriate
image resolution in practice. Tuning r is easy in TasselNetV2+.
Given the desired base input size r × r and the output stride s,
one only needs tomodify the kernel size of GAP to be r

s . Note that
such amodification does not affect themodel complexity.Wewill
show later in section 3 how counting performance changes with
changed base input sizes.

Regarding the encoder, it is not immediately clear on how

to improve its efficiency because its design is sufficiently clean.
Despite there exist efficient convolutional operators such as

depthwise convolution, such efficiency still stays in theory,

e.g., “depthwise convolution + pointwise convolution” used in

MobileNet (Howard et al., 2017) is even less efficient than
standard convolution in TasselNetV2 (23.76ms vs. 16.92ms for
processing an 1920 × 1080 input with the encoder). Instead we
find a simple trick that can improve the encoder efficiency. The

trick is to move forward the last downsampling layer, right after
the third convolutional layer. This simple modification leads to
an efficiency improvement from 16.92 ms to 14.39 ms on an
1920 × 1080 input. The improvement can boil down to the
early decrease of spatial resolution such that conv4 and conv5
are executed on low-resolution feature maps. The modification
also increases the RF by 17%, from 94 to 110, as illustrated in
Figure 7. The importance of RF for plant counting has been
highlighted in Xiong et al. (2019a). Such increment of RF hence
allows additional context modeling.

We remark that, since the improvements to the counter and
the encoder are somewhat tricky and minor, we do not declare
any novelty or contribution in this part.

2.6. Meeting TasselNetV2+
Altogether the efficient normalizer, the trimmed counter, and
the improved encoder construct a fast version of TasselNetV2
we call TasselNetV2+. Figure 8 highlights the improvements of
TasselNetV2+ over TasselNetV2. Following the same notation
in section 2.2, the architecture of TasselNetV2+ is formally
defined by C3(16)-M-C3(32)-M-C3(64)-M-C3(128)-C3(128)-
A8-C1(128)-C1(1), where A8 is the average pooling operator
with 8 × 8 kernel size so that each inferred local count is still
learned from a region of the base input size.

To showcase the overall effect in efficiency optimization, we
again profile the time usage of TasselNetV2+ in Figure 9. It can
be observed that, compared with Figure 6, the time consumption
of the counter decreases significantly. Now TasselNetV2+ can
process an 1920 × 1080 image in less than 40 ms. To give one a
sense why TasselNetV2+ is significantly faster than TasselNetV2,

Frontiers in Plant Science | www.frontiersin.org 8 December 2020 | Volume 11 | Article 541960

https://www.frontiersin.org/journals/plant-science
https://www.frontiersin.org
https://www.frontiersin.org/journals/plant-science#articles

Lu and Cao TasselNetV2+

FIGURE 8 | A framework view of TasselNetV2+. Our modifications are in boldface, including changing the downsampling behavior in the encoder, aggregating

encoder features with global average pooling in the counter, and implementing a GPU-based normalizer.

FIGURE 9 | Time profiling of TasselNetV2+.

we further summarize the number of parameters and GFLOPs
(an indicator of the amount of floating-point operations) of
two models. TasselNetV2 has 639K model parameters with the
GFLOPs of 29.20, while TasselNetV2+ is with 262K and 12.42
GFLOPs (GFLOPs are based on an 1920 × 1080 input). Overall
TasselNetV2+ is an order of magnitude faster than TasselNetV2
per Figure 1 with less parameters and GFLOPs. In section 3, we
will show that the decrease of model parameters and GFLOPs
does not imply the degradation of counting accuracy; instead
TasselNetV2+ achieves almost the same counting accuracy
compared to TasselNetV2.

3. RESULTS AND DISCUSSIONS

The goal of this work is to provide an easy-to-use tool for plant
counting and to improve the efficiency of TasselNetV2. Since
the efficiency issue has already been justified in the previous
sections, here we mainly address the concern on whether the

increased efficiency comes at the cost of decreased accuracy. We
evaluate TasselNetV2+ on three plant counting tasks, wheat ears
counting (Madec et al., 2019), maize tassels counting (Lu et al.,
2017c), and sorghum heads counting (Guo et al., 2018).

3.1. Wheat Ears Counting
Here we report results of TasselNetV2+, TasselNetV2 (Xiong
et al., 2019a), TasselNet (Lu et al., 2017c), and Faster R-CNN (Ren
et al., 2015) on the WED dataset (Madec et al., 2019). Since
bounding boxes annotations are given, we only use the center
points computed from bounding boxes to train TasselNetV2 and
TasselNetV2+. We follow the same train/validation split used
in Madec et al. (2019). We also follow (Madec et al., 2019) that
designs a series of experiments with different downsampling rates
of 1

2 ,
1
3 ,

1
4 ,

1
6 , and

1
8 and different cropped image sizes. This allows

us to directly compare TasselNetV2+ with the results of Faster
R-CNN reported in Madec et al. (2019). Note that, since in high
resolution, the average size of wheat ears will be larger than the RF

Frontiers in Plant Science | www.frontiersin.org 9 December 2020 | Volume 11 | Article 541960

https://www.frontiersin.org/journals/plant-science
https://www.frontiersin.org
https://www.frontiersin.org/journals/plant-science#articles

Lu and Cao TasselNetV2+

TABLE 1 | Performance on the Wheat Ears Detection dataset.

