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For several decades, researchers are working to develop improved major crops with
better adaptability and tolerance to environmental stresses. Forage legumes have been
widely spread in the world due to their great ecological and economic values. Abiotic and
biotic stresses are main factors limiting legume production, however, alfalfa (Medicago
sativa L.) shows relatively high level of tolerance to drought and salt stress. Efforts
focused on alfalfa improvements have led to the release of cultivars with new traits of
agronomic importance such as high yield, better stress tolerance or forage quality. Alfalfa
has very high nutritional value due to its efficient symbiotic association with nitrogen-
fixing bacteria, while deep root system can help to prevent soil water loss in dry lands.
The use of modern biotechnology tools is challenging in alfalfa since full genome, unlike
to its close relative barrel medic (Medicago truncatula Gaertn.), was not released yet.
Identification, isolation, and improvement of genes involved in abiotic or biotic stress
response significantly contributed to the progress of our understanding how crop plants
cope with these environmental challenges. In this review, we provide an overview of
the progress that has been made in high-throughput sequencing, characterization of
genes for abiotic or biotic stress tolerance, gene editing, as well as proteomic and
metabolomics techniques bearing biotechnological potential for alfalfa improvement.

Keywords: alfalfa, Medicago sativa, genomics, metabolomics, proteomics, stress resistance genes

INTRODUCTION

Legumes are important food crops for the exponentially growing population, owing to their
micronutrient, macronutrient, and secondary metabolite content (Le et al., 2007). Some of these
organic compounds (e.g., phytoalexins and chitinases) play roles in plant defense against pathogens
and pests (He and Dixon, 2000). Moreover, Fabaceae is one of the most studied plant families, and
it has gained high agricultural importance, especially owing to its ability to fix nitrogen in symbiosis
with rhizobia (Doyle and Luckow, 2003).

Medicago sativa L., commonly known as alfalfa or “lucerne,” belongs to Fabaceae, and its first
cultivated form most likely originates from western Persia. It then spread to many regions in Asia,
Europe, and America. In addition, Rashmi et al. (1997) and Samac and Temple (2004) reported that
alfalfa ranks fourth in terms of acreage and economic value, following corn, soybean, and wheat.
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The genus Medicago includes both perennial and annual
species. Alfalfa is a highly valuable perennial deep-rooted forage
legume, especially because of its widespread production, soil
protection, and ability to improve nitrogen-limited soils (Radović
et al., 2009). It is also widely cultivated for livestock feed
(Flajoulot et al., 2005), and is used as a biofuel feedstock for
ethanol production, either as hay or silage (McCoy and Bingham,
1988). The biological and agronomical potential of alfalfa, like
all other members of the whole legume family, is extraordinary
because it requires little to no nitrogen fertilizer for optimal
growth (Ebert, 2007). In addition, alfalfa plays an important
role as a free fertilizer providing nitrogen to subsequent crops
(Triboi and Triboi-Blondel, 2014).

Alfalfa shows a high content of proteins, enzymes (amylase,
coagulase, peroxidase, erepsin, lipase, invertase, and pectinase),
antioxidants, minerals, and vitamins A, C, K, and E, as well as
valuable phytopharmaceutical components (Bora and Sharma,
2011 and references therein). Moreover, alfalfa and some other
species of Fabaceae family possess two different thiol redox
compounds, namely glutathione (GSH) and the homoglutathione
(hGSH), with higher content of hGSH (Klapheck, 1988; Baldacci-
Cresp et al., 2012). More specifically, alfalfa shows different
ratios of hGSH/GSH in diverse organs such as leaves, stems,
and roots (Pasternak et al., 2014). Thus, alfalfa represents one of
the most valuable and important forage crops, and can also be
used in grasslands as a cover crop for improved weed control.
Finally, alfalfa is also suitable for use in the production of
recombinant pharmaceutical proteins (Fu et al., 2015) and in
phytoremediation (Nirola et al., 2016).

The tetraploid genome of alfalfa and outbreeding mating
systems have made selective breeding harder (Zhou et al.,
2011; Annicchiarico et al., 2015). Advanced methods such as
genomic, proteomic, and metabolomic approaches, as well as
gene editing, could lead to the practical applications of genes that
have biotechnological value for alfalfa improvement, especially
if applied in an integrated and targeted manner. As a result,
single or multiple genes might show desirable effects on several
agronomically important alfalfa traits, which can significantly
accelerate research in comparison to conventional breeding
(Singer et al., 2018). Alfalfa is a major source of proteins in
the livestock and dairy industries. In the last years, alfalfa
production has been displaced to saline environments by major
cereals. Therefore, the incorporation of transgenic traits into
alfalfa with varying degrees of tolerance to salinity has been
developed and this robust approach can improve the productivity
and quality of nitrogen-fixing crops (Kang et al., 2016; Stritzler
et al., 2018). Genetically engineered glyphosate-resistant alfalfa
was commercialized in the United States in 2010. Another
alfalfa variety with reduced lignin content stacked to glyphosate
resistance trait has been available since 2015. Reduced lignin
content in forage legumes can improve their digestibility by
animals, thus it is an important forage quality trait (Li et al., 2016;
Barros et al., 2019).

The purpose of this review is to provide a perspective on the
current state of alfalfa biotechnology research. It focuses mainly
on the biotechnological potential of genomic and transcriptomic
approaches, biotechnologically valuable genes, gene editing,

proteomics, and metabolomics. When appropriate it is compared
to barrel medic.

GENOMIC APPROACHES

The identification of genes that affect legume crop production
represents an important aim of current genomic studies
(Bevan et al., 2017), and this requires knowledge of their full
genomic sequences. Technologies for sequencing DNA and RNA
have undergone revolutionary improvements (Ari and Arikan,
2016). It is known that after the evolutionary split between
monocots and eudicots, several whole genome duplications and
triplications had occurred in legumes (Severin et al., 2011;
Masonbrink et al., 2017), which might delay whole genome
sequencing efforts. The major strength of next-generation
sequencing (NGS) is its ability to detect abnormalities across the
entire genome. NGS is less costly and has a faster turnaround time
compared to classical sequencing methods. New NGS platforms,
such as the Roche/454 system (Margulies et al., 2005), Illumina
platform (Wang et al., 2012), real-time DNA sequencing by
Pacific Biosciences (Eid et al., 2009), Oxford Nanopore system
(Lu et al., 2016), and Ion Torrent system (Rothberg et al., 2011),
were used for sequencing crop and legume genomes. They have
had a major impact on plant research, since they enable the
understanding of genomic complexity as well as the identification
of genomic variations, such as single nucleotide polymorphisms
(SNPs) or insertions/deletions (INDELs; Valliyodan et al., 2017;
Abdelrahman et al., 2018). NGS and bioinformatics approaches
for high-throughput data analysis are major tools in modern
plant breeding programs (Abdelrahman et al., 2015, 2017a,b;
Pavlovich, 2017). These modern technologies are also used in
legume research, and several recent studies have been devoted
to alfalfa genomics using high-throughput genome sequencing
(reviewed by Hawkins and Yu, 2018).

