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Pontifical Catholic University
of Peru, Peru
Seana Walsh,

National Tropical Botanical Garden,
United States

*Correspondence:
John M. Powers

john.powers@uci.edu

Specialty section:
This article was submitted to

Plant Metabolism
and Chemodiversity,

a section of the journal
Frontiers in Plant Science

Received: 25 April 2020
Accepted: 06 July 2020
Published: 21 July 2020

Citation:
Powers JM, Seco R, Faiola CL,

Sakai AK, Weller SG, Campbell DR
and Guenther A (2020) Floral Scent

Composition and Fine-Scale Timing in
Two Moth-Pollinated Hawaiian
Schiedea (Caryophyllaceae).

Front. Plant Sci. 11:1116.
doi: 10.3389/fpls.2020.01116

ORIGINAL RESEARCH
published: 21 July 2020

doi: 10.3389/fpls.2020.01116
Floral Scent Composition and Fine-
Scale Timing in Two Moth-Pollinated
Hawaiian Schiedea (Caryophyllaceae)
John M. Powers1*, Roger Seco2,3, Celia L. Faiola1, Ann K. Sakai1, Stephen G. Weller1,
Diane R. Campbell 1 and Alex Guenther4

1 Department of Ecology and Evolutionary Biology, University of California, Irvine, Irvine, CA, United States, 2 Terrestrial
Ecology Section, Department of Biology, University of Copenhagen, Copenhagen, Denmark, 3 Center for Permafrost
(CENPERM), Department of Geosciences and Natural Resource Management, University of Copenhagen, Copenhagen,
Denmark, 4 Department of Earth System Science, University of California, Irvine, Irvine, CA, United States

Floral scent often intensifies during periods of pollinator activity, but the degree of this
synchrony may vary among scent compounds depending on their function. Related plant
species with the same pollinator may exhibit similar timing and composition of floral scent.
We compared timing and composition of floral volatiles for two endemic Hawaiian plant
species, Schiedea kaalae and S. hookeri (Caryophyllaceae). For S. kaalae, we also
compared the daily timing of emission of floral volatiles to evening visits of their shared
pollinator, an endemic Hawaiian moth (Pseudoschrankia brevipalpis; Erebidae). The
identity and amount of floral volatiles were measured in the greenhouse during day and
evening periods with dynamic headspace sampling and GC-MS (gas chromatography –

mass spectrometry). The timing of emissions (daily rise, peak, and fall) was measured by
sampling continuously for multiple days in a growth chamber with PTR-MS (proton
transfer reaction mass spectrometry). Nearly all volatiles detected underwent strong daily
cycles in emission. Timings of floral volatile emissions were similar for S. kaalae and S.
hookeri, as expected for two species sharing the same pollinator. For S. kaalae, many
volatiles known to attract moths, including several l inalool oxides and 2-
phenylacetaldehyde, peaked within 2 h of the peak visitation time of the moth which
pollinates both species. Floral volatiles of both species that peaked in the evening were
also emitted several hours before and after the brief window of pollinator activity. Few
volatiles followed a daytime emission pattern, consistent with increased apparency to
visitors only at night. The scent blends of the two species differed in their major
components and were most distinct from each other in the evening. The qualitative
difference in evening scent composition between the two Schiedea species may reflect
their distinct evolutionary history and may indicate that the moth species uses several
different floral cues to locate rewards.

Keywords: Schiedea kaalae, Schiedea hookeri, Pseudoschrankia, floral volatiles, island flora, moth pollination, gas
chromatography - mass spectrometry (GC-MS), proton transfer reaction - mass spectrometry (PTR-MS)
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INTRODUCTION

In flowering plants, attraction of pollinators is often required for
reproduction, but the multimodal signals that attract pollinators
are costly and require both carbon and energy (Dicke and
Sabelis, 1989; Grison-Pigé et al., 2001). Floral signals that
attract pollinators may also attract visitors that reduce fitness
such as herbivores (e.g. Theis and Adler, 2012; Schiestl, 2015;
Nunes et al., 2016), nectar robbers (e.g. Kessler et al., 2008;
Kessler and Halitschke, 2009), or generalist pollinators with high
heterospecific pollen loads (Morales and Traveset, 2008).
Selection on floral signals via pollinators is therefore expected
to favor allocation of resources to traits that optimize pollen
received or dispersed and minimize costs of apparency to other
visitors. When pollinators are active only during a specific time
period, temporal regulation of a floral signal is one way to
increase efficiency in signaling (Hoballah et al., 2005). For
example, the fitness of Nicotiana attenuata plants is affected if
the timing of flower orientation or olfactory pollination cues is
altered physically or genetically (Baldwin et al., 1997; Yon et al.,
2017). Overlap between the window of pollinator activity and the
timing offloral signals is common, whether the signals are related
to physical access (Overland, 1960; Goldblatt et al., 2004), flower
orientation (Yon et al., 2017), or scent production (Heath et al.,
1992; Huber et al., 2004; Effmert et al., 2005; Kumano and
Yamaoka, 2006; Okamoto et al., 2008; Prieto-Benıt́ez et al.,
2016; Chapurlat et al., 2018).

These and other previous studies have been useful in
identifying the volatiles emitted during a known period of
animal activity, for example during the foraging periods of
diurnal versus nocturnal pollinators (Bischoff et al., 2014).
Knowledge of how closely the time courses of volatile
emissions match the activity of a pollinator is still limited,
especially since pollinator activity can also change on very
short time scales (Herrera, 1990; Knop et al., 2018). Here we
generate continuous measurements of volatile emissions to
observe the start and end of emissions, so that we can
determine if volatiles are emitted outside of the period of
pollinator activity and thus at times when costs might exceed
benefits for a channel of information for the pollinator.
Continuous measurements can also distinguish a volatile that
is rising in emission, which might indicate a period of pollinator
activity is starting, from a volatile that is declining at a given
point in time.

Plant species with the same pollinator might be expected to
display similar floral signals, but most tests of floral scent
convergence within genera have been restricted to flowers that
mimic a female insect (Cortis et al., 2009; Gögler et al., 2009) or
oviposition site (Jürgens et al., 2013) or provide a fragrance
reward (Nunes et al., 2017). These pollination systems require
the presence of key compounds in precise ratios to produce a
successful mimic or species-specific pheromone. Food-seeking
pollinators may not require such highly specific floral chemical
displays. Plant species that reward pollinators with food and have
distinct scents might nevertheless attract shared pollinators if
pollinators learn to associate the scent of each species with a
reward. If heterospecific pollen transfer between related species
Frontiers in Plant Science | www.frontiersin.org 2
reduces fitness (by clogging stigmas or producing infertile
hybrids), plants would benefit from species-specific signals if
distinct scents reduce heterospecific pollen transfer through
floral constancy of pollinator individuals (Waelti et al., 2008).

We investigated the composition and timing of floral scent in
Schiedea kaalae and S. hookeri (Caryophyllaceae), two
hermaphroditic species with specialized floral nectaries and
similar floral morphology (Wagner et al., 2005b) which are
pollinated by the endemic Hawaiian moth Pseudoschrankia
brevipalpis (Erebidae; Weisenberger et al., 2014; Medeiros,
2015; Weller et al., 2017). In this plant genus, wind pollination
evolved from biotic pollination (Sakai et al., 2006; Willyard et al.,
2011). Reversals from wind to biotic pollination are also possible
but cannot be currently verified given the poor resolution of the
clade containing nearly all wind-pollinated species as well as
several hermaphroditic species, including S. hookeri (Willyard
et al., 2011). The clades containing S. kaalae and S. hookeri
diverged c. 1.3 Mya (Willyard et al., 2011). Because these species
share the same moth pollinator, which visits for a brief period of
time in the early evening, we predicted that the two Schiedea
species would share similar timing of maximum emissions of
compounds known to attract moths, but differ in evening floral
scent composition due to their separate evolutionary histories.