Setting Method Resize
Base

input size

Average ear

size (pixels)

Cropped

image size
MAE RMSE rRMSE R2

1a Faster R-CNN 1/2 – 110.8 500×500 4.55 5.94 5.30% 0.91

1b TasselNetV2+ 1/2 64 110.8 512×512 9.36 11.62 8.73% 0.67

1c TasselNetV2+ 1/2 128 110.8 512×512 7.45 9.52 7.47% 0.79

1d TasselNetV2+ 1/2 192 110.8 512×512 7.95 9.99 7.34% 0.75

2a Faster R-CNN 1/3 – 73.9 500×500 – – 5.40% 0.85

2b TasselNetV2+ 1/3 64 73.9 512×512 7.09 8.99 6.91% 0.81

2c TasselNetV2+ 1/3 96 73.9 512×512 6.13 7.58 5.88% 0.86

2d TasselNetV2+ 1/3 128 73.9 512×512 5.97 7.32 5.62% 0.86

3a Faster R-CNN 1/4 – 55.4 250×250 – – 11.20% 0.83

3b Faster R-CNN 1/4 – 55.4 500×500 – – 24.70% 0.87

3c TasselNetV2+ 1/4 64 55.4 256×256 6.03 7.53 5.71% 0.87

3d TasselNetV2+ 1/4 64 55.4 512×512 5.65 7.06 5.52% 0.88

3e TasselNetV2+ 1/4 96 55.4 512×512 5.29 6.71 5.26% 0.89

4a Faster R-CNN 1/6 – 36.9 250×250 – – 11.20% 0.75

4b Faster R-CNN 1/6 – 36.9 500×500 – – 38.50% 0.33

4c TasselNetV2+ 1/6 64 36.9 256×256 5.02 6.19 4.84% 0.91

4d TasselNetV2+ 1/6 64 36.9 512×512 4.59 5.66 4.24% 0.92

5a Faster R-CNN 1/8 – 27.7 250×250 – – 30.30% 0.62

5b TasselNet 1/8 32 27.7 256×256 6.83 8.29 7.10% 0.79

5c TasselNetV2 1/8 64 27.7 256×256 4.85 5.94 4.50% 0.91

5d TasselNetV2+ 1/8 64 27.7 256×256 4.93 6.08 4.63% 0.91

The best performance is in boldface.

of TasselNetV2+, we also build several variants of TasselNetV2+
with changed base input sizes.

ℓ1 loss is used for training TasselNetV2 and TasselNetV2+.

256 × 256 or 512 × 512 image patches are randomly cropped
from each image with random horizontal flipping for data

augmentation (only one patch is sampled from each image in

each epoch). The network is trained from scratch with a batch

size of 8. Model parameters are initialized from the normal

distribution with a standard deviation of 0.01. The stochastic
gradient descent (SGD) optimizer is used for optimization.

Parameters are updated for 500 epochs, with 10, 000 iterations.

The learning rate is initially set to 0.01 and reduced by 10× at the

200-th and 400-th epoch, respectively. The mean absolute error
(MAE), root mean square error (RMSE), relative RMSE, and the
coefficient of determination (R2) are reported.

Results are listed in Table 1. We can make the
following observations:

• TasselNetV2+ achieves counting performance comparable to
TasselNetV2 (5c vs. 5d);

• The best performance reported by TasselNetV2+ is slightly
better than that reported by Faster R-CNN (4d vs. 1a), while
TasselNetV2+ and Faster R-CNN achieve this at different
resizing ratios (16 vs.

1
2);

• Compared to Faster R-CNN (1a, 2a, 3b, and 4b), the
performance of TasselNetV2+ is less sensitive to the change
of image resolution (1b, 2b, 3d, and 4d). We believe the
reason is that Faster R-CNN requires to encode sufficiently

good appearance features to detect bounding boxes. In low
image resolution, degraded appearance cues may lead to
decreased performance of Faster R-CNN. By contrast, local
count models like TasselNetV2 and TasselNetV2+ do not
require detecting bounding boxes but work by counting
repetitive visual patterns. Such repetitive patterns do not have
to be the whole ear and instead can be any representative part
of an ear. The patterns are not likely to change significantly
with changed image resolution;

• Local regression models like TasselNetV2 and TasselNetV2+
generally work well when the ear size is small (4c, 4d, 5c,
and 5d). This can be a valuable property in practice because
these models make it possible for large-scale phenotyping
from the sky, e.g., with unmanned aircraft vehicles, where the
phenotyped plants often appear to be small in images;

• The counting performance of TasselNetV2+ improves when
the base input size is larger than the average ear size (2b vs.
2c vs. 2d and 1b vs. 1c vs. 1d), which means the RF of the
network should be large enough to cover the objects counted.
In high resolution, the performance of TasselNetV2+ slightly
decreases. We think the reason is that TasselNetV2+ is not
sufficiently deep (with only 5 convolutional layers), the feature
representation may not be encoded well at the high resolution
(details of ears are rich in high resolution).