High-Throughput NGS in Genomics and
Transcriptomics
Genome sequencing and assembly have been applied to many
plant species, including crops. Such genome assemblies serve
as common references for alignment with re-sequenced plants
(Huang et al., 2012; Schreiber et al., 2018). Large-scale systematic
genome sequencing has been carried out in leguminous plants
such as Lotus japonicus (Sato et al., 2008), M. truncatula (release
3.0)1, and Glycine max (Schmutz et al., 2010). The genome
sequence of alfalfa has not yet been published, and current
transcriptomic studies and SNP discoveries rely on the barrel
medic genome sequence alignment (genome version2 Mt4.0v1;
Young et al., 2011; Tang et al., 2014). Currently, the most
advanced genome sequencing method is NGS. It has become the
major tool for the development of new molecular markers and for
gene identification (Edwards and Batley, 2010). Together with the
rapid development of NGS, the number of plants with completely
sequenced genomes has dramatically increased (Van et al., 2013;

1https://www.jcvi.org/research/medicago-truncatula-genome-database
2phytozome.jgi.doe.gov/pz/portal.html#!info?alias=Org_Mtruncatula
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Le Nguyen et al., 2018; Kersey, 2019). Advantages of NGS include
lower costs and shorter time requirements. The development of
NGS technology contributed to the identification of new genes
that had evolved by whole-genome duplication and structural
variations in chromosomes (Barabaschi et al., 2012; Van et al.,
2013). Reference genome sequences of several legume and crop
species are now available, and candidate genes of important
SNPs can be rapidly and easily identified (Gao et al., 2012;
Van et al., 2013; Le Nguyen et al., 2018; Scheben et al., 2019).
Alfalfa is an outbred, tetrasomic tetraploid (2n = 4x = 32) with
eight basic chromosomes and a genome size of 800–1000 Mbp
(Blondon et al., 1994). Genetic and genomic resources have been
widely explored and developed, but in the absence of a fully
sequenced and assembled reference genome for alfalfa, genome
of closely related barrel medic is used as a model organism (Zhou
et al., 2011). Barrel medic is a diploid species (2n = 2x = 16)
with smaller genome (about 550 Mbp; Piano and Pecetti, 2010).
NGS technologies could speed up the discovery of quantitative
trait loci (QTLs) and candidate SNPs, which represent common
sequence variations among plants and are functionally important.
Numerous molecular markers are used in high-throughput
genotyping by sequencing (GBS) platforms associated with alfalfa
mapping (Hawkins and Yu, 2018), population diversity studies
(Herrmann et al., 2018), and genomic selection (Annicchiarico
et al., 2016). In the past years, low density linkage maps were
constructed on diploid alfalfa (Brummer et al., 1993; Kiss et al.,
1993; Echt et al., 1994; Julier et al., 2003). Although several
genetic linkage maps have been constructed for tetraploid alfalfa,
most of them were framework maps with only few markers
(Brouwer and Osborn, 1999; Julier et al., 2003; Musial et al.,
2007; Robins et al., 2007; Khu et al., 2013). Li X. et al.
(2014) have constructed a saturated genetic linkage map of
autotetraploid alfalfa by using GBS. They have shown high
synteny between linkage groups of alfalfa and barrel medic, and
clearly identified translocations between chromosomes 4 and 8,
and small inversion on chromosome 1. The high-density linkage
maps contained 3,591 SNP markers on 64 linkage groups across
both maternal and paternal genomes of an autotetraploid alfalfa
F1 population (Li X. et al., 2014).

Genome-wide associated studies (GWAS) are a modern and
powerful strategy that can be used to overcome the limitations
of conventional QTL mapping. GWAS map genetic loci in a
breeding population, relying on linkage disequilibrium (LD;
Liu X. P. et al., 2019). Recently, GWAS have been used
in the identification of genetic loci in crop species such as
soybean (Hwang et al., 2014), maize (Olukolu et al., 2016),
barrel medic (Kang et al., 2015), and alfalfa. Zhang T. et al.
(2015) evaluated two important features associated with drought
resistance, namely drought resistance index (DRI) and relative
leaf water content (RWC) under greenhouse conditions in
198 alfalfa cultivars and landraces. These results were then
correlated with genomic data obtained through GBS. Subsequent
to the QTL mapping approach, GWAS provided identification
of 15 loci associated with DRI and RWC. Markers associated
with DRI are located at all chromosomes, whereas markers
associated with RWC are located at chromosomes 1, 2, 3, 4,
5, 6, and 7. Co-localization of markers for DRI and WRC

were found on chromosomes 3, 5, and 7 (Zhang T. et al., 2015).
A GWAS approach using more than 15,000 genome-wide SNPs
obtained through GBS was applied to examine forage yield
and nutritive value-related traits. Five genes, containing known
SNPs aligned to the barrel medic genome, were found as
candidates in determining fall dry matter yield (TUBBY-LIKE
PROTEIN), summer dry matter yield (E3 SUMO-PROTEIN
LIGASE SIZ1, RNA-DEPENDENT RNA POLYMERASE FAMILY
PROTEIN), fall stem weight (UBIQUITIN-LIKE-SPECIFIC
PROTEASE ESD4-LIKE PROTEIN), and cell wall biogenesis
(NUCLEOTIDE-DIPHOSPHO-SUGAR TRANSFERASE FAMILY
PROTEIN; Sakiroglu and Brummer, 2017). Aiming to find
markers for alfalfa forage quality, 154 plants originating from
the second generation prepared by the outcrossing of three
alfalfa cultivars were subjected to GBS, while their half-sib
progenies were phenotyped for forage quality parameters under
three different growing conditions. Subsequently, GWAS of SNPs
was carried out using barrel medic as a reference genome,
confirming a polygenic control of quality traits and indicating
a substantially different genetic control of a given trait in stems
and leaves (Biazzi et al., 2017). Important alfalfa loci for salt
tolerance during germination were identified by similar marker-
trait association using a GWAS approach (Yu et al., 2016).
Remarkably, they used 198 different accessions with potential
drought tolerance, whereas DNA libraries were sequenced in
two lanes of an Illumina Hi-Seq2000 instrument. Identified SNP
markers were located on all chromosomes, with the exception
of chromosome 3. Several alfalfa loci showed similar genetic
locations to the reported QTLs associated with salt tolerance in
barrel medic. The results suggest the similarity of mechanisms
controlling salt stress responses in these two species. This study
resulted in the identification of 14 genes connected to 23 markers
associated with salt tolerance during germination. These include
PEROXYGENASE, B3 DNA-BINDING PROTEIN, and CPR5
PROTEIN, which are linked to cuticle wax biosynthesis and ABA
signaling (Yu et al., 2016).