We first describe the patterns of volatile emissions in these
two moth-pollinated species by asking how S. kaalae and S.
hookeri differ in the composition (identity and amount) of
evening floral volatile emissions. Next, we characterize how
individual volatiles change throughout the day and night in
each species. Finally, we quantify the degree of overlap of
volatiles (in aggregate and individually) with pollinator activity
for one of the species, S. kaalae.
MATERIALS AND METHODS

Study System
Schiedea kaalae Wawra (sect. Mononeura) and S. hookeri A.
Gray (sect. Schiedea) are hermaphroditic, self-compatible,
protandrous, perennial herbs native to Oʻahu, Hawaiʻi, USA,
where populations of the two species occur in sympatry in parts
of the Waiʻanae Mountains [S. kaalae (410–730 m above sea
level, asl) and S. hookeri (260–870 m asl), Wagner et al., 2005b]
and can flower at the same time. Schiedea kaalae also occurs in
the Koʻolau Mountains (Wagner et al., 2005b). Both species are
listed as endangered by the US Fish and Wildlife Service and
critically endangered by the IUCN (Ellshoff et al., 1991;
Bruegmann and Caraway, 2003; Wagner et al., 2005a;
Bruegmann et al., 2016), and a total of only about 28 S. kaalae
individuals in five populations remained in the wild before
restoration efforts (Weisenberger et al., 2014), precluding
studies of the remnant populations in situ. Schiedea hookeri is
more common in nature than S. kaalae, and large populations
also exist following restoration efforts (D. Sailer, personal
communication). The species produce inflorescences with 20–
300 (S. kaalae) or 20–150 (S. hookeri) flowers per inflorescence
and both species possess similar floral morphology with reflexed
July 2020 | Volume 11 | Article 1116
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sepals 3–4 mm long, no petals, 10 stamens, 3 styles, and 5
nectaries (Wagner et al., 2005b).

Prior Studies of Pollination Biology
The shared moth pollinator of Schiedea kaalae and S. hookeri,
Pseudoschrankia brevipalpis (Weller et al., 2017), perches on
flowers (or more rarely, on other parts of the inflorescence) and
feeds on nectar extruded from the tips of specialized tubular
nectary extensions adjacent to the stamens (Harris et al., 2012;
Weisenberger et al., 2014). At ʻĒkahanui Gulch (Waiʻanae
Mountains) P. brevipalpis was the only visitor to flowers of S.
kaalae, based on observations over three years (Weller et al.,
2017). Fewer pollinator observations were made for S. hookeri
because of the inaccessibility of the sites, although direct and
indirect observations both indicated that P. brevipalpis was the
primary pollinator at ʻĒkahanui Gulch (Weller et al., 2017). Very
low numbers of other endemic moth species were observed
visiting S. hookeri at a second site and a few carried Schiedea
pollen, but pollen deposition was threefold lower than at
ʻĒkahanui Gulch, and no correlation between moth scales and
pollen deposition was observed, indicating the absence of
effective pollination (Weller et al., 2017). No daytime floral
visitors to either species have been observed (Weisenberger
et al., 2014).

The elliptic flight patterns of the moths before they land on
flowers suggest they rely little on visual targeting even before
dark and are characteristic of moths seeking floral volatiles
through anemotaxis (upwind flight; Cardé and Willis, 2008;
Weller et al., 2017 and videos therein).

New Analyses of Field Data for Time of
Moth Visits
For comparison with timing of volatile emissions, we determined
the timing of flower visits by the moth P. brevipalpis. Our earlier
studies (Weller et al., 2017) reported the duration of visits to
flowers in male and female stages of anthesis but not arrival
times. Here we analyzed arrival time of visits (landings on a
flower) of P. brevipalpis to S. kaalae at ʻĒkahanui Gulch (n = 48
visits on three consecutive dates in March 2014 and one in July
2014; landings occurred from 17:49–19:28 HAST, 0.2–1.6 h after
sunset). Observations of the field population always began at
least a half hour in advance of any moth visit and continued until
after moth activity ceased, so the entire spectrum of potential
arrival times was included. We did not include S. hookeri in the
analysis of timing of visits because we had too few direct
observations of pollinator visits.

Because the timing of moth behavior and floral volatile
emission patterns may be driven by light levels (Altenburger
and Matile, 1990; Hansted et al., 1994; Hendel-Rahmanim et al.,
2007) or circadian rhythms entrained by light cycles (Kolosova
et al., 2001; Fenske et al., 2015; Yon et al., 2016; Fenske et al.,
2018), we calculated the difference between the times of each
moth visit to a flower and local sunset. The angle of elevation to
the nearby ridge towards the median solar azimuth at sunset
across observation dates was used to determine local sunset,
using the crepuscule function of the R package maptools (Bivand
Frontiers in Plant Science | www.frontiersin.org 3
et al., 2019). This technique corrects for the shadows cast by the
mountainous terrain. We combined these relative times across
dates to create a temporal distribution of moth visits to S. kaalae.

Plants Sampled
Volatile emissions were measured on plants of Schiedea kaalae
and S. hookeri grown in the University of California, Irvine
greenhouse. Plants were potted in UC mix (a soil mix developed
by the University of California; 1:1:1 sand, peat, and redwood
fiber) with added perlite and watered as needed with dilute liquid
fertilizer (Grow More; 20-20-20 NPK plus micronutrients).
Plants were grown from seeds or cuttings of six populations
from the Waiʻanae Mountains (10 S. kaalae and 10 S. hookeri
plants, Supplementary Table S1; all collections were made
before species were listed as federally endangered in 1991 and
1996, for S. kaalae and S. hookeri, respectively). Plants also were
grown from intraspecific (mostly interpopulation) crosses
between cultivated plants from these populations (22 S. kaalae
plants, 22 S. hookeri plants). Interpopulation crosses within
species were used because most natural populations now
consist of a single individual and are highly inbred
(Weisenberger et al., 2014). For GC-MS measures, we sampled
32 plants of each species in the evening (see below). Four
Schiedea kaalae and eight S. hookeri plants from this group
were also sampled during the day. For continuous PTR-MS
measurements of plants in a growth chamber over multiple
days, we sampled five S. kaalae plants, two from Puʻumaialau
(Takeuchi 3587) and three from Pahole Gulch (Weller and Sakai
904), and three S. hookeri plants, one from Kaluaʻa Gulch
(Weller and Sakai 879, 400 m south of Puʻuhapapa) and two
from Waiʻanae Kai (Supplementary Table S1). All plants
chosen had ≥ 10 open flowers. The numbers of open male-
and female-phase flowers, closed (post-anthesis) flowers, and
floral buds were recorded immediately after sampling for both
methods. Inflorescence age, as estimated by the ratio of closed to
open flowers, did not vary between species in the sampled plants
(ANOVA, P = 0.90, n = 64).