• Compared to Faster R-CNN, TasselNetV2+ is also efficient. It
is reported inMadec et al. (2019) that the inference of Faster R-
CNN on the 1

2 resolution requires about 1 h to iterate over the
validation set, while TasselNetV2+ only takes a few seconds.

Frontiers in Plant Science | www.frontiersin.org 10 December 2020 | Volume 11 | Article 541960

https://www.frontiersin.org/journals/plant-science
https://www.frontiersin.org
https://www.frontiersin.org/journals/plant-science#articles

Lu and Cao TasselNetV2+

TABLE 2 | Performance on the Maize Tassels Counting dataset.

Method MAE RMSE R2

Lu et al. (2016) 24.2 31.6 –

Lu et al. (2015) 19.6 26.1 –

Tota and Idrees (2015) 19.7 23.3 –

Lempitsky and Zisserman (2010) 11.9 14.8 –

Oñoro-Rubio and López-Sastre (2016) 21.0 25.5 –

Lu et al. (2017c) 6.6 9.6 –

Liu et al. (2020) 5.4 9.6 –

TasselNetV2 (Xiong et al., 2019a) 5.4 8.8 –

TasselNetV2 (Our Re-implementation) 5.1 9.3 0.8870

TasselNetV2+ 5.1 9.0 0.8880

The best performance is in boldface.

3.2. Maize Tassels Counting
Here we evaluate TasselNetV2+ on the MTC dataset (Lu et al.,
2017c). Following the same practices in Lu et al. (2017c) and
Xiong et al. (2019a), we downsample images to its 1

8 resolution for
a fair comparison. We also report performance of TasselNetV2
and other state-of-the-art methods that have reported their
counting performance on this dataset.

We follow the same training configuration used in the
counting wheat ears except that, 256 × 256 image patches are
randomly cropped, the batch size is set to 9 (with the same 10, 000
iterations). The MAE and RMSE are used as evaluation metrics.
We also report R2 for TasselNetV2 and TasselNetV2+.

Results are shown in Table 2. It is clear that TasselNetV2+
performs no worse than TasselNetV2 and other state-of-the-art
methods, with the best MAE of 5.1 and a comparable RMSE of
9.0. The slightly improved performance compared to Xiong et al.
(2019a) may boil down to the improved training protocol (we
observe that mini-batch training leads to more stable training
behavior than single-image training used in Xiong et al., 2019a).

3.3. Sorghum Heads Counting
Here we evaluate TasselNetV2+ on the SHC dataset. The SHC
dataset is introduced by Guo et al. (2018) where two subsets
with 52 and 40 images are labeled with dotted annotations,
respectively. Since two datasets are generated in different ways,
we evaluate TasselNetV2+ on them independently. For the
dataset1 with 52 images, 26 images are randomly sampled for
training, and the rest for testing. For the dataset2 with 40 images,
20 images are randomly sampled for training, and the rest for
testing. We do not downsample the images in both training
and testing.

We also follow the same training configuration used in
counting wheat ears except that, 256 × 1024 image patches are
randomly cropped, and the batch size is set to 5. We report MAE,
RMSE and R2.

Results are shown in Table 3. Again TasselNetV2+ and
TasselNetV2 achieve comparable counting performance. It is
worth noting that, bothmodels are trained with a limited number
of training samples (no more than 30), which implies that
TasselNetV2+ is applicable to small sample sizes. The R2 on the

TABLE 3 | Performance on the Sorghum Heads Counting dataset.

Dataset1 Dataset2

Method MAE RMSE R2 MAE RMSE R2

TasselNetV2 17.96 21.33 0.9578 3.54 5.00 0.6115

TasselNetV2+ 17.53 20.60 0.9587 3.58 4.78 0.6767

The best performance is in boldface.

dataset2 is slightly poor, but we notice most inferred counts on
this dataset are sufficiently accurate. Since the number of testing
sample is limited, the computation of R2 may be biased by some
outliers shown in Figure 11.

3.4. Further Discussions
As a summary of experiments above, we compare merits
and drawbacks of Faster R-CNN, TasselNet, TasselNetV2, and
TasselNetV2+ in Table 4. Faster R-CNN is accurate and has
good multi-scale adaptation, but it becomes slow when scaling
to high-resolution images due to large model capacity and high
GPU memory consumption. TasselNet is a prototype of the
plant counting model with only dotted annotations required.
It points out a promising plant counting paradigm under
resource-constrained conditions, but also leaves many problems
unsolved. TasselNetV2 improves the accuracy and efficiency
of TasselNet with the same model capacity, but still cannot
tackle high-resolution images well. TasselNetV2+ inherits all the
advantages of TasselNet and TasselNetV2 and is also scalable
to high resolution. Despite TasselNetV2+ may not generalize
well to multiple scales, we consider it a good candidate for
plant counting.

Qualitative results of TasselNetV2+ on three plant counting
tasks are shown in Figure 10. TasselNetV2+ infers accurate
counts with strong/weak responses on plant/non-plant regions.
The resulting count map can be an useful auxiliary cue to
benefit related tasks such as detection or segmentation. Note that,
TasselNetV2+ are applied to these plant counting tasks with the
same architecture and almost the same hyper-parameters (we
only slightly vary the batch size to ensure the same number of
iterations during parameters updating).