Over the last two decades, several methods have been
developed that allowed the examination of global transcriptional
changes. The most used ones are the hybridization of cDNAs
(DNA microarrays) and the deep sequencing of cDNA (RNA-
Seq; Schena et al., 1995; Wang et al., 2009; Lardi and Pessi,
2018). RNA-Seq, a massive parallel sequencing method for
transcriptome analysis, was developed 10 years ago (Wang
et al., 2009). Transcriptomic studies analyze only the transcribed
portion of the genome and provides in-depth sequencing
coverage and additional qualitative information such as isoform-
specific expression (Abdelrahman et al., 2018). In contrast to
microarrays, ribosomal RNA (rRNA) does not hybridize to the
chip, as homologous probes are not present. In RNA-Seq, the
abundant rRNA is removed (Lardi and Pessi, 2018). Originally,
transcriptomic studies were based on Sanger sequencing of
expressed sequence tags (ESTs) or microarrays, which was used
in alfalfa and barrel medic (Aziz et al., 2005; Cheung et al., 2006;
Yang et al., 2010). It has also been applied for other legumes
such as G. max (Le et al., 2012; Ha et al., 2015; Tripathi et al.,
2016), L. japonicus (Asamizu et al., 2004), and Cicer arietinum
(Deokar et al., 2011).
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Several studies contributed to the transcriptome sequencing
of alfalfa with various coverage. These studies relied on
NGS technologies such as 454 technology (Han et al., 2011)
or RNA-Seq (Yang et al., 2011; Li and Brummer, 2012;
Liu et al., 2013; O’Rourke et al., 2015). Liu et al. (2013) performed
de novo transcriptome sequencing of M. sativa L. subsp. sativa
using Illumina paired-end sequencing. Plant material included
15 tissue types, and the transcriptome coverage was 5.64 Gbp
of clean nucleotides. About 40,433 unigenes were obtained,
and 1649 potential expressed sequence tags simple sequence
repeat markers (EST-SSRs) were annotated by alignment with
the following databases: the National Center for Biotechnology
Information (NCBI) nonredundant protein (Nr) database, the
NCBI non-redundant nucleotide sequence (Nt) database, Swiss-
Prot, The Kyoto Encyclopedia of Genes and Genomes (KEGG),
the Clusters of Orthologous Group (COG), Translated EMBL
(TrEMBL), and the InterPro (Ipr) database (Liu et al., 2013).
RNA-Seq analysis of two alfalfa subspecies, namely M. sativa
ssp. sativa (B47) and M. sativa ssp. falcata (F56) using roots,
nitrogen-fixing root nodules, leaves, flowers, elongating stem
internodes, and post-elongation stem internodes resulted in
112,626 unique transcript sequences, which were assembled into
the alfalfa Gene Index 1.2 (MSGI 1.2; O’Rourke et al., 2015).
Chao et al. (2019) used PacBio SMRT technology and identified
72,606 open reading frames (ORFs) including 46,616 full-length
ORFs, 1670 transcription factors and 44,040 SSRs. A total of
7568 alternative splicing events and 17,740 long non-coding
RNAs supported the feasibility of deep sequencing full length
RNA from alfalfa transcriptome on a single-molecule level (Chao
et al., 2019). Another approach developed to provide long-read
sequencing of transcripts is Oxford Nanopore Technologies R©.
The MinION device, which was developed by Oxford Nanopore,
is a portable apparatus compatible with a PC or laptop (Jain et al.,
2016; Lu et al., 2016). Fleming et al. (2018) evaluated changes in
mRNA in dry soybean seeds with use of MinION-based pipeline
technology. Li et al. (2019) used MinION-based technology for
high-throughput mapping of transgenic alleles in soybean. They
rapidly mapped the transgene insertion positions in 51 transgenic
soybean plants in a single 1D sequencing run. This method was
optimized using a population of soybean lines, but it can be
adapted to map the transgenes in any other crops.

TRANSCRIPTOMIC APPROACHES AND
GENE EXPRESSION MODIFICATIONS

Resistance to Abiotic Stress
Salinity stress interferes with plant growth because it causes
two main stresses on plants: hyperosmotic pressure and ion
toxicity, especially due to Na+ (Volkov et al., 2004). High
salinity often triggers an increase in cytosolic Ca2+, reactive
oxygen species (ROS), abscisic acid (ABA), and mitogen activated
protein kinase (MAPK) signaling (Ovečka et al., 2014; Mittler
and Blumwald, 2015). These activated signal molecules affect
plant transcriptomes by regulating transcription factors (Xiong
et al., 2002; Zhu, 2002). One of the basic strategies in plant
stress responses is the accumulation of water-soluble compounds
of low molecular weight, such as betaines, polyols, sugars,

and amino acids (Chen and Murata, 2002). These compounds
accumulate to high concentrations under water or salt stress
and protect plants via ROS detoxification and membrane
integrity maintenance (Bohnert and Jensen, 1996). For example,
glycinebetaine (GB) is a particularly effective protectant against
abiotic stress (Chen and Murata, 2008), and accumulates rapidly
in plants exposed to salt, drought, and low temperature stresses
(Rhodes and Hanson, 1993).

Previous studies have shown that overexpression of stress-
related genes caused enhanced tolerance of alfalfa to the
salinity stress (Luo et al., 2019b). Li H. et al. (2014)
successfully targeted CHOLINE OXIDASE A (CODA) cDNA
derived from Agrobacterium globiformis to alfalfa chloroplasts
under the control of the strong stress inducible SWEETPOTATO
PEROXIDASE ANIONIC 2 (SWPA2) promoter (Kim et al.,
2003). Such transgenic alfalfa plants exhibited increased tolerance
to oxidative, drought, and salt stress. Because salinity also
causes cellular ionic imbalances, the Na+/H+ antiporter in the
plasma membrane (SOS1 – SALT OVERLAY SENSITIVE 1)
and tonoplast (NHX2 – SODIUM/HYDROGEN EXCHANGER
2) can maintain higher K+/Na+ ratios in the cytoplasm as
a protection against sodium toxicity (Fukuda et al., 1999;
Xia et al., 2002; Zhang L. Q. et al., 2014). Moreover, the
expression of foreign genes, such as TaNHX2 (Triticum aestivum
NHX2), AhBADH (Atriplex hortensis BETAINE ALDEHYDE
DEHYDROGENASE), SsNHX1 (Suaeda salsa NHX1), and
GmDREB1 (G. max DEHYDRATION-RESPONSIVE ELEMENT
BINDING PROTEIN 1), can increase salt tolerance in transgenic
alfalfa plants (Zhang et al., 2012). As such, Zhang L. Q. et al.
(2014) transformed the exogenous gene SeNHX1 (Salicornia
europaea NHX1) into alfalfa using Agrobacterium-mediated
transformation; this enhanced tolerance to salt stress was
manifested by improved photosynthesis and membrane stability.
Another attempt to improve salt tolerance in alfalfa was reported
by Jin et al. (2010) using transformation with the soybean
DREB ortholog, GmDREB1, under the control of Arabidopsis
stress-inducible RD29A (RD – RESPONSIVE TO DESICCATION)
promoter. Ion leakage, chlorophyll fluorescence, total soluble
sugars, transcript level of 11-PYRROLINE-5-CARBOXYLATE
SYNTHASE (P5CS), and free proline contents were correlated
with the higher salt tolerance of transgenic lines (Jin et al., 2010).
Wang et al. (2014) generated and characterized transgenic alfalfa
plants with heterologous expression of AtNDPK2 (NUCLEOSIDE
DIPHOSPHATE KINASE 2) under the control of oxidative stress
inducible SWPA2 promoter. These transgenic plants showed
increased tolerance to oxidative, high temperature, salt and
drought stresses. Such enhanced tolerance was mediated by
activation of ROS scavenging, enhanced activity of NDPK2
enzyme, improved protection of membrane integrity, and
increased proline accumulation (Wang et al., 2014).

First studies on drought responses of alfalfa started in the
1990s (Luo et al., 1991, 1992; Laberge et al., 1993). Metabolite
profiling and proteomic approaches identified soluble sugars,
amino acids, and proteins that respond to drought in leaves
and nodules of alfalfa variety Magali (Aranjuelo et al., 2011).
Simultaneously, Kang et al. (2011) have shown systematic
analysis of two alfalfa varieties, Wisfal and Chilean, with
different tolerance/sensitivity to the drought stress. They have
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identified many genes involved in adaptation to the drought
stress, including genes encoding transcription and regulatory
factors, or genes involved in the biosynthesis of osmolytes and
antioxidants. Knowledge of such genes can help in breeding
programs. A number of microRNAs have been used to improve
various crop species via genetic engineering (Macovei et al.,
2012; Zhou and Luo, 2013; Aung et al., 2015). Researchers also
characterized microRNAs and their target genes that respond
to hypoxia, wounding, heat or oxidative stress (Zhao et al.,
2007; Budak et al., 2015). Recent study by Arshad et al. (2017)
suggested that overexpression of microRNA156 (miR156OE)
is an emerging tool to improve drought tolerance of alfalfa
since it silenced SQUAMOSA PROMOTER BINDING PROTEIN-
LIKE 13 (SPL13i) leading to reduced water loss and enhanced
stomatal conductance and photosynthetic assimilation. Another
study proposed a role of miR156OE and SPL13i in heat
stress tolerance since plants carrying these constructs showed
increased antioxidant levels (Matthews et al., 2019). As found
by NGS, plants possessing miR156OE exhibited broad changes
in gene expression, including genes involved in nodulation, root
development and phytohormone biosynthesis (Aung et al., 2017).
Taking together, miR156 can improve drought or heat stress
tolerance in alfalfa, at least partially by silencing SPL13 (Feyissa
et al., 2019; Matthews et al., 2019).