Scent Collections and Analysis by GC-MS
Scent Collections
Procedures for dynamic headspace sampling for GC-MS were
modified from Campbell et al. (2019). Scent traps, consisting of a
glass capillary tube filled with 5 mg of Tenax TA and held with
plugs of silanized quartz wool, were cleaned before initial use by
heating in helium carrier gas for 5 min at 250 °C. Scent samples
were collected from November 2016 - April 2017 in the
greenhouse during evening and daytime sampling periods. The
natural day length varied from 10–12 h. For the evening period,
samples were taken with pumping start times between 16:30–
21:00 PST (2.5 h before sunset–3.9 h after sunset, mean ± SD
relative to sunset 1.4 ± 1.3 h, with 86 % of samples taken after
sunset). This wide sampling window was used to capture the
potential gradient along the transition from light to dark, which
was treated as a linear rather than discrete effect in the analysis
(see below). For the day period, samples were taken from the
same inflorescence earlier in the same day (start times 12:50–
July 2020 | Volume 11 | Article 1116
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13:50 PST, 0.8–2.0 h after solar noon). Each plant was used on
one date only. Dynamic headspace samples of floral volatiles
were taken by enclosing inflorescences in 19 x 10 cm nylon-6
oven bags (Reynolds, USA). Volatiles were allowed to equilibrate
for 30 min at 22–32 °C (day) or 20–26 °C (evening) and pumped
for 30 min through a scent trap using a pump (Supelco PAS-500,
Spectrex, Redwood City, California, USA) set to a pre-trap flow
rate of 200 mL/min. Ambient controls (n = 19) were taken from
an empty oven bag sampled for the same duration to identify
contaminants (see below). Samples were stored in capped glass
vials at -20 °C until analysis.

GC-MS Analysis
Floral scent composition (the identity and emission rate of each
volatile in the overall scent blend) was characterized and
quantified by thermal desorption gas chromatography-mass
spectrometry (TD-GC-MS). We employed an Agilent 6890N
GC (Agilent Technologies, Palo Alto, California, USA), with a
30 m × 0.25 mm internal diameter x 0.25 mm film thickness HP-
5ms column (Agilent). The flow of helium carrier gas was 1 mL/
min. Scent traps were placed in the sample tube of a Markes
UNITY 2 thermal desorption device, purged with helium for 1
min, heated to 200°C for 5 min while re-trapping on Tenax
adsorbent at 25 °C, and desorbed at 200°C for 3 min. After a 2
min hold at 40 °C, the temperature of the GC oven was ramped to
210 °C at 10 °C/min, then to 275 °C at 30 °C/min and held for 2
min. A coupled Agilent 5973N MSD mass spectrometer was
operated in electron-impact ionization mode at 70 eV and
scanned in the range 50–500 m/z at 3 s-1.

Peak deconvolution, integration, and tentative compound
identification were performed in the Automated Mass Spectral
Deconvolution and Identification System (AMDIS) using the
NIST 2017 mass spectral library. Components were included if
they had mass spectral match scores greater than 75%, had
maximum abundances across samples greater than 120,000
counts (6.6% of the median sample), and occurred in more
than one sample. After calibration with a C7-C30 alkane ladder,
compound identities were verified by comparing retention
indices (RI) with those given in the NIST library. Volatile
emission rates were calculated within each compound class
from peak integrations by calibration across 4 orders of
magnitude with 7 authentic standards ((Z)-hex-3-en-1-ol, a-
pinene, indole, linalool, b-caryophyllene, benzaldehyde dimethyl
acetate, (E,E)-farnesol) in hexane applied to scent traps.
Compounds in floral samples that did not exceed the amounts
in ambient controls or GC blanks were considered contaminants
(using t-tests with alpha adjusted by the false discovery rate
method) and excluded from analyses. Based on the PTR-MS
data, oct-1-en-3-ol and (Z)-hex-3-en-1-ol were likely induced by
handling the inflorescences because both sharply decreased in
the first two hours after bagging. Both compounds can be
induced by mechanical damage (Ozawa et al., 2000; Leitner
et al., 2005; Kigathi et al., 2009; Boggia et al., 2015). We
excluded (Z)-hex-3-en-1-ol from GC-MS analyses because its
emissions remained low for days after the initial bagging,
but because oct-1-en-3-ol resurged consistently at night
(Supplementary Figure S2), likely indicating floral emission,
Frontiers in Plant Science | www.frontiersin.org 4
we included it in analyses. Emission rates were standardized by
the number of open flowers.

Statistical Analyses of Scent Composition
The total scent emissions per flower during the evening sampling
period were compared between species with a Mann-Whitney
test. To identify volatiles that differed between the two species and
between times of day, we employed canonical analysis of principal
coordinates (CAP; Anderson and Willis, 2003; Campbell et al.,
2016) with Bray-Curtis dissimilarities, as implemented in the
function capscale from the R package vegan (R Core Team,
2018; Oksanen et al., 2019). This constrained ordination
method is suited to discover multivariate patterns among
predefined predictors, in this case, species, time relative to
sunset (as a continuous variable because sampling windows
were wide), and their interaction. We used a permutation test
(anova.cca) to test each term of the full model sequentially and
determine whether there was a significant interaction after
accounting for the main effects. For visualization and to
improve interpretation of the time axis, CAP was repeated
within each species with time of day as the constraining
variable. The CAP method constructs metric multidimensional
scaling (MDS) axes to summarize variation that is not explained
by the predictors. Volatile emission rates were square-root
transformed to reduce skew before analysis.

Scent Analysis in Real Time by PTR-MS
Advantages of Real-Time Sampling
To identify temporal patterns of scent emissions and pollinator
activity, most studies have compared scent (all volatiles and their
emission rates) and pollinator activity during two discrete daily
sampling periods (e.g. Prieto-Benıt́ez et al., 2015). More intensive
sampling has yielded qualitative comparisons between selected
scent compounds at 1 h resolution and pollinator visitation rates
in three daily periods (Dötterl et al., 2012b), and between overall
scent intensity at 10 min resolution and a time range of
pollinator visits (Dötterl et al., 2012a). To make fine-scale
comparisons that quantify scent-pollinator overlap, we take
advantage of proton transfer reaction mass spectrometry
(PTR-MS) to generate continuous measurements of volatile
emissions for multiple days, rather than the average emissions
across a sampling period generated by trapping followed by GC-
MS. We then compare those time courses with information on
timing of pollinator visits at the scale of quarter hours using an
overlap statistic to quantify the degree of synchrony. Prior
studies with PTR-MS have revealed the daily emission profiles
of individual volatiles (Abel et al., 2009), and overlap between
thermogenesis and scent signals (Marotz-Clausen et al., 2018),
but have not previously been paired with fine scale information
on timing of pollinator visits.

Proton transfer reaction time-of-flight mass spectrometry
(PTR-MS) allows extremely sensitive, real time quantitation of
plant volatile emissions by using hydronium ions for chemical
ionization (Lindinger et al., 1998; Jordan et al., 2009). Through
direct ionization of the sample gas, PTR-MS can measure small
molecules that are not efficiently trapped on adsorbents.
Identification of individual components of complex mixtures
July 2020 | Volume 11 | Article 1116
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with PTR-MS is difficult due to fragmentation and overlap of
ions at unit mass resolution, but the technique has been used
successfully on complex biological samples when paired with
GC-MS to positively identify the volatiles expected in the
mixture (Eugenio et al., 2007; Cappellin et al., 2012; Masi et al.,
2015; Schuhfried et al., 2017). Identifications can be made for
ions not found in the GC-MS spectra from standards reported in
the literature.