We further compare the manual counts and inferred counts
of TasselNetV2+ on three counting tasks in Figure 11. A strong
correlation between manual counts and inferred counts is
observed on theWED, MTC, and SHC-dataset1 datasets, with R2

of 0.9179, 0.8880 and 0.9587, respectively. On the SHC-dataset2,
the R2 is slightly poor. We believe the reason is that the points
are too sparse such that R2 can be easily affected by few outliers.
Most predictions are sufficiently accurate. We also observe that
on the MTC dataset, a set of samples are underestimated. This
is because this dataset is the most challenging one with a large
data shift between training and testing set. Models learned on
the training set may not generalize well to the testing set with
significant variations in plant cultivars, illumination changes, and
poses. In this case, the idea of domain adaptation may be applied
to fill the performance loss (Lu et al., 2017b, 2018).

Frontiers in Plant Science | www.frontiersin.org 11 December 2020 | Volume 11 | Article 541960

https://www.frontiersin.org/journals/plant-science
https://www.frontiersin.org
https://www.frontiersin.org/journals/plant-science#articles

Lu and Cao TasselNetV2+

TABLE 4 | Characteristics of different methods.

Method Accuracy Speed
Resolution

scalability

Scale

adaptation

GPU memory

consumption

Model

capacity

Faster R-CNN Good Slow Poor Good High Large

TasselNet Fair Relatively slow Poor Poor Low Small

TasselNetV2 Good Relatively fast Fair Poor Low Small

TasselNetV2+ Good Fast Good Poor Low Tiny

FIGURE 10 | Qualitative results of TasselNetV2+ on three plant counting dataset. From top to bottom, the wheat ears detection dataset, maize tassels counting

dataset, sorghum heads counting—dataset1, and sorghum heads counting—dataset2. Red points are manual annotations.

All evaluation results above suggest the general applicability
of TasselNetV2+ in plant counting, especially when only
the count value is the output of interest. However, an
application note is that, TasselNetV2+ may have limited
adaptation to scale variations, e.g., for a model trained on
images captured at 5 m height will significantly degrade
when testing on images captured at 10 m height. This is
because TasselNetV2+ is inherently not a multi-scale model.
Fortunately practitioner often have consistent image capturing
plans, so this may not be a problem to deploy TasselNetV2+
in reality.

4. CONCLUSION

In high-throughput phenotyping systems, the term “throughput”
is closely related to the efficiency of data analysis algorithms.
Targeting plant counting, we present TasselNetV2+, a fast
implementation of a state-of-the-art plant counting model
TasselNetV2, to deal with high-throughput counting from high-
resolution imagery. This new implementation is inspired by a
time profiling that the computational bottleneck of TasselNetV2
lies in the normalizer. We therefore improve this part with a
novel mathematically-equivalent formulation that enables a fast

Frontiers in Plant Science | www.frontiersin.org 12 December 2020 | Volume 11 | Article 541960

https://www.frontiersin.org/journals/plant-science
https://www.frontiersin.org
https://www.frontiersin.org/journals/plant-science#articles

Lu and Cao TasselNetV2+

FIGURE 11 | Comparison between inferred counts and manual counts with TasselNetV2+ in four plant counting datasets. (A) Wheat ears counting, (B) maize tassels

counting, (C) sorghum heads counting—dataset1, and (D) sorghum heads counting—dataset2.

GPU implementation. TasselNetV2+ shows a clear advantage
in efficiency on processing high-resolution images. Compared
to Faster R-CNN, it also demonstrates its effectiveness and
robustness in changed image resolution.

We believe our new implementation will encourage many
real-time applications in phenotyping plant counts. An
interesting application scenario would be that, images are
directly processed right after capturing on the unmanned aircraft
vehicles, instead of being sent back for post-processing. It would
also be interesting to see applications of TasselNetV2+ to other
plant species. For future work, we plan to enhance the scale
adaptation of the model.

DATA AVAILABILITY STATEMENT

All datasets generated for this study are included in the
article/supplementary material.

AUTHOR CONTRIBUTIONS

HL proposed the idea of TasselNetV2+, implemented
TasselNetV2 and TasselNetV2+ in PyTorch, conducted the
experiments, analyzed the results, drafted, and revised the
manuscript. ZC provided the funding and supervised the
study. All authors contributed to the article and approved the
submitted version.

FUNDING

This work was supported by the Natural Science Foundation of
China under Grant No. 61876211.

ACKNOWLEDGMENTS

The authors would like to thank Liang Liu for organizing figures.

Frontiers in Plant Science | www.frontiersin.org 13 December 2020 | Volume 11 | Article 541960

https://www.frontiersin.org/journals/plant-science
https://www.frontiersin.org
https://www.frontiersin.org/journals/plant-science#articles

Lu and Cao TasselNetV2+

REFERENCES

Arteta, C., Lempitsky, V., Noble, J. A., and Zisserman, A. (2014). “Interactive object

counting,” in European Conference on Computer Vision (Zurich: Springer),

504–518. doi: 10.1007/978-3-319-10578-9_33

Baofeng, S., Jinru, X., Chunyu, X, Yuyang, S., and Fuentes, S. (2016). Digital surface

model applied to unmanned aerial vehicle based photogrammetry to assess

potential biotic or abiotic effects on grapevine canopies. Int. J. Agric. Biol. Eng.