RNA-Seq analysis was utilized in the transcriptome profiling
of alfalfa in order to study the molecular mechanisms underlying
frost (Song et al., 2016), salinity (Postnikova et al., 2013; An
et al., 2016; Lei et al., 2018), drought (Arshad et al., 2018),
resistance to aluminum (Liu W. et al., 2017), lead (Xu et al.,
2017) and waterlogging (Zeng et al., 2019), or fall dormancy
(Zhang S. et al., 2015). For example, genes encoding membrane
proteins, and proteins of hormonal signal transduction, and
ubiquitin-mediated proteolysis pathways contribute to the
freezing adaptation mechanisms in alfalfa (Song et al., 2016).
Using high-throughput sequencing technology, Postnikova et al.
(2013) have demonstrated that salinity stress affects a variety of
alfalfa genes. Among the most affected ones were genes of known
function, such as DIHYDROFLAVONOL REDUCTASE (DFR),
transcription factor MYB59, SUGAR TRANSPORTER ERD6-
like 16 (ERD – EARLY RESPONSE TO DEHYDRATION), and
INOSITOL-145-TRISPHOSPHATE 5-PHOSPHATASE (IP5P2).
This study revealed that 86 transcription factors responded
to salinity stress; among them are those belonging to GRAS,
ARR, JUMONJI, and MYB families that were preferentially
upregulated in the tolerant alfalfa cultivar (Postnikova et al.,
2013). Alfalfa fall dormancy is determined by genes involved in
auxin (e.g., AUXIN-INDUCED PROTEIN 5NG4) and ethylene
signaling (ethylene responsive TF RAP2-11) and carbohydrate
transport (ERD6-LIKE PROTEIN; Zhang S. et al., 2015).
Genes encoding BETA-AMYLASE, ETHYLENE RESPONSE
FACTOR (ERF), CALCINEURIN B-LIKE (CBL) INTERACTING
PROTEIN KINASES (CIPKs), GLUTATHIONE PEROXIDASE
(GPX), and GLUTATHIONE S-TRANSFERASE (GST) are among
those important for waterlogging stress resistance in alfalfa
(Zeng et al., 2019).

Plant damage caused by saline stress is usually divided into
three categories: high pH damage, osmotic shock, and toxic
cation stress. Nutrient solution pH variation significantly affected

growth of alfalfa seedlings with the optimal pH values in the range
between 5.0 and 6.0, as estimated by length and fresh weight
of roots, hypocotyls, epicotyls, first leaf petioles, and leaf blades
(Köpp et al., 2011). Alfalfa is a saline-alkaline stress-tolerant
species (Zhu, 2001; Wong et al., 2006; Gong et al., 2014; An
et al., 2016). An et al. (2016) performed transcriptomic analysis
of whole alfalfa seedlings treated with saline-alkaline solutions
using ion torrent sequencing technology to study changes in
the gene expression pattern. This method detects hydrogen ions
that are released during DNA polymerization. DEG profiles were
obtained and annotated using two methods. Firstly, generated
reads were mapped to barrel medic, which has a sequence that
is highly homologous to alfalfa. Secondly, functional annotations
of assembled unigenes were performed using BLASTX search
against the Swiss-Prot databases of barrel medic, thale cress,
and soybean. Gene ontology analysis revealed 14 highly enriched
pathways. Specific responses of peroxidases, the expression level
of RUBISCO, and flavonoids indicated antioxidant capacity as
one of the main mechanisms behind the saline-alkaline stress
tolerance in alfalfa (An et al., 2016). Another study provided
a comprehensive transcriptome analysis of alfalfa roots under
prolonged ABA treatment (Luo et al., 2019a). Sequences were
assembled for many isoforms and were analyzed for their
potential role. Differentially expressed isoforms (DEIs) regulated
by ABA were mainly involved in transcriptional regulation,
plant immunity, plant hormone signal transduction, and anti-
oxidative defense.

Nevertheless, these studies were mainly focused on genotype-
specific stress mechanisms. Functional and structural genomics
studies are fundamental for the understanding of plant biology.
Access to high-quality genome and transcriptome sequences is
important to perform studies of this kind. Recently, the third-
generation sequencing technology PacBio RSII has emerged
as a unique method for constructing full-length transcripts
(Dong et al., 2015; Nakano et al., 2017). PacBio RSII is an
ideal tool for whole genome sequencing, targeted sequencing,
RNA-Seq, and epigenetic characterization. This technique allows
the sequencing of single DNA molecules in real-time (SMRT)
without amplification by PCR (Dong et al., 2015). Using
PacBio RSII, Luo et al. (2019b) studied salt stress as a major
environmental factor that impacts alfalfa development and
production (Zhang S. et al., 2015). They have constructed the
first full-length transcriptome database of alfalfa root tips treated
with mannitol (a non-ionic osmotic stress) and NaCl (an ionic
osmotic stress), which provided evidence that the response to
salinity stress includes both osmotic and ionic components. They
have found 8,016 mannitol-regulated DEGs and 8,861 NaCl-
regulated DEGs. These DEGs are involved in signal transduction,
transcriptional regulation, anti-oxidative defense, and signal
perceptions (Luo et al., 2019b).

Resistance to Biotic Stress
Biotic stress also considerably affects alfalfa growth and yield.
Current methods of plant protection focus mostly on the
elimination of pathogenic organisms using pesticides (Shafique
et al., 2014). However, the improvement of plant resistance
against such pathogens seems like a more beneficial alternative,
since it might be more effective and more environmentally

Frontiers in Plant Science | www.frontiersin.org 5 May 2020 | Volume 11 | Article 592

https://www.frontiersin.org/journals/plant-science
https://www.frontiersin.org/
https://www.frontiersin.org/journals/plant-science#articles


fpls-11-00592 May 19, 2020 Time: 19:9 # 6
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friendly (Kudapa et al., 2013; Varshney and Kudapa, 2013). It is
expected that climatic changes are linked to the spread of diseases
and emergence of new ones and can raise the threat of parasites
and pests (Kudapa et al., 2013; Shafique et al., 2014). Therefore,
disease-resilient plants could provide higher production and
yield, reflecting the importance of genetically engineering specific
genes (de Zélicourt et al., 2011).

Disease resistance mechanisms in plants after encountering
a pathogen have been well-described (Roumen, 1994; Zipfel,
2014; Rubiales et al., 2015). Plant infection is facilitated by
effector molecules produced by pathogens, which can overcome
the first line of plant defense, which is the pathogen−associated
molecular pattern (PAMP) triggered immunity; subsequently,
plant resistance is suppressed. On the other hand, specific plant
resistance (R) proteins have been evolutionarily developed and
can provide protection against specific pathogen effectors (Jones
and Dangl, 2006; Singer et al., 2018). Nowadays, genes encoding R
proteins are widely manipulated for introducing plant resistance
to a specific pathogen (Rubiales et al., 2015).

Generally, the most frequently occurring pathogens are
bacteria and fungi belonging to Ascomycetes and Basidiomycetes;
these obtain nutrients by attacking various parts of the plant body
(Shafique et al., 2014). Considerable declines in alfalfa production
have been observed mostly due to root infections leading to
wilting caused by the bacterium Clavibacter michiganensis, fungi
Fusarium oxysporum and Verticillium alfalfae, and microscopic
fungus Phytophthora medicaginis, or due to leaves infected by
Colletotrichum trifolii (Nutter et al., 2002; Singer et al., 2018).
Alfalfa varieties resistant to these diseases have been obtained
by common breeding methods over decades (Toth and Bakheit,
1983; Elgin et al., 1988; Pratt and Rowe, 2002). However, it
may not be enough to cover the world demand for crop yields,
considering the influence of a retrogressive living environment.
Because of alfalfa autopolyploidy and its out-crossing nature
(Zhang T. et al., 2015; Yu et al., 2017), the comprehension of
molecular and genetic mechanisms during pathogenesis leading
to the introduction of specific resistance can be a demanding task.
For this reason, barrel medic is widely used for such purposes.
Different transcriptomic methods (Gao et al., 2012; Van et al.,
2013; Le Nguyen et al., 2018; Scheben et al., 2019) were used
to identify barrel medic loci correlated with QTLs, providing
resistance to diseases caused by fungi such as Uromyces striatus
and Erysiphe pisi (Bustos-Sanmamed et al., 2013).