PTR-MS Experiment
Emission rates of volatiles are often highly sensitive to the
environment (Farré-Armengol et al., 2014; Burkle and Runyon,
2016; Campbell et al., 2019) and thus could differ between the
growth chamber and field sites where the moths were studied. To
minimize these variations, we sampled floral volatiles for 2–4
days with PTR-MS under environmental conditions similar to
the sites where pollinator observations were conducted. Unlike
emission rates, timings of volatile emissions are known to be
driven by either direct light cues or the circadian clock calibrated
by light cues and are not expected to differ relative to those light
cues (Fenske et al., 2018). We lined up temporal patterns of
volatiles to those that occur under field conditions by expressing
time courses relative to the time of sunset or the light-to-dark
transition in the photochamber and using light conditions
(intensity and photoperiod) and temperature conditions typical
of the field. The remaining differences between the field and the
photochamber were that temperature was kept constant to
observe changes in emission rates not driven directly by
heating, and the light transitions were abrupt rather than
gradual so that volatiles that respond to light could be
distinguished from those with slower regulation. The detailed
methods for sampling, data processing, verification with
reference standards, and identification are reported in
Supplementary Methods S1.

Statistical Analysis of Volatile Time Courses
To visualize patterns of multivariate change in scent through
time and between the species, we performed a principal
components analysis of the PTR-MS ion time series with
maxima over 0.001 counts·s-1·flower-1 for all plants at all time
points (van Ruth and de Visser, 2015). All ions that met this
criterion were analyzed, including those not identified by GC-MS
or comparison to reference spectra. Time points were connected
with lines to show the progression of each plant through scent
space over multiple days. To identify volatiles with similar
patterns of emission over time, we constructed WPGMA
hierarchical clusterings of Pearson distances (Liao, 2005)
among ion time series (with each ion signal scaled to its
maximum). The resulting clustering of volatiles, visualized in a
clustered heatmap, reflects similarity in both temporal patterns
and presence or absence in each species.

To model the temporal peaks of individual volatile emissions,
we fit Weibull functions to each ion time series for each plant and
each day using the R package cardidates (Rolinski et al., 2007).
These functions allow different slopes in the rising and falling
periods, and different baseline levels before and after the peak.
From these fits we extracted the times of the beginning of
Frontiers in Plant Science | www.frontiersin.org 5
exponential increase (0.5% of the modelled peak area),
maximum, and end of exponential decrease (99.5% of the
modelled peak area). For each species, we calculated the
median time of maxima for each ion across days and plants.

To quantify the degree of scent-pollinator synchrony in S.
kaalae, we compared the 24 h distributions of P. brevipalpis visits
across all dates to both a) the modelled times of maximum
emission (from the fitted Weibull function) aggregated across all
PTR-MS ions, days, and plants (which provides a single metric of
synchronization between pollination and the timing of peaks
across all scent compounds) and b) the actual time courses of
emissions for each PTR-MS ion across days and plants (which
shows which volatiles are the most or least synchronized with
pollination). After aligning the sunset time to the dark transition
in the growth chamber, we placed times of moth visits into bins
that were 16 min in duration, centered on the 4-min sampling
blocks for each plant. We normalized each distribution to have
an area of one, and then calculated the areal overlap between the
two distributions (defined as the integral of the minimum of the
two distributions; Miller-Rushing et al., 2010). This statistic is
affected by the position of the two distributions relative to each
other, and the match in their width. We define the null
expectation as the overlap between the moth visit distribution
and a flat line, where the flat line represents either a) a uniform
distribution of times of maxima or b) a hypothetical volatile
holding a constant emission rate throughout the day.

Compounds Attractive to Moths
Selection for overlap between emission of a specific compound
and moth visitation might be more likely if the compound is one
that moths respond to behaviorally. The behavioral responses of
Pseudoschrankia brevipalpis to individual floral volatiles are
unknown, so we surveyed the literature for information on the
detectability (search terms: moth + {antenna, EAD, EAG}) and
attractiveness (search terms: moth + {attraction, behavior})
of the volatiles produced by Schiedea inflorescences.
Electroantennographic detection (EAD) studies were used to
determine whether a compound can be detected by moth
antennae. Evidence of moth attraction is presented from
behavioral tests. In these studies, the volatile was considered
attractive if it induced more interactions than the control.
Volatiles were applied to either an open trap with a scent
emitter, a scent emitter within a wind tunnel, or a flower
spiked with additional scent. From the literature, we recorded
the number of moth species, their families, and the apparatus
used (Supplementary Table S2).
RESULTS

Species Differences in Floral Scent
Using GC-MS we detected 32 floral volatiles produced by S.
kaalae and 36 produced by S. hookeri, for a total of 40
volatiles present in > 20% of samples of either species. These
included 19 aliphatics, 7 benzenoids, 5 irregular terpenes, and
9 monoterpenes (Table 1). Of the 40 compounds, 28
were produced by both species. The literature survey of
July 2020 | Volume 11 | Article 1116
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TABLE 1 | Evening floral volatile emissions from Schiedea kaalae and S. hookeri detected by GC-MS in > 20% of samples of either species (40 of 76 compounds, n = 32 plants for each species).

nonzero
ion rate
wer/hr)

Mean emission rate
(ng/flower/hr)

Mean relative
emission rate 4

S.hookeri S.kaalae S.hookeri S.kaalae S.hookeri

0.56 0.28 3.4%
0.80 0.56 0.80 3.4% 9.5%
0.54 0.00 0.46 0.0% 5.6%
0.43 0.35 4.2%
6.64 excl. excl.
0.26 0.01 0.06 0.1% 0.7%
0.95 0.01 0.24 0.0% 2.8%
0.33 0.03 0.08 0.2% 1.0%
0.01 0.01 0.00 0.0% 0.0%
0.03 0.01 0.1%
1.85 0.16 0.41 1.0% 4.9%

0.02 0.1%
0.40 0.00 0.19 0.0% 2.3%
3.38 3.17 3.38 19.3% 40.6%
0.72 0.44 0.70 2.7% 8.4%

0.01 0.0%
0.35 0.09 1.1%
0.29 0.08 1.0%
0.27 0.07 0.9%
0.02 0.00 0.01 0.0% 0.1%
0.30 0.07 0.30 0.5% 3.7%
0.01 0.27 0.01 1.7% 0.1%
0.42 0.00 0.27 0.0% 3.2%
0.09 0.02 0.3%
0.16 0.00 0.15 0.0% 1.8%
0.14 0.00 0.08 0.0% 1.0%
0.15 0.00 0.09 0.0% 1.1%
0.00 0.13 0.00 0.8% 0.0%
0.13 0.02 0.03 0.1% 0.3%

0.05 0.3%
0.04 0.03 0.00 0.2% 0.0%

0.02 0.01 0.00 0.1% 0.0%
0.04 0.35 0.02 2.2% 0.2%
0.06 0.07 0.01 0.4% 0.2%

0.00 0.0%
0.08 2.13 0.02 13.0% 0.2%
0.05 0.04 0.03 0.2% 0.3%
0.11 4.82 0.08 29.4% 1.0%
0.10 3.98 0.02 24.2% 0.3%