9, 119–130. doi: 10.3965/j.ijabe.20160906.2908

Boissard, P., Martin, V., and Moisan, S. (2008). A cognitive vision approach to

early pest detection in greenhouse crops. Comput. Electron. Agric. 62, 81–93.

doi: 10.1016/j.compag.2007.11.009

Chan, A. B., Liang, Z. S. J., and Vasconcelos, N. (2008). “Privacy preserving crowd

monitoring: counting people without people models or tracking,” in Proc. IEEE

Conference on Computer Vision and Pattern Recognition (CVPR) (Anchorage,

AK), 1–7. doi: 10.1109/CVPR.2008.4587569

Chen, K., Gong, S., Xiang, T., and Change Loy, C. (2013). “Cumulative attribute

space for age and crowd density estimation,” in Proc. IEEE Conference

on Computer Vision and Pattern Recognition (Portland, OR), 2467–2474.

doi: 10.1109/CVPR.2013.319

Dalal, N., and Triggs, B. (2005). “Histograms of oriented gradients for human

detection,” in IEEE Conference on Computer Vision and Pattern Recognition

(CVPR) (San Diego, CA: IEEE), 886–893. doi: 10.1109/CVPR.2005.177

Deng, J., Dong, W., Socher, R., Li, L.-J., Li, K., and Fei-Fei, L. (2009). “Imagenet:

a large-scale hierarchical image database,” in Proc. IEEE Conference on

Computer Vision and Pattern Recognition (CVPR) (Miami, FL: IEEE), 248–255.

doi: 10.1109/CVPR.2009.5206848

Ghosal, S., Zheng, B., Chapman, S. C., Potgieter, A. B., Jordan, D. R.,

Wang, X., et al. (2019). A weakly supervised deep learning framework

for sorghum head detection and counting. Plant Phenom. 2019:1525874.

doi: 10.34133/2019/1525874

Giuffrida, M. V., Doerner, P., and Tsaftaris, S. A. (2018). Pheno-deep counter: a

unified and versatile deep learning architecture for leaf counting. Plant J. 96,

880–890. doi: 10.1111/tpj.14064

Giuffrida, M. V., Minervini, M., and Tsaftaris, S. (2015). “Learning to count leaves

in rosette plants,” in Proc. Computer Vision Problems in Plant Phenotyping

(CVPPP) (Swansea, UK: BMVA Press), 1.1–1.13. doi: 10.5244/C.29.CVPPP.1

Gomes, J. F. S., and Leta, F. R. (2012). Applications of computer vision techniques

in the agriculture and food industry: a review. Eur. Food Res. Technol. 235,

989–1000. doi: 10.1007/s00217-012-1844-2

Guo, W., Fukatsu, T., and Ninomiya, S. (2015). Automated characterization of

flowering dynamics in rice using field-acquired time-series rgb images. Plant

Methods 11:7. doi: 10.1186/s13007-015-0047-9

Guo, W., Zheng, B., Potgieter, A. B., Diot, J., Watanabe, K., Noshita, K.,

et al. (2018). Aerial imagery analysis-quantifying appearance and number of

sorghum heads for applications in breeding and agronomy. Front. Plant Sci.

9:1544. doi: 10.3389/fpls.2018.01544

Halstead, M., McCool, C., Denman, S., Perez, T., and Fookes, C. (2018). Fruit

quantity and ripeness estimation using a robotic vision system. IEEE Robot.

Automat. Lett. 3, 2995–3002. doi: 10.1109/LRA.2018.2849514

Häni, N., Roy, P., and Isler, V. (2019). A comparative study of fruit detection

and counting methods for yield mapping in apple orchards. J. Field Robot. 37,

263–282. doi: 10.1002/rob.21902

He, K., Zhang, X., Ren, S., and Sun, J. (2016). “Deep residual learning for

image recognition,” in Proc. IEEE Conference on Computer Vision and Pattern

Recognition (CVPR) (Las Vegas, NV), 770–778. doi: 10.1109/CVPR.2016.90

Howard, A. G., Zhu, M., Chen, B., Kalenichenko, D., Wang, W., Weyand, T., et al.

(2017). Mobilenets: efficient convolutional neural networks for mobile vision

applications. arXiv [Preprint]. arXiv:1704.04861.

Ioffe, S., and Szegedy, C. (2015). “Batch normalization: accelerating deep network

training by reducing internal covariate shift,” in Proc. International Conference

on Machine Learning (ICML) (Lille), 448–456.

Jin, X., Madec, S., Dutartre, D., de Solan, B., Comar, A., Baret, F., et al.

(2019). High-throughput measurements of stem characteristics to estimate

ear density and above-ground biomass. Plant Phenom. 2019:4820305.

doi: 10.34133/2019/4820305

Kamilaris, A., and Prenafeta-Boldú, F. X. (2018). Deep learning in agriculture: a

survey. Comput. Electron. Agric. 147, 70–90. doi: 10.1016/j.compag.2018.02.016

Lempitsky, V., and Zisserman, A. (2010). “Learning to count objects in images,”

in Advances in Neural Information Processing Systems (NIPS) (Vancouver, BC),

1324–1332.