C. trifolii is an agent of a highly destructive and prevalent
foliar disease, anthracnose (Annicchiarico et al., 2015), which
can cause up to 30% decrease in alfalfa yield (Yang et al.,
2008). Recognition of this pathogen and induction of response
in alfalfa are understudied and need further characterization by
cloning techniques. Nevertheless, Yang et al. (2008) found out
that overexpression of the gene for intracellular R protein, RCT1
encoding TIR-NBS-LRR (TOLL/INTERLEUKIN-1 RECEPTOR
NUCLEOTIDE BINDING SITE LEUCINE-RICH REPEAT)
from barrel medic, ensured anthracnose resistance in alfalfa.
Mackie et al. (2007) and Tesfaye et al. (2007) identified tetrasomic
dominant ANTHOCYANIN genes AN1 and AN2 regulating
resistance against C. trifolii (Elgin and Ostazeski, 1985). Mackie
et al. (2007) mapped locations of QTLs for C. trifolii traits 1, 2,

and 4 in autotetraploid alfalfa clone W126, which is resistant to
this pest. Interactions between particular QTLs and phenotypic
variations for three C. trifolii traits have been described. Obtained
markers may be usable in alfalfa breeding for introducing
multiple sources of resistance. Although genes for a specific
resistance have been identified, new pathotypes of C. trifolii are
still being discovered; therefore, the generation of new, long-
lasting resistant plants is more difficult (Shafique et al., 2014).

Using the suppression subtractive hybridization library,
Bustos-Sanmamed et al. (2013) proved the importance of
pathogenesis-related (PR) proteins of group 10, as well as
proteins engaged in ABA signaling for resistance against harmful
fungi, e.g., Aphanomyces enteiches. Bahramnejad et al. (2010)
designated and isolated the MsPR10.1A gene in alfalfa based on
its homology to PR10 genes from other Fabaceae plants, e.g.,
Lupinus luteus (Zhang, 2004). Expression levels of MsPR10.1A
under different conditions such as ABA treatment, heat shock,
wounding, and pathogen attack, were compared with the
expression levels of a previously described gene, PPRG2 (termed
as MsPR10.1B; Borsics and Lados, 2002). Bahramnejad et al.
(2010) observed faster induction of MsPR10.1A gene expression
than that of MsPR10.1B gene after ABA and ethylene treatment,
and after application of the pathogenic bacterium Xanthomonas
campestris. However, inoculation of alfalfa leaves with compatible
X. campestris led to markedly higher expression of both genes.
On the other hand, gene AAB41557 from the alfalfa PR10
group did not respond to X. campestris inoculation (Esnault
et al., 1993). Generally, most examples regarding PR10 induction
due to bacterial inoculation involve incompatible bacteria, such
as activation of alfalfa genes AAB41557 (Esnault et al., 1993)
and MsPR10.1B (Borsics and Lados, 2002) after Pseudomonas
syringae pv. pisi inoculation. The promoter of YPR-10 (of the
RIBONUCLEASE-LIKE PR PROTEIN-10 gene) from G. max
fused with GUS showed activity in the vasculature of Nicotiana
benthamiana leaves after transient transformation (Walter et al.,
1996). Moreover, Bahramnejad et al. (2010) suggested the
importance of MsPR10.1A promoter expression in the leaf
vasculature, resulting in resistance against diseases. MsPR10.1A
and MsPR10.1B promoters have many similar functions in stress
responses, but notable differences were found in their reactions
to wounding. Thus, promoters of PR10 genes may be potentially
used in biotechnological applications for directing transgene
expression in proper tissues.

Plant defense peptides are composed of five main groups:
proteases, α-amylase inhibitors, lectins, chitinases, and
polyphenol oxidases (Fürstenberg-Hägg et al., 2013). Singer
et al. (2018) summarized several genes for the biosynthesis
of substances with anti-pathogen effect, such as AGLUL
encoding β-1,3-glucanase (Masoud et al., 1996), IOMT –
Isoflavone-O-methyltransferase (He and Dixon, 2000), LF –
encoding lactoferrin (Stefanova et al., 2013) and RS – encoding
resveratrol synthase (Hipskind and Paiva, 2000). Highly effective
protectants, such as protease inhibitors, naturally occur in plants,
and they can inhibit proteolytic enzymes in the digestive system
of insects or nematodes. Consequently, plant material is not
digestible, leading to pathogen starvation and removal from
the plant. Inhibitors of cysteine proteases called phytocystatins
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were identified in many plants, showing potential in conferring
resistance against pathogens. Rice ORYZACYSTATIN-I (OC-I)
and ORYZACYSTATIN II (OC-II) genes driven by a potato
wound-inducible promoter (Protease inhibitor II, PinII) were
transferred to alfalfa attacked by root lesion nematode and
leaf beetle. Such transgenic plants revealed a reduction in the
Pratylenchus penetrans population and enhanced mortality of
Phytodecta fornicata larvae (Ninković et al., 1995; Samac and
Smigocki, 2003).

Tesfaye et al. (2005) generated alfalfa plants that secreted a
fungal endochitinase (ECH42). These transgenic plants showed
up to 25.7 times increased chitinase activity in vegetative
organs and root exudates. Such secreted endochitinases not only
retained the lytic activity against glycol chitin, but also showed
antifungal activity by the inhibition of spore germination of
two fungal pathogens, namely, Phoma medicaginis and C. trifolii
(Tesfaye et al., 2005).

Based on the expression distribution of SNAKIN gene StSN1
in Solanum tuberosum, Segura et al. (1999) hypothesized SN1
as a component of constitutive defense barriers in reproductive
and storage plant organs. StSN2 is induced locally after
wounding and pathogen attack; accordingly, it could play an
important role in constitutive and inducible defense barriers
(Kovalskaya and Hammond, 2009; Guzman-Rodriguez et al.,
2013). Next, García et al. (2014) proposed SNAKIN proteins
as antimicrobial compounds in plant innate immunity. Indeed,
alfalfa transgenic plants carrying SNAKIN-1 (MsSN1) under the
control of a constitutive promoter showed improved tolerance
against pathogenic fungi. Three independent transgenic lines
carrying the CaMV35S:MsSN1 construct showed significantly
lower amounts of infected leaves than wild type plants when
treated by C. trifolii and with the oomycete P. medicaginis
(García et al., 2014).

Finally, it is worth mentioning that the genetic transformation
of alfalfa with Bacillus thuringiensis gene Cry1C coding
for δ-endotoxin has also been shown to be an effective
protective strategy. After transformation, alfalfa was more
resistant to Nemapogon granellus and Spodoptera exigua
(Strizhov et al., 1996).