0.02 0.1%

ld. 4 The mean of emission rates scaled to 100%. 5 Fragment ions
ss of 162, probable disubstituted phenyl with a carbonyl group.
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Class RI 1 Meanmatch score CAS 2 Name Proportion of
evening samples3

Mean
emiss
(ng/fl

S.kaalae S.hookeri S.kaalae

Aliphatic 796 87% 4440-65-7 (E)-hex-3-enal 0% 50%
797 94% 66-25-1 hexanal 100% 100% 0.56
830 90% 96-04-8 heptane-2,3-dione 8% 86% 0.05
840 91% 6728-26-3 (E)-hex-2-enal 0% 81%
848 94% 928-96-1 (Z)-hex-3-en-1-ol 21% 89% 0.24
855 78% 7642-10-6 hept-3-ene 5% 22% 0.24
855 84% 4412-91-3 furan-3-ylmethanol 8% 25% 0.10
855 89% 2415-72-7 propylcyclopropane 32% 25% 0.08
882 84% 2216-34-4 4-methyloctane 21% 3% 0.03
901 92% 13129-23-2 methyl furan-3-carboxylate 0% 33%
905 92% 3008-40-0 cyclopentane-1,2-dione 21% 22% 0.78
933 83% 18829-55-5 hept-2-enal 37% 0% 0.06
949 79% 26456-76-8 3,5,5-trimethylhex-2-ene 5% 47% 0.05
960 92% 3391-86-4 oct-1-en-3-ol 100% 100% 3.17
961 92% 106-68-3 octan-3-one 89% 97% 0.49
971 84% 111-13-7 octan-2-one 21% 0% 0.04
981 92% 72237-36-6 hex-4-enyl acetate 0% 25%
1152 87% 53398-84-8 [(E)-hex-3-enyl] butanoate 0% 28%
1347 90% 31501-11-8 [(Z)-hex-3-enyl] hexanoate 0% 28%

Benzenoid 896 91% 100-66-3 anisole 3% 39% 0.01
937 95% 100-52-7 benzaldehyde 100% 100% 0.07
1017 92% 122-78-1 2-phenylacetaldehyde 95% 50% 0.29
1179 unknown benzenoid 5 11% 64% 0.02
1198 86% 103-70-8 N-phenylformamide 0% 25%
1268 92% 120-72-9 indole 13% 89% 0.02
1316 94% 134-20-3 methyl 2-aminobenzoate 5% 61% 0.00

Irregular
terpene

1086 82% 19945-61-0 (3E)-4,8-dimethylnona-1,3,7-triene 3% 64% 0.05
1115 90% 1125-21-9 4-oxoisophorone 100% 3% 0.13
1120 87% 28564-83-2 3,5-dihydroxy-6-methyl-2,3-dihydropyran-4-one 16% 22% 0.14
1139 87% 20547-99-3 2,2,6-trimethylcyclohexane-1,4-dione 84% 0% 0.06
1322 81% 141891-14-7 4-hydroxy-2,6,6-trimethyl-3-oxocyclohexene-1-

carbaldehyde
71% 3% 0.04

Mono-terpene 964 84% 123-35-3 b-myrcene 47% 3% 0.02
978 90% 99-83-2 a-phellandrene 76% 42% 0.46
997 89% 99-87-6 p-cymene 55% 22% 0.12
1013 85% 3779-61-1 (E)-b-ocimene 26% 0% 0.02
1061 94% 5989-33-3 linalool oxide (furanoid) 100% 22% 2.13
1071 82% 78-70-6 linalool 34% 47% 0.11
1087 93% 33933-72-1 linalool oxide (pyranoid) ketone 100% 75% 4.82
1152 93% 39028-58-5 linalool oxide (pyranoid) 100% 22% 3.98
1245 78% EPA-7965 epoxy-linalooloxide 39% 0% 0.04

Evidence of EAD (electroantennographic detection) responses or attraction of moths for these compounds is presented in Supplementary Table S2.
1 Kovats retention index (RI). 2 CAS registry number or NIST library number. 3 Percentage of all evening samples in which the compound was detected, with entries > 50% in bo
relative to m/z 91 (100%): 65 (20%), 119 (19%), 162 (11%), 92 (9%), 63 (8%), 89 (6%), 51 (5%). NIST MS Search “Substructure Information” analysis indicates molecular m
o

a
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Powers et al. Floral Scent Dynamics in Schiedea
electrophysiological and behavioral studies in other moth species
showed 9 are EAD-active (with no behavioral data available), 12
are EAD-active and attractive, one is not attractive, and no data
are available for the others (Supplementary Table S2). Including
rarer volatiles and excluding two putative wound volatiles, a total
of 74 volatiles were detected and used for analysis.

Schiedea kaalae produced more total scent per flower than S.
hookeri in the evening in the GC-MS measurements (median ±
median absolute deviation 23 ± 12 ng·flower-1·h-1 compared to
5.0 ± 3.9 ng·flower-1·h-1 for S. hookeri, Mann-Whitney test, U =
179, P < 10-10). Major components of the scent blends differed
(CAP species effect, Table 2A). For S. kaalae in the evening, three
cyclic linalool oxides (the pyranoid oxide ketone, pyranoid oxide,
and furanoid oxide) made up 67% of the average scent blend,
followed by five volatiles each making up more than 1.5% of the
blend: oct-1-en-3-ol, hexanal, octan-3-one, a-phellandrene, and
2-phenylacetaldehyde (Table 1, Figure 1A). The evening blend
was more complex for S. hookeri than S. kaalae (Shannon
diversity index of 2.1 ± 0.3 [mean ± SD] versus 1.6 ± 0.2 for S.
kaalae), and composed of oct-1-en-3-ol (41%), followed by 11
volatiles each making up 1.5–10% of the blend: hexanal, octan-3-
Frontiers in Plant Science | www.frontiersin.org 7
one, heptane-2,3-dione, cyclopentane-1,2-dione, two hexenal
isomers, benzaldehyde, an unknown benzenoid, furan-3-
ylmethanol, 3,5,5-trimethylhex-2-ene, and indole (Table 1,
Figure 1B). The first CAP axis that separated the floral scents
of the species reflects these major differences (Table 2B).

These differences in evening scent between the two species
were supported by PTR-MS measurements (Figure 2). The two
species produced distinct scent blends at all times of day
(principal components analysis of ions in the PTR-MS
spectrum across all timepoints, Figure 3). The scent
compositions of the two species were most distinct from each
other during the evening (Figure 3) and this was verified by the
full CAP analysis of GC-MS volatile compositions (Table 2A,
ordination not shown). Individuals from the two S. kaalae
populations differed from each other in their evening scent
composition (Figure 3), primarily by the emission of indole by
the two plants from Puʻumaialau (Takeuchi 3587) which was
absent in the three plants from Pahole Gulch (Weller & Sakai
904; both in the Waiʻanae range, Figure 2, Supplementary
Table S1).

Daily Patterns in Floral Scent
Comparisons Between Day and Night Using GC-MS
In both Schiedea kaalae and S. hookeri, total floral scent
emissions increased and scent composition changed markedly
in the evening. Median evening scent emissions measured
by GC-MS for S. kaalae were 1.5 times higher than daytime
emissions and 1.8 times higher for S. hookeri. Scent composition
varied by species, time of day, and their interaction (full
canonical analysis of principal coordinates, Table 2A). The
scent composition of individual plants changed between the
day and evening within both species (time effects in separate
CAP analyses: F1,38 = 6.17, P = 0.0001 for S. hookeri and F1,34 =
3.11, P = 0.0024 for S. kaalae). For S. kaalae, the volatiles with the
highest evening loadings were linalool oxide (pyranoid), linalool
oxide (furanoid), and 2-phenylacetaldehyde (Figure 1A), all of
which are EAD-active in moths (Supplementary Table S2). In S.
hookeri, volatiles with the highest evening loadings were the
unknown benzenoid, 1-3-dihydro-2-benzofuran, and indole
(Figure 1B; indole attracts hawkmoths, Supplementary
Table S2).