Li, Y., Zhang, X., and Chen, D. (2018). “CSRNet: dilated convolutional neural

networks for understanding the highly congested scenes,” in Proc. IEEE

Conference on Computer Vision and Pattern Recognition (CVPR) (Salt Lake City,

UT), 1091–1100. doi: 10.1109/CVPR.2018.00120

Lin, M., Chen, Q., and Yan, S. (2013). “Network in network,” in Proc. International

Conference on Learning Representations (ICLR) (Scottsdale, AZ), 1–10.

Lin, T.-Y., Dollár, P., Girshick, R., He, K., Hariharan, B., and Belongie, S. (2017).

“Feature pyramid networks for object detection,” in Proc. IEEE Conference on

Computer Vision and Pattern Recognition (CVPR) (Honolulu, HI), 2117–2125.

doi: 10.1109/CVPR.2017.106

Liu, L., Lu, H., Xiong, H., Xian, K., Cao, Z., and Shen, C. (2020). Counting

objects by blockwise classification. IEEE Trans. Circ. Syst. Video Technol. 30,

3513–3527.

Liu, T., Yang, T., Li, C., Li, R., Wu, W., Zhong, X., et al. (2018). A method to

calculate the number of wheat seedlings in the 1st to the 3rd leaf growth stages.

Plant Methods 14, 1–14. doi: 10.1186/s13007-018-0369-5

Liu, Y., Cen, C., Che, Y., Ke, R., Ma, Y., and Ma, Y. (2020). Detection of maize

tassels from UAV RGB imagery with faster R-CNN. Remote Sens. 12:338.

doi: 10.3390/rs12020338

Lu, H., Cao, Z., Xiao, Y., Fang, Z., and Zhu, Y. (2017a). Towards fine-grained

maize tassel flowering status recognition: dataset, theory and practice.Appl. Soft

Comput. 56, 34–45. doi: 10.1016/j.asoc.2017.02.026

Lu, H., Cao, Z., Xiao, Y., Fang, Z., Zhu, Y., and Xian, K. (2015). Fine-grained maize

tassel trait characterization with multi-view representations. Comput. Electron.

Agric. 118, 143–158. doi: 10.1016/j.compag.2015.08.027

Lu, H., Cao, Z., Xiao, Y., Li, Y., and Zhu, Y. (2016). Region-based colour modelling

for joint crop and maize tassel segmentation. Biosyst. Eng. 147, 139–150.

doi: 10.1016/j.biosystemseng.2016.04.007

Lu, H., Cao, Z., Xiao, Y., and Zhu, Y. (2017b). Two-dimensional subspace

alignment for convolutional activations adaptation. Pattern Recogn. 71,

320–336. doi: 10.1016/j.patcog.2017.06.010

Lu, H., Cao, Z., Xiao, Y., Zhuang, B., and Shen, C. (2017c). TasselNet: counting

maize tassels in the wild via local counts regression network. Plant Methods 13,

79–95. doi: 10.1186/s13007-017-0224-0

Lu, H., Dai, Y., Shen, C., and Xu, S. (2019). “Indices matter: learning to index for

deep imagematting,” in Proc. IEEE/CVFConference on Computer Vision (ICCV)

(Seoul), 3266–3275. doi: 10.1109/ICCV.2019.00336

Lu, H., Dai, Y., Shen, C., and Xu, S. (2020). Index networks. IEEE Trans. Pattern

Anal. Mach. Intell. doi: 10.1109/TPAMI.2020.3004474. [Epub ahead of print].

Lu, H., Shen, C., Cao, Z., Xiao, Y., and van den Hengel, A. (2018). An

embarrassingly simple approach to visual domain adaptation. IEEE Trans.

Image Process. 27, 3403–3417. doi: 10.1109/TIP.2018.2819503

Ma, Z., Wei, X., Hong, X., and Gong, Y. (2019). “Bayesian loss for crowd count

estimation with point supervision,” in Proc. IEEE International Conference on

Computer Vision (ICCV) (Seoul), 6142–6151. doi: 10.1109/ICCV.2019.00624

Madec, S., Jin, X., Lu, H., De Solan, B., Liu, S., Duyme, F., et al. (2019). Ear

density estimation from high resolution RGB imagery using deep learning

technique. Agric. Forest Meteorol. 264, 225–234. doi: 10.1016/j.agrformet.2018.

10.013

McDonald, T., and Chen, Y. (1990). Application of morphological

image processing in agriculture. Trans. ASAE 33, 1346–1352.

doi: 10.13031/2013.31479

Mussadiq, Z., Laszlo, B., Helyes, L., and Gyuricza, C. (2015). Evaluation

and comparison of open source program solutions for automatic seed

counting on digital images. Comput. Electron. Agric. 117, 194–199.

doi: 10.1016/j.compag.2015.08.010

Nair, V., and Hinton, G. E. (2010). “Rectified linear units improve restricted

Boltzmann machines,” in Proc. International Conference on Machine Learning

(ICML) (Haifa), 807–814.

Nuske, S., Wilshusen, K., Achar, S., Yoder, L., Narasimhan, S., and Singh, S. (2014).