Transcriptomic studies contributed to the knowledge of alfalfa
resistance to aphids, strips, and nematodes. Aphids are major
insect pests causing a significant decrease of alfalfa yield. Tu
et al. (2018b) performed a transcriptomic analysis of two alfalfa
cultivars differing in aphid resistance. Genes involved in salicylic
acid biosynthesis represented an important defense mechanism
in both cultivars. The alfalfa resistance against aphids was mainly
determined by induction of genes involved in linoleic acid
synthesis important for jasmonic acid and flavonoid biosynthesis
(Tu et al., 2018b). Genes participating in jasmonic acid
biosynthesis, such as LIPOXYGENASE, SERINE PROTEINASE
INHIBITOR, and SEED LINOLEATE 9S-LIPOXYGENASE
were also important for alfalfa resistance to strips infestation.
Moreover, genes involved in fatty acid degradation, chloroalkane
and chloroalkene degradation, beta-alanine and phenylalanine
metabolism and flavonoid biosynthesis also contributed to this
resistance (Tu et al., 2018a). Another comparative transcriptomic
analysis aimed to screen for genes determining alfalfa resistance

to root-knot nematode Meloidogyne incognita (Postnikova et al.,
2015). LRR AND NB-ARC DOMAIN DISEASE RESISTANCE
PROTEIN (Medtr3g023030.1), RECEPTOR-LIKE PROTEIN
(Medtr5g087320.1) and DISEASE RESISTANCE PROTEIN
(TIR-NBS-LRR class, Medtr0277s0020.3) were up-regulated
in the resistant cultivar, while susceptible one showed their
down-regulation (Postnikova et al., 2015).

From the biotechnological point of view, ideal alfalfa cultivars
should have better nutritional quality, enhanced biomass
production and yield, and better resistance to biotic and abiotic
stress. All such traits mentioned should be sustainable over a
long period of time. Several experimental studies have been
conducted to improve alfalfa, but detailed characterization and
relationships between desired traits need further genetic and
molecular research.

PROTEOMICS AND METABOLOMICS

Owing to its beneficial agronomical traits, alfalfa has been
attracting substantial interest in the fields of proteomics and
metabolomics during the past two decades. A strong effort
was invested in the discovery of new proteins and metabolites
involved in alfalfa development and abiotic stress response. In
this section, we attempt to summarize the recent achievements
of current alfalfa proteomic and metabolomic research. We also
aim to highlight the relevance of these investigations for putative
biotechnological applications.

Nitrogen and Carbon Metabolism in
Alfalfa From a Proteomic Perspective
Proteomics and metabolomics have a remarkable capability to
examine the balance between carbon and nitrogen metabolism
under stress conditions in alfalfa during interactions with
nitrogen-fixing bacteria (Aranjuelo et al., 2011, 2013). Water
stress limits nitrogen fixation in nodules by the reduction
of nitrogenase activity (Carter and Sheaffer, 1983; Aranjuelo
et al., 2011) and Rubisco availability in leaves (Aranjuelo
et al., 2005, 2011). The latter likely occurs due to Rubisco-
enhanced proteolysis and lower abundance of RUBISCO
ACTIVASE. Water stress also affected ammonia assimilation
into amino acids, as evidenced by the upregulation of
glutamine synthetase and decreased levels of glutamic acid
and asparagine in leaves. The effects of water stress were
followed by elevated photorespiration (exemplified by increased
abundances of photorespiratory enzymes), lower demand
for carbohydrates, and accumulation of soluble sugars. In
nodules, water deprivation caused the attenuation of respiration,
leading to CO2 recycling by PHOSPHOENOLPYRUVATE
CARBOXYLASE. This likely occurred in order to support carbon
skeletons for amino acid biosynthesis. The reduced respiration
may also be a consequence of increased demand for compounds
with osmoregulation capacity such as glycerol (Aranjuelo et al.,
2013). The dynamic behavior of ammonia assimilation seems
to be important for abiotic stress tolerance. It is likely that
nitrogen is relocated from glutamic acid and asparagine,
which are the main nitrogen sources in control conditions,
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to proline under stress conditions. Thus, proline might be an
alternative nitrogen source under osmotic stress, and it seems
that alfalfa may easily switch between proline biosynthesis
and degradation (Zhang and Shi, 2018). Abiotic stresses
caused accumulation of enzymes of nitrogen assimilation,
such as GLUTAMINE SYNTHETASE and FERREDOXIN-
DEPENDENT GLUTAMATE SYNTHASE (Rahman et al.,
2016) as well as GLUTAMATE DEHYDROGENASE (Dai
et al., 2017). Remarkably, heat stress positively affected
the abundance of ASPARTATE AMINOTRANSFERASE and
GLUTAMINE SYNTHETASE, indicating an enhancement of
nitrogen metabolism (Li W. et al., 2013).

Clearly, Rubisco availability and homeostasis between carbon
and nitrogen metabolism is crucial for plant performance under
unfavorable environmental conditions. For this reason, the
proteins regulating C and N metabolism, as well as stress related
proteins (Table 1), appear to be prospective candidates for the
biotechnological improvement of alfalfa.

Proteins and Pathways Found by
Proteomics as Promising Candidates for
Alfalfa Abiotic Stress Resistance
Improvement
Seed priming involves a complex array of physiological as
well as molecular processes leading to an improved ability
of plants to withstand adverse environment (Paparella et al.,
2015). A gel-based proteomic approach was employed to
investigate proteome remodeling during osmoprimed alfalfa
seed germination. This process was accompanied by intense
accumulation of storage proteins (such as vicilins), proteins
involved in protein folding, UDP glucose and methionine
biosynthesis, annexins, and antioxidant enzymes, compared
to seeds that were not osmoprimed. Osmopriming was also
followed by remarkable induction of stress-related proteins
and proteasome components (Table 1) (Yacoubi et al., 2011).
A follow-up article highlighted that osmopriming has remarkable
consequences on the proteome of seeds germinating under
saline conditions. An increased seed vigor associated with
osmopriming was related to the accumulation of storage
proteins, annexins and RNA-BINDING PROTEIN. The last
one indicated the possible importance of posttranscriptional
regulation in the seedlings exposed to salt stress. On the other
hand, seeds without osmopriming accumulated HEAT SHOCK
PROTEINS (HSP), LATE EMBRYOGENESIS ABUNDANT
(LEA) PROTEINS, SEED MATURATION PROTEINS,
GLUTATHIONE S-TRANSFERASE 9, and HEME OXIDASE
(Table 1) (Yacoubi et al., 2013). These data indicate that the
transient genetic modification of genes encoding the above-
mentioned stress-related proteins (for instance, by expression
under an inducible tissue-specific promoter), might be of
biotechnological importance.

Tolerance of alfalfa to the polyethylene glycol (PEG)-induced
osmotic stress was accompanied by enhanced carbohydrate
metabolism and energy production. Stress-related proteins such
as glutathione S-transferases and LEA proteins are also correlated
with osmotic stress tolerance (Table 1) (Zhang and Shi, 2018),

and both represent promising candidates for biotechnological
applications. A similar study revealed that proteins involved in
protein folding (DISULFIDE ISOMERASE), NAD production
(NAD SYNTHASE), methylation (ADENOSINE KINASE,
S-ADENOSYL-METHIONINE) and antioxidant defense
(represented mainly by peroxidases), are candidates to determine
alfalfa salt tolerance (Rahman et al., 2015). Overabundance of
proteins involved in the enzymatic antioxidant defense was
commonly associated with an increased tolerance of alfalfa
not only to the salt, but also to the drought and osmotic
stresses (Table 1) (Rahman et al., 2015; Long et al., 2018;
Zhang and Shi, 2018). According to a proteomic study, water
stress increased the abundance of AGAMOUS-LIKE 65 and
bHLH TRANSCRIPTION FACTORS, while it reduced the
abundance of JADE-1 and JADE-3, transcriptional regulators
belonging to a PHD (plant homeodomain)-type zinc fingers
family (Table 1) (Rahman et al., 2016). These intriguing findings
of transcriptional factors involved in water stress deserve
further biotechnological investigations. Genetic modifications of
hormone biosynthesis belong also to promising biotechnological
approaches, since water stress elevated the abundances of
ABA (9-CIS-EPOXYCAROTENOID DIOXYGENASE) and
auxin (AUXIN-INDEPENDENT GROWTH PROMOTER)
biosynthetic proteins in alfalfa (Rahman et al., 2016). In this
regard, local stress-induced changes in the turnover of auxin
regulatory proteins could modify plant developmental processes,
such as cell elongation, lateral roots emergence, transition from
cell division to cell differentiation, enabling plants to rapidly
adapt to adverse environmental conditions (Korver et al., 2018).
On the other hand, drought stress caused some common but also
distinct responses when compared to salt stress at the level of the
alfalfa proteome. Interestingly, both stresses targeted proteasome
complex and translation. Nevertheless, the proteasome complex
exhibits different sensitivity to these stressors, since the
abundance of 26S PROTEASOME REGULATORY SUBUNIT 6
was increased by drought but subsequently reduced by salt stress
(Ma et al., 2017).