Fine Scale Timing Using PTR-MS
The floral scents of both species intensified in the evening in the
PTR-MS measurements (Supplementary Table S3, Figure 4) as
they did with GC-MS. This daily modulation was driven by
pulses of individual volatiles from diverse biochemical pathways
with periodicity of approximately 24 h (Supplementary Figure
S2). Each volatile had a distinctly-shaped time course (Figure 2)
but the times of maximum emission among the evening volatiles
fell within a 4 h period (Figure 4). The volatile emission patterns
formed three main groups based on their starting times relative
to the light and dark transitions (Supplementary Table S3).
Morning volatiles, such as acetaldehyde (m/z 45), started to rise
from their baseline emission rates when plants are exposed to
light, plateaued near their maximum within 1 h, began to fall at
dark, and returned to baseline 1–5 h after dark. Afternoon
TABLE 2 | Canonical analysis of principal coordinates (CAP) of the effects of
species (Schiedea kaalae or S. hookeri) and time of day on floral scent
composition. (A) ANOVA-like permutation test (n = 99999 iterations) of each
term. (B) Compound scores on the first CAP axis, which discriminated between
the species. Absolute scores ≥ 0.02 are included. Negative values indicate
compounds associated with S. hookeri, and positive values indicate compounds
associated with S. kaalae.

(A) Test of CAP model
df SS F P

Species 1 6.74 52.7 0.00001
Time 1 0.61 4.8 0.00146
Species : Time 1 0.37 2.9 0.02012
Residual 72 9.20

(B) Compounds separating species

Name CAP1 Score
S. hookeri

unknown benzenoid -0.09
indole -0.08
(E)-hex-2-enal -0.07
(E)-hex-3-enal -0.06
methyl 2-aminobenzoate -0.06
heptane-2,3-dione -0.06
1,3-dihydro-2-benzofuran -0.06
benzaldehyde -0.05
(3E)-4,8-dimethylnona-1,3,7-triene -0.05
3,5,5-trimethylhex-2-ene -0.04
anisole -0.02
N-phenylformamide -0.02
furan-3-ylmethanol -0.02
2,2,6-trimethylcyclohexane-1,4-dione 0.06
oct-1-en-3-ol 0.06
4-oxoisophorone 0.09
a-phellandrene 0.12
2-phenylacetaldehyde 0.12
linalool oxide (furanoid) 0.43
linalool oxide (pyranoid) 0.59
linalool oxide (pyranoid) ketone 0.62

S. kaalae
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Powers et al. Floral Scent Dynamics in Schiedea
volatiles, such as linalool ketone (pyranoid) (m/z 169), rose 0–6 h
before dark, peaked 0–2.5 h after dark, and returned to baseline
4–10 h after dark. Some of the afternoon volatiles that started
rising slowly in the afternoon showed an inflection point at the
Frontiers in Plant Science | www.frontiersin.org 8
dark transition and began rising more quickly (Figure 2, e.g.
indole). Dark volatiles, such as benzaldehyde (m/z 107), rose at
dark, peaked 1–3 h after dark, and returned to baseline 3–8 h
after dark.
A

B

FIGURE 1 | Floral scent composition determined by GC-MS of (A) Schiedea kaalae and (B) S. hookeri plants sampled at different times of day, visualized by
canonical analyses of principal coordinates (CAP). The CAP axis shows scent variation explained by time of day (evening on the right), and the first multidimensional
scaling (MDS) axis shows additional unconstrained scent variation. The shape of the points indicates the source population number (collection locations in
Supplementary Table S1) or a plant from a cross between populations (“Interpop”). Color indicates the time of collection, with zero indicating sunset, positive
values indicating time after sunset, and negative values indicating time before sunset. Arrows connect samples of the same inflorescence during the day and
following night. The names of volatiles are positioned by their CAP and MDS scores and labelled if they are > 0.05 units from the origin.
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Powers et al. Floral Scent Dynamics in Schiedea
Both species started emitting more volatiles in the afternoon
or after dark than in the morning (Supplementary Table S3).
Production of all of the known moth attractants started in the
afternoon or after dark (Figure 4). Daytime emission rates for
many evening-peaking volatiles were generally very low, on the
order of tens to hundreds of times less than emission rates in the
evening (Figure 4, Supplementary Table S3), although some
daily changes were more subtle [e.g. linalool oxide (pyranoid)
ketone in S. kaalae; Figure 2]. The magnitude of the diel ratio
(the emission rate 2–3 h after dark relative to the rate 5–6 h
before dark) varied between species for the same volatile (Figure
4, Supplementary Table S3); for example, S. hookeri showed
more extreme increases at night than S. kaalae in methyl 2-
aminobenzoate, indole, and the unknown nitrogen aromatic and
unknown benzenoid. The temporal patterns were consistent
across days, plants, and in some cases between species,
although the volatile emissions of S. hookeri often started and
peaked later compared to the same compound in S. kaalae
(Figure 4). In some plants, maximum emissions of some
Frontiers in Plant Science | www.frontiersin.org 9
volatiles varied over consecutive days and generally decreased
over time, perhaps due to aging of the inflorescence (Figure 2,
Supplementary Figure S2).

Overlap With Moth Visitation
Pseudoschrankia brevipalpis visited S. kaalae in ʻĒkahanui Gulch
from 0.2–1.6 h after sunset (mean ± SD 1.1 ± 0.4 h after sunset, n
= 48). For S. kaalae, most volatiles began emission 1–5 h before
the first P. brevipalpis visit to any flowers, peaked 1.5 h before–1
h after the mean time of moth visits, and returned to baseline 1–4
h after the last visit (times relative to sunset or the dark transition
in the growth chamber, Figure 4).

The areal overlap between the time of moth visitation to S.
kaalae and the times of maxima across PTR-MS ions, days, and
plants was 49%, much greater than the null expectation of 14% for
a uniform distribution of maxima, given these moth observations.
The median time of ion maxima was 1.6 h after dark for S. kaalae
and 2.4 h after dark for S. hookeri. The time courses of individual
S. kaalae volatiles varied in their degree of overlap with moth
FIGURE 2 | PTR-MS signals per flower (arbitrary units) for floral volatile emissions from five Schiedea kaalae plants (green shades) and three S. hookeri plants
(purple shades) across 2–4 d. Periods of darkness in the growth chamber are indicated by darker gray shading. Plants are named with their population number and
a letter (collection locations in Supplementary Table S1), and colored by population. Panels present those PTR-MS ion signals (m/z value given in the label) that
correspond to molecular or fragment ions of volatiles identified by GC-MS in evening scent emissions. Scales vary according to the maximum signal per flower,
displayed next to each panel.
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Powers et al. Floral Scent Dynamics in Schiedea
visitation (Figure 4), with an unknown cyclohexane, the linalool
oxides, 2-phenylacetaldehyde, and methyl 2-aminobenzoate
having the highest overlap (both 2-phenylacetaldehyde and
methyl 2-aminobenzoate are moth attractants; Supplementary
Table S2). The mean overlap for the individual time courses of S.
kaalae volatiles and moth visits was 25 ± 16%, 25 ± 15% for EAD-
active volatiles, and 30 ± 16% for moth attractants that were EAD-
active (mean ± SD), compared to a null expectation of 14% overlap
for volatiles emitted at a constant rate. Volatiles that rose in the
morning and peaked during the day (such as acetaldehyde) had
low overlap with moth visitation, and of this group only the green
leaf volatile (Z)-hex-3-en-1-ol (m/z 101, PTR-MS ion signal
shared with hexanal) was an attractant, for moths that feed on
leaves (Supplementary Table S2). The degree of overlap also
varied across nights and plants, driven primarily by variation in
Frontiers in Plant Science | www.frontiersin.org 10
the diel ratio and secondarily by changes in the timing of the
maximum (Figure 4).
DISCUSSION