Automated visual yield estimation in vineyards. J. Field Robot. 31, 837–860.

doi: 10.1002/rob.21541

Oñoro-Rubio, D. and López-Sastre, R. J. (2016). “Towards perspective-free object

counting with deep learning,” in Proc. European Conference on Computer Vision

(ECCV) (Amsterdam), 615–629. doi: 10.1007/978-3-319-46478-7_38

Frontiers in Plant Science | www.frontiersin.org 14 December 2020 | Volume 11 | Article 541960

https://doi.org/10.1007/978-3-319-10578-9_33
https://doi.org/10.3965/j.ijabe.20160906.2908
https://doi.org/10.1016/j.compag.2007.11.009
https://doi.org/10.1109/CVPR.2008.4587569
https://doi.org/10.1109/CVPR.2013.319
https://doi.org/10.1109/CVPR.2005.177
https://doi.org/10.1109/CVPR.2009.5206848
https://doi.org/10.34133/2019/1525874
https://doi.org/10.1111/tpj.14064
https://doi.org/10.5244/C.29.CVPPP.1
https://doi.org/10.1007/s00217-012-1844-2
https://doi.org/10.1186/s13007-015-0047-9
https://doi.org/10.3389/fpls.2018.01544
https://doi.org/10.1109/LRA.2018.2849514
https://doi.org/10.1002/rob.21902
https://doi.org/10.1109/CVPR.2016.90
https://doi.org/10.34133/2019/4820305
https://doi.org/10.1016/j.compag.2018.02.016
https://doi.org/10.1109/CVPR.2018.00120
https://doi.org/10.1109/CVPR.2017.106
https://doi.org/10.1186/s13007-018-0369-5
https://doi.org/10.3390/rs12020338
https://doi.org/10.1016/j.asoc.2017.02.026
https://doi.org/10.1016/j.compag.2015.08.027
https://doi.org/10.1016/j.biosystemseng.2016.04.007
https://doi.org/10.1016/j.patcog.2017.06.010
https://doi.org/10.1186/s13007-017-0224-0
https://doi.org/10.1109/ICCV.2019.00336
https://doi.org/10.1109/TPAMI.2020.3004474
https://doi.org/10.1109/TIP.2018.2819503
https://doi.org/10.1109/ICCV.2019.00624
https://doi.org/10.1016/j.agrformet.2018.10.013
https://doi.org/10.13031/2013.31479
https://doi.org/10.1016/j.compag.2015.08.010
https://doi.org/10.1002/rob.21541
https://doi.org/10.1007/978-3-319-46478-7_38
https://www.frontiersin.org/journals/plant-science
https://www.frontiersin.org
https://www.frontiersin.org/journals/plant-science#articles

Lu and Cao TasselNetV2+

Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., et al. (2019).

“Pytorch: an imperative style, high-performance deep learning library,” in

Advances in Neural Information Processing Systems (NeurIPS) (Vancouver, BC),

8024–8035.

Primicerio, J., Caruso, G., Comba, L., Crisci, A., Gay, P., Guidoni, S., et al.

(2017). Individual plant definition and missing plant characterization in

vineyards from high-resolution UAV imagery. Eur. J. Remote Sens. 50, 179–186.

doi: 10.1080/22797254.2017.1308234

Quan, L., Feng, H., Lv, Y., Wang, Q., Zhang, C., Liu, J., et al. (2019).

Maize seedling detection under different growth stages and complex field

environments based on an improved faster R-CNN. Biosyst. Eng. 184, 1–23.

doi: 10.1016/j.biosystemseng.2019.05.002

Rahnemoonfar, M., and Sheppard, C. (2017). Deep count: fruit counting based on

deep simulated learning. Sensors 17:905. doi: 10.3390/s17040905

Ren, S., He, K., Girshick, R., and Sun, J. (2015). “Faster R-CNN: towards real-

time object detection with region proposal networks,” in Advances in Neural

Information Processing Systems (NIPS) (Montréal, QC), 91–99.

Sadeghi-Tehran, P., Sabermanesh, K., Virlet, N., and Hawkesford, M. J. (2017).

Automated method to determine two critical growth stages of wheat:

heading and flowering. Front. Plant Sci. 8:252. doi: 10.3389/fpls.2017.

00252

Simonyan, K., and Zisserman, A. (2014). “Very deep convolutional networks for

large-scale image recognition,” in Proc. International Conference on Learning

Representations (ICLR) (Banff, AB), 1–14.

Sindagi, V. A., and Patel, V. M. (2017). “Generating high-quality crowd density

maps using contextual pyramid CNNs,” in Proc. IEEE International Conference

on Computer Vision (ICCV) (Venice), 1879–1888. doi: 10.1109/ICCV.2017.206

Tan, M., Pang, R., and Le, Q. V. (2019). Efficientdet: scalable and

efficient object detection. arXiv [Preprint]. arXiv:1911.09070.

doi: 10.1109/CVPR42600.2020.01079

Tota, K., and Idrees, H. (2015). Counting in dense crowds using deep features.

Proc. CRCV.

Vapnik, V. N. (1998). Statistical Learning Theory, Vol. 1. New York, NY: Wiley.