Comparative proteomic studies point out to obvious
similarities between alfalfa and barrel medic in their response
to environmental stimuli. Proteome-wide comparison of salt-
tolerant alfalfa and salt-sensitive barrel medic indicated that both
species are capable of keeping photosynthetic activity during salt
stress. Only heat shock protein (gi357476131) was differentially
regulated under salt stress in these two Medicago species. It
was upregulated in alfalfa but downregulated in barrel medic
(Long et al., 2016), indicating its potential biotechnological
significance for salt tolerance. A proteomic analysis of these two
species at the early post-germination stage showed an important
role of antioxidant defense, cell wall metabolism, and jasmonic
acid biosynthesis during response to salt (Long et al., 2018).
Enhanced salt tolerance of alfalfa, compared to salt sensitive
barrel medic, was reflected by higher numbers of differentially
regulated proteins, also suggesting higher proteome plasticity
(Long et al., 2016, 2018).

Differences in the composition of differentially abundant
proteins between two alfalfa cultivars with contrasting freezing
tolerance were reported after cold stress treatment (Chen et al.,
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2015). Freezing-tolerant cultivar exhibited higher abundances of
Rubisco subunits as compared to the freezing susceptible one,
but showed downregulation of proteins involved in methionine,
lignin and terpenoid biosynthesis, and energy metabolism
under cold stress (Chen et al., 2015). Heat stress caused
an upregulation of proteins involved in energy production,
signaling, and intracellular transport and defense, including
chaperones, antioxidant enzymes and PR proteins (Li W.
et al., 2013). Interestingly, only prolonged heat stress caused
downregulation of Rubisco and photosynthetic enzyme activities.
Lower abundance of photosynthetic proteins was associated with
altered abundance of proteins involved in plastid protein import.

It is known that the external application of bioactive molecules
such as hydrogen (H2; Jin et al., 2013) may remarkably increase
plant survival rate under adverse environmental conditions.
Proteomic elucidation of the beneficial effects of H2 on the alfalfa
response to cadmium revealed that this is mainly determined
by the modification of proteins involved in the cellular redox
homeostasis. Among these proteins, enzymes involved in cysteine
biosynthesis and CYSTEINE DESULFURYLASE are elevated by
external H2. Cysteine is a precursor for GSH and hGSH, an
important redox buffering compounds (Baldacci-Cresp et al.,
2012; Diaz-Vivancos et al., 2015), hGSH is specifically produced
in species of Fabaceae family including alfalfa, in higher
rate compared to GSH, having important role in nodulation
(Klapheck, 1988; Matamoros et al., 1999; Frendo et al., 2005;
Baldacci-Cresp et al., 2012; Pasternak et al., 2014). Similarly,
the abundance of CuZn SUPEROXIDE DISMUTASE (SOD)
increased along with a positive effect of external H2 treatment
on alfalfa Cd tolerance. Gaseous H2 also enhances the abundance
of defense related proteins such as PATHOGENESIS-RELATED
PROTEIN BET V I FAMILY PROTEIN and PATHOGENESIS-
RELATED THAUMATIN FAMILY PROTEIN (Dai et al., 2017).
Such induction of defense related proteins, including chitinases
and enzymes involved in cell wall modification, was also observed
in alfalfa stems and leaves exposed to long-term Cd stress (Gutsch
et al., 2018a,b). Remarkably, chitinases are also employed in the
alfalfa response to osmotic stress and waterlogging (Table 1)
(Zhang and Shi, 2018; Zeng et al., 2019). This implies that genetic
modification of cell walls might improve alfalfa tolerance to
multiple stresses.

Proteins Implicated in
Development-Associated Agronomical
Traits
Proteomics has also been proven as valuable for the evaluation
of metabolic activities during alfalfa stem development. The
apical region characterized by fiber development showed an
overabundance of proteins involved in chloroplast protein
synthesis and carbon fixation. The mature stem part possessed
a pool of proteins involved in redox homeostasis (Printz et al.,
2015). Moreover, the stem is an organ highly sensitive to
perturbations of mineral nutrition. This was highlighted by
recent proteomic studies reporting that copper availability greatly
influenced the abundance of proteins involved in cell wall
biogenesis, and in pectin and lignin biosynthesis (Printz et al.,

2016). Thus, mineral homeostasis seems to be a crucial factor
affecting alfalfa stem growth and rigidity, and also eventually
affecting drought tolerance and pathogen resistance.

Flowering represents a critical developmental stage in alfalfa,
mainly in terms of seed yield and quality. Pollination and post-
pollination processes in alfalfa are linked to altered homeostasis
of stress-related proteins such as DUAL SPECIFICITY
KINASE SPLA-LIKE PROTEIN, NADPH: QUINONE
OXIDOREDUCTASE-LIKE PROTEIN, and CARBONIC
ANHYDRASE (Chen et al., 2016). Moreover, PROTEIN
DISULFIDE ISOMERASE-LIKE PROTEIN, ASCORBATE
PEROXIDASE, GLUTAREDOXIN, and PEROXIREDOXINS
also showed fluctuations in their abundances. In addition,
metabolic activity was enhanced during pollination and
declined afterward.

Fall dormancy is a crucial phenomenon influencing alfalfa
performance in autumn, but also during the following season.
Based on a comparative proteomic study of terminal buds
isolated from two alfalfa cultivars with contrasting fall dormancy,
several new proteins were discovered as important for this
physiological process (Du et al., 2018). It was suggested that lower
abundance of L-ASPARAGINASE and CINNAMYL ALCOHOL
DEHYDROGENASES may contribute to fall dormancy. In
addition, CHALCONE AND STILBENE SYNTHASE FAMILY
PROTEIN (a protein involved in flavonoid biosynthesis) and
GLUTAREDOXIN S17 seemed to be important for shoot apical
meristem maintenance. Both proteins also have a role in polar
auxin transport (Table 1) (Du et al., 2018).

Finally, the nutritional value of alfalfa depends on the
developmental stage. Cutting of alfalfa in later developmental
stages, such as in full flowering, leads to increased fiber
and decreased protein content in the biomass (Fan et al.,
2018). Combined proteomic and metabolomic analyses
underpinned this finding and showed changes in amino
acid composition. These unfeasible nutritional changes are
accompanied by increased hemicellulose content, due to the
accumulation of D-mannose and higher abundance of ALPHA
GLUCOSIDASE, ALPHA AMYLASE, and UDP-GLUCURONIC
ACID DECARBOXYLASE, as well as lignin, due to the higher
levels of lignin precursors and proteins involved in lignin
biosynthesis (Table 1) (Fan et al., 2018).