In two Schiedea species pollinated by the same moth, the timing of
emission of floral volatiles was more similar than the identity of
the major compounds released by those species in the evening.
The floral scents produced by S. kaalae and S. hookeriwere notable
for the biochemical diversity of compounds that oscillate between
day and night. The timings of peak pollinator activity for S. kaalae
and of peak emissions of known moth attractants was similar,
although volatile emissions started prior to pollinator activity and
continued after cessation of pollinator activity.
FIGURE 3 | Daily patterns of floral scent in the same five Schiedea kaalae plants and three S. hookeri plants as in Figure 2 mapped by principal components
analysis (PCA) of PTR-MS ion signals with maxima over 0.001 counts·s-1·flower-1, including unidentified ions. The first and second principal components are shown
on the vertical and horizontal axes. Loadings for each ion are indicated by the black m/z numbers (Supplementary Table S3). Lines connect adjacent time points
for each plant. Time of day is represented by different colors on the line, with transitions from dark to light at 5:00 (cyan-green) and light to dark at 17:00 (orange-red)
marked on the scale. The source population (904, 3587, 879, WK) is indicated by the shape of the points (collection locations in Supplementary Table S1). Each
plant was sampled for 2–4 d.
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Moth Attractants
Many volatiles that peak in the evening in S. kaalae and S.
hookeri are typical benzenoid, oxygenated terpene, and nitrogen-
containing floral attractants of crepuscular noctuid and sphingid
moths (Supplementary Table S2), such as those found in the
nocturnal floral emissions of moth-pollinated orchids (Kaiser,
1993), Nicotiana (Loughrin et al., 1991), Petunia (Hoballah et al.,
2005), and other diverse taxa (Knudsen and Tollsten, 1993;
Dobson et al., 1997; Miyake et al., 1998). In other studies, the
hawkmoth Hyles lineata shows antennal responses to many
Frontiers in Plant Science | www.frontiersin.org 11
volatiles emitted in the evening by the two Schiedea species
(Supplementary Table S2).

The potential attractive role of these nocturnally-emitted
compounds in Schiedea is highlighted by their increase in
production with evolutionary transitions to moth pollination
in several other genera. In Clarkia, production of linalool and
linalool oxides (the pyranoid and furanoid forms produced by S.
kaalae) evolved in a transition from bee to nocturnal moth
pollination (Raguso and Pichersky, 1995). In Ipomopsis, indole
(in our study produced primarily by S. hookeri) attracts
FIGURE 4 | Moth foraging activity and summaries of temporal peaks of floral volatile emissions of Schiedea kaalae (green) and S. hookeri (purple). Boxplots contain
the median, first and third quartiles, range, and outliers (beyond 1.5 times the interquartile range from the first or third quartile). Left: The timing of volatiles emissions.
Tentative identifications for each ion are given after their protonated m/z value. Fragment ions are indicated by an asterisk by the name. One PTR-MS ion per
compound is shown (Supplementary Table S3), for ions with maxima over 0.001 counts·s-1·flower-1 for all plants at all time points. For each ion and species, three
boxplots summarize (across all plants and days) the start (white), maximum (maroon), and end (light orange) of emissions. Timing points were inferred by fitting
Weibull functions to ion signals and trimming to 99% of the fitted peak area. Ions are arranged vertically by the mean starting time relative to the dark transition in the
growth chamber. Light and dark periods in the growth chamber are indicated by background shading. The dark transition in the growth chamber was approximately
coincident with the ambient greenhouse sunset time. Ion labels are colored by whether they elicit a moth antennal EAD response (blue), elicit an EAD response and
attraction (red), are not reported in the literature (black, labelled ‘no data’), contain signals from multiple compounds (black), or are analytical unknowns (gray, all
references in (Supplementary Table S2) except acetic acid, Knight et al., 2011). Middle: The magnitude of daily changes in emission of floral volatiles. Boxplots
show the diel ratio in emissions (evening/day) for evening (19:00–20:00 PST, 2–3 h after dark) and day (12:00–13:00 PST, 5–4 h before dark) for each plant and
date. A ratio > 1 (right of vertical bar) indicates that emissions increased in the evening. Right: The overlap of S. kaalae volatile emissions with moth activity. Boxplots
show the areal overlap value between two curves: the time course of each volatile relative to dark, and the distribution of P. brevipalpis visit times relative to sunset.
Overlap values vary among plants and days. The vertical bar indicates the null overlap expectation for a hypothetical volatile that does not change in emission over
the course of a 24 h period (14% overlap). Bottom: Visits of Pseudoschrankia brevipalpis to S. kaalae flowers relative to sunset at the field site over four dates.
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hawkmoths to I. tenuituba but is not emitted by its
hummingbird-pollinated sister species I. aggregata (Bischoff
et al., 2015). Nicotiana bonariensis produces the apocarotenoid
4-oxoisophorone and its variant 2,2,6-trimethylcyclohexane-1,4-
dione (both produced by S. kaalae) from flowers that open at
dusk and are pollinated by small crepuscular moths (Noctuidae)
rather than the hawkmoths and hummingbirds attracted to close
relatives of N. bonariensis that lack these compounds (Raguso
et al., 2003; Clarkson et al., 2004; Kaczorowski et al., 2005). None
of the evening-peaking volatiles in Schiedea hookeri and S. kaalae
were present in the wind-pollinated Schiedea species (S. globosa
and S. kealiae, Jürgens et al., 2012) that P. brevipalpis largely
avoided in field choice tests (Weller et al., 2017).