Viola, P., and Jones, M. (2001). “Rapid object detection using a boosted

cascade of simple features,” in Proc. IEEE Conference on Computer

Vision and Pattern Recognition (CVPR) (Kauai, HI: IEEE), I-511–I-518.

doi: 10.1109/CVPR.2001.990517

Vos, J., and Frinking, H. (1997). Nitrogen fertilization as a component of integrated

crop management of hot pepper (Capsicum spp.) under tropical lowland

conditions. Int. J. Pest Manage. 43, 1–10. doi: 10.1080/096708797228915

Wiles, L. J., and Schweizer, E. E. (1999). The cost of counting and identifying weed

seeds and seedlings.Weed Sci. 47, 667–673. doi: 10.1017/S0043174500091311

Wu, J., Yang, G., Yang, X., Xu, B., Han, L., and Zhu, Y. (2019). Automatic counting

of in situ rice seedlings from UAV images based on a deep fully convolutional

neural network. Remote Sens. 11:691. doi: 10.3390/rs11060691

Xiong, H., Cao, Z., Lu, H., Madec, S., Liu, L., and Shen, C. (2019a). Tasselnetv2:

in-field counting of wheat spikes with context-augmented local regression

networks. Plant Methods 15:150. doi: 10.1186/s13007-019-0537-2

Xiong, H., Lu, H., Liu, C., Liu, L., Cao, Z., and Shen, C. (2019b). “From open

set to closed set: counting objects by spatial divide-and-conquer,” in Proc.

IEEE International Conference on Computer Vision (ICCV) (Seoul), 8362–8371.

doi: 10.1109/ICCV.2019.00845

Yu, Z., Cao, Z., Wu, X., Bai, X., Qin, Y., Zhuo, W., et al. (2013).

Automatic image-based detection technology for two critical growth stages

of maize: emergence and three-leaf stage. Agric. Forest Meteorol. 174, 65–84.

doi: 10.1016/j.agrformet.2013.02.011

Zabawa, L., Kicherer, A., Klingbeil, L., Milioto, A., Topfer, R., Kuhlmann,

H., et al. (2019). “Detection of single grapevine berries in images using

fully convolutional neural networks,” in Proc. IEEE Conference on Computer

Vision and Pattern Recognition (CVPR) Workshops (Long Beach, CA), 1–9.

doi: 10.1109/CVPRW.2019.00313

Zhang, C., Li, H., Wang, X., and Yang, X. (2015). “Cross-scene crowd

counting via deep convolutional neural networks,” in Proc. IEEE

International Conference on Computer Vision (ICCV) (Boston, MA), 833–841.

doi: 10.1109/CVPR.2015.7298684

Zhang, Y., Zhou, D., Chen, S., Gao, S., and Ma, Y. (2016). “Single-image crowd

counting via multi-column convolutional neural network,” in Proc. IEEE

Conference on Computer Vision and Pattern Recognition (CVPR) (Las Vegas,

NV), 589–597. doi: 10.1109/CVPR.2016.70

Conflict of Interest: The authors declare that the research was conducted in the

absence of any commercial or financial relationships that could be construed as a

potential conflict of interest.

Copyright © 2020 Lu and Cao. This is an open-access article distributed under the

terms of the Creative Commons Attribution License (CC BY). The use, distribution

or reproduction in other forums is permitted, provided the original author(s) and

the copyright owner(s) are credited and that the original publication in this journal

is cited, in accordance with accepted academic practice. No use, distribution or

reproduction is permitted which does not comply with these terms.

Frontiers in Plant Science | www.frontiersin.org 15 December 2020 | Volume 11 | Article 541960

https://doi.org/10.1080/22797254.2017.1308234
https://doi.org/10.1016/j.biosystemseng.2019.05.002
https://doi.org/10.3390/s17040905
https://doi.org/10.3389/fpls.2017.00252
https://doi.org/10.1109/ICCV.2017.206
https://doi.org/10.1109/CVPR42600.2020.01079
https://doi.org/10.1109/CVPR.2001.990517
https://doi.org/10.1080/096708797228915
https://doi.org/10.1017/S0043174500091311
https://doi.org/10.3390/rs11060691
https://doi.org/10.1186/s13007-019-0537-2
https://doi.org/10.1109/ICCV.2019.00845
https://doi.org/10.1016/j.agrformet.2013.02.011
https://doi.org/10.1109/CVPRW.2019.00313
https://doi.org/10.1109/CVPR.2015.7298684
https://doi.org/10.1109/CVPR.2016.70
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/journals/plant-science
https://www.frontiersin.org
https://www.frontiersin.org/journals/plant-science#articles

	TasselNetV2+: A Fast Implementation for High-Throughput Plant Counting From High-Resolution RGB Imagery
	1. Introduction
	2. Datasets and Methods
	2.1. Plant Counting Datasets
	2.2. Recapping TasselNetV2
	2.3. Profiling Computational Bottlenecks
	2.4. Reformulating Local-Count Normalizer
	2.5. Optimizing Encoder and Counter
	2.6. Meeting TasselNetV2+

	3. Results and Discussions
	3.1. Wheat Ears Counting
	3.2. Maize Tassels Counting
	3.3. Sorghum Heads Counting
	3.4. Further Discussions

	4. Conclusion
	Data Availability Statement
	Author Contributions
	Funding
	Acknowledgments
	References