Species Differences in Floral Scent
In this study, S. kaalae and S. hookeri share a sole pollinator in
an area of sympatry, but have different evolutionary histories,
leading us to predict distinct floral volatile compositions. In
sympatric species from different lineages of sexually-deceptive
and oil-secreting orchids, similar selection pressures imposed
by the same pollinator have driven convergence in overall floral
scent, or in the subset of compounds that have antennal activity
(Cortis et al., 2009; Gögler et al., 2009; Nunes et al., 2017). We
found instead that the evening floral scents of the two Schiedea
species pollinated by P. brevipalpis differ qualitatively in
composition. Scent differences between the species are more
accentuated during the evening than during the day, echoing
the same pattern found in nine Nicotiana species, some of
which are nocturnally pollinated by hawkmoths (Raguso et al.,
2003). The overall composition and major compounds of each
species are unique: Schiedea kaalae produces a set of three
linalool oxides and 2-phenylacetaldehyde, which are produced
in relatively minute amounts by S. hookeri, and S. hookeri
uniquely produces an unknown benzenoid and heptane-2,3-
dione (Table 1). These qualitative differences could result from
the evolutionary history of S. hookeri, which is in a clade of
wind-pollinated species (Schiedea sect. Schiedea) and may
represent a reversal to moth pollination from ancestral wind
pollination (the current phylogenetic hypothesis does not fully
resolve the direction of this shift, Willyard et al., 2011).
However, both S. kaalae and S. hookeri produce the moth
attractant benzaldehyde (Hoballah et al., 2005) and the insect
attractant oct-1-en-3-ol (Hall et al., 1984), and S. hookeri emits
the moth attractants indole (Bischoff et al., 2015) and methyl 2-
aminobenzoate (Bisch-Knaden et al., 2018) which are emitted at
lower rates by S. kaalae (Figure 2). Experiments that test moth
preferences in the field at sites of both species (as in Bischoff
et al., 2015) are needed to elucidate whether one critical volatile,
a blend of the shared volatiles, or other factors are important for
attraction of pollinators. Given the observed differences in scent
between these related species that share the same moth species
as a pollinator, future community studies should not always
assume strict similarity in scent composition across unrelated
plant taxa visited by the same pollinator or pollinator guild.
Instead, distinct sets of compounds may be perceived by
those pollinators.
Frontiers in Plant Science | www.frontiersin.org 12
Overlap With Moth Visitation
Our work builds on diverse examples of synchrony in floral
signals and pollinator activity during the day (Matile and
Altenburger, 1988; Kite and Smith, 1997; Dötterl et al., 2012a;
Nunes et al., 2016) and night (e.g. Nilsson, 1983; Dötterl et al.,
2005; Hoballah et al., 2005; Dötterl et al., 2012b; Steen et al.,
2019) and enhances temporal resolution to characterize the
overlap of pollinator activity and floral volatile production. In
both Schiedea species, the emissions of many floral volatiles were
restricted to the afternoon and evening hours and in S. kaalae
peaked within 2 h of the mean time of P. brevipalpis visits in the
field (Figure 4). In S. kaalae, the distribution of timings of
maximum emissions across all volatiles, days, and plants
indicated a good but imperfect temporal match between
potential signals and the insect receiver. The volatiles that peak
during the day and fall at dark would not be perceived by
crepuscular moths after sunset, and their patterns of emission
were all consistent with induction by light. The daytime volatiles
could be related to photosynthesis (in the bracts of S. hookeri) or
transpiration, rather than pollinator attraction (as is the case for
both the daytime-peaking acetaldehyde and ethanol, its
precursor; Graus et al., 2004). The maximum emissions of S.
hookeri evening volatiles were shifted about 1 h later on average
than their counterparts in S. kaalae, and many S. hookeri volatiles
continued to be emitted until the early morning. These
differences could stem from alternate temporal selection
pressures (perhaps moths visit S. hookeri at a later time than
they visit S. kaalae), or differences in evolutionary history of the
plant species.

In S. kaalae, many volatile emissions spanned a much broader
time range than the period of moth visitation. This could indicate
constraints on how fast volatile emissions can be modulated, low
ecological costs (e.g. apparency to herbivores) or low energetic
costs of volatiles at those times, or a marginal benefit of attracting
any moths that may be active at those times. Early initiation of
volatile emission (i.e., for the volatiles that rose in the afternoon)
could create a long downwind scent plume for long-distance
attraction of moths (Supplementary Table S3, Cardé and Willis,
2008). Conversely, the volatiles that rise after dark just as moths
are beginning to forage could be important for short-distance
attraction. The peaks of individual S. kaalae evening volatiles
differed in their degree of overlap with the distribution of moth
visitation (20–55%; Figure 4). Known moth attractants, but not
EAD-active volatiles, had slightly higher areal overlap in time
with moth visits than the mean across all volatiles. This areal
overlap statistic captured temporal differences from both early or
late shifts in the time course of emissions and differences in peak
width (narrow or broad), the two types of differences that are
characterized in studies of phenology (Miller-Rushing et al.,
2010). These two components were also examined separately
by calculating times of maxima and diel ratios. Either type of
difference could affect how and when pollinators or other visitors
could perceive these volatiles.

Daily regulation of attractants may increase the fitness of
plants by reducing energetic costs, and it may also serve to reduce
the attraction of plant antagonists that use the same floral cues as
July 2020 | Volume 11 | Article 1116
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pollinators (Baldwin et al., 1997; Nunes et al., 2016). No native
florivores or herbivores have been reported on outplanted or
natural populations of these or any other Schiedea species.
Though the fitness costs of emitting the evening volatiles
during the day are unknown, the high level of daytime and
before-dawn suppression indicates they could be substantial.

Floral scent is a complex trait in both synthesis and
perception, and identification of volatiles or suites of volatiles
that serve different functional roles (defense, attraction,
metabolism) within diverse scent blends is challenging.
However, categorizing volatiles by their pattern of temporal
regulation (Nielsen et al., 1995; Marotz-Clausen et al., 2018)
narrows the set of compounds that potentially influence the
behavior of pollinators with constrained windows of activity.
Follow-up behavioral studies might be able to test these
candidate volatiles to confirm a function. In this case, volatiles
could be classified by whether they increased immediately with
light (e.g. monoterpenes), increased in the afternoon without a
light cue (e.g. pyranoid linalool ketone), or increased after dark
(e.g. benzaldehyde; Figures 2 and 4). Volatiles could also be
ranked by their relative change in emission rate when the
pollinator is active vs. not active, and by their overlap with
pollinator visitation. Future studies could investigate the
proximate causes of regulation of these volatiles (e.g. by the
circadian clock, reviewed in Fenske and Imaizumi, 2016), and
identify which class is most attractive to pollinators. We predict
that the afternoon-rising volatiles are long-range attractants
because they would diffuse a great distance by the time moths
are active, allowing moths to detect the population. Volatiles that
increase after dark may be short-range attractants because they
would not establish a long scent plume by the time moths
are active.
CONCLUSIONS

Almost all volatiles released from inflorescences of Schiedea
kaalae and S. hookeri displayed strongly time-specific
modulations. Most S. kaalae volatiles peaked during or
several hours after the brief time of evening visitation of
Pseudoschrankia brevipalpis, a pollinator of both species. This
pattern is generally consistent with selection that maximizes the
attraction of pollinators by producing volatiles when pollinators
are active, but the emission of most evening volatiles extended
hours before the period of pollinator activity, when they could be
active in long-range attraction. Additionally, some volatiles,
perhaps unrelated to pollinator attraction, followed a daytime
cycle. The composition of volatiles differed markedly between
Frontiers in Plant Science | www.frontiersin.org 13
species, especially in the evening, and yet the timings of peak
emissions were similar between the species. Knowing when
emissions of each volatile begin, peak, and end will help to
focus studies on the ecological functions of volatile compounds
based on their temporal overlap with the activity of mutualists
and antagonists.
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Prieto-Benıt́ez, S., Dötterl, S., and Giménez-Benavides, L. (2015). Diel variation in
flower scent reveals poor consistency of diurnal and nocturnal pollination
syndromes in Sileneae. J. Chem. Ecol. 41, 1095–1104. doi: 10.1007/s10886-015-
0645-z

Prieto-Benıt́ez, S., Dötterl, S., and Giménez-Benavides, L. (2016). Circadian
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