GENE EDITING USING TALEN AND
CRISPR/Cas TECHNOLOGIES

The process of gene editing is based on sequence-specific
nucleases (SSNs) creating in vivo loci-specific DNA double-
stranded breaks (DSBs) that are subsequently repaired. There
are two main DNA repair systems: homology-directed repair
(HDR), and the more efficient but less precise non-homologous
end joining (NHEJ). NHEJ can result in the insertion or deletion
(indel) of nucleotides and a frameshift mutation, which can
consequently create a premature stop codon, thus rendering
the gene non-functional and creating a genetic knockout.
Gene targeting technologies include meganucleases, zinc finger
nucleases (ZFNs), transcription activator-like effector nucleases
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TABLE 1 | Overview of proteins and metabolites important for biotechnological improvement of alfalfa as revealed by proteomic and metabolomic studies.

Treatment,
stress, condition

Sample Methodological
approach

Proteins and metabolites of biotechnological importance References

Seed germination
and osmopriming

Seeds 2-D gel electrophoresis
(nano-LC MS/MS)

Carbohydrate metabolism: UDP glucose pyrophosphorylase
Protein destination and storage: HSP70 and HSP20, GroEL-like chaperone,
ATPase, vicilin, protein disulfide-isomerase precursor
Stress response: annexin, peroxiredoxins, manganese superoxide dismutase,
glyoxalase, lipoxygenase, glutathione S-transferase, thioredoxin

Yacoubi et al.
(2011)

Proteolysis: peptidase T1A, proteasome beta subunit, peptidase A1 pepsin

Osmoprimed seeds
germinating under
salt stress

Seeds 2-D gel electrophoresis
(nano-LC MS/MS)

Small HSPs: 18.2 kDa class I HSP
Methionine synthesis: methionine synthase, cysteine synthase
Dehydration defense: LEA proteins, PM22
Others: annexin, RNA-binding protein, heme oxygenase, glutathione S-transferase 9

Yacoubi et al.
(2013)

PEG-induced
osmotic stress

Roots of varieties
contrasting in
drought tolerance

iTRAQ (strong cation
exchange fractionation
and LC MS/MS)

Stress and defense: glutathione S-transferases, disease resistance response protein,
epoxide hydrolase, chitinase, reticuline oxidase-like protein, low-temperature-induced
65 kDa protein, aldo/keto reductase, pirin-like plant protein, glucan
endo-1,3-beta-glucosidase
Protein metabolism: HSPs, lysine-ketoglutarate reductase/saccharopine
dehydrogenase, phosphatidylethanolamine-binding protein, homoglutathione
synthetase

Zhang and Shi
(2018)

Signal transduction: monooxygenases, cysteine-rich RLK (receptor-like kinase)
protein, 12-oxophytodienoate reductase

Cell wall: beta xylosidase, xyloglucan-specific endoglucanase inhibitor protein,
expansin-B1-like protein

Salt stress Roots of two
cultivars
contrasting in salt
resistance

2-D gel electrophoresis
(MALDI TOF/TOF)

Oxidative stress: peroxidase, peroxiredoxin
Protein folding: protein disulfide isomerase
Metabolism: NAD synthetase, UTP-glucose 1 phosphate uridylyltransferase
Fatty acid metabolism: biotin carboxylase 3

Rahman et al.
(2015)

Membrane transport: V-ATPase

Salt and drought
stress

Seedlings 2-D gel electrophoresis
(MALDI TOF-MS/MS)

Salt stress: caffeoyl-CoA 3-O-methyltransferase, peroxiredoxin, ubiquitin-conjugating
enzyme, UV excision repair protein rad23, glutathione peroxidase

Ma et al. (2017)

Drought stress: ubiquitin-conjugating enzyme, putative alcohol dehydrogenase,
chaperonin 10

Drought stress Leaves of plants
inoculated by
S. meliloti

Proteomics: 2-D gel
electrophoresis (LCMS/
MS analysis)
Metabolomics: GC
TOF-MS

Rubisco availability and regeneration: rubisco activase,
sedoheptulose-1,7-bisphosphatase, ribulose-phosphate 3-epimerase and
phosphoribulokinase
Nitrogen metabolism: glutamine synthetase

Aranjuelo et al.
(2011)

Stress and defense response: superoxide dismutase, dehydroascorbate reductase,
2-cys peroxiredoxin-like protein, 14-3-3-like protein

Osmoprotectant metabolites: proline, pinitol

Drought stress Nodules, roots,
leaves

Proteomics: 2-D gel
electrophoresis (LCMS/
MS analysis)
Metabolomics: GC
TOF-MS

Nodule proteome: alpha 1,4-glucan protein synthase, lipoxygenase, PEP-carboxylase
Nodule N containing metabolites: glutamine, asparagine
Nodule osmoprotectant metabolites: glycerol, galactinol, myo-inositol, proline,
sucrose, raffinose, fumaric acid and malate
Nodule metabolites with antioxidant capacity: ascorbate, threonate

Aranjuelo et al.
(2013)

Water deficit stress Roots 2-D gel electrophoresis
(MALDI TOF)

Nitrogen metabolism: glutamine synthetase, ferredoxin-dependent glutamate
synthase

Rahman et al.
(2016)

ABA biosynthesis: 9-cis-epoxycarotenoid dioxygenase

Stress response and oxidative stress: ascorbate peroxidase, peroxiredoxin,
calreticulin, stress-induced phosphoprotein, annexin

Transcription: basic helix-loop-helix (bHLH) transcription factor, agamous-like 65
Other functions: inward-rectifying potassium channel, auxin-independent growth
promoter

Heat stress Leaves 2-D gel electrophoresis
(MALDI TOF/TOF)

Rubisco availability: Rubisco activase isoforms
Nitrogen metabolism: aspartate aminotransferase and glutamine synthetase

Li W. et al.
(2013)

Protein synthesis and processing: peptidyl-prolyl cis–trans isomerases, protein
disulfide isomerase-like protein precursor, porin, proteasome subunit β type, eukaryotic
translation initiation factor 3 subunit I, BiP isoform A/glycine max, cysteine proteinase,
outer plastidial membrane protein porin

Intracellular traffic, cell structure: protein TOC75, translocon Tic40, profilin

(Continued)
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TABLE 1 | Continued

Treatment,
stress,
condition

Sample Methodological
approach

Proteins and metabolites of biotechnological importance Reference

Defense response: 17 kDa HSP, 18.2 kDa class I HSP, 20 kDa chaperonin, HSP23, HSP70,
thaumatin-like protein, ubiquitin, ascorbate peroxidases, glucan endo-1,3-beta-glucosidase

Cold
acclimation

Leaves of cultivars
tolerant or sensitive
to freezing

2-D gel
electrophoresis
(MALDI TOF/TOF)

Oxidative stress: monodehydroascorbate reductase, glutathione peroxidase, peptide
methionine sulfoxide reductases A3, thioredoxin-like protein CDSP32, 2-cys peroxiredoxin
BAS1-like

Chen et al.
(2015)

Methionine biosynthesis: 5-methyltetrahydropteroyltriglutamate-homocysteine
methyltransferase

Lignin and terpenoid biosynthesis: cinnamoyl-CoA reductase, 1-deoxy-D-xylulose
5-phosphate reductoisomerase

Photosynthesis and Rubisco availability: Rubisco large subunit-binding protein subunit
beta, Rubisco activase B, chlorophyll A/B binding protein, oxygen-evolving enhancer protein 1,
cytochrome b6-f complex iron-sulfur subunit

Protein folding and disassembling: chaperone protein ClpC, GTPase, peptidyl-prolyl
cis–trans isomerase CYP20-3

Cadmium
stress

Cell walls and
soluble proteins
from stems

2-D DIGE (MALDI
TOF/TOF)

Cell wall modification: sucrose synthase, pectinesterase/pectinesterase inhibitor,
polygalacturonase non-catalytic protein, polygalacturonase-inhibiting protein 1,
b-xylosidase/alpha-L-arabinofuranosidase, trichome birefringence-like protein, xyloglucan
endotransglucosylase/hydrolase family protein, dirigent protein 21-like

Gutsch et al.
(2018a)

Defense: chitinase (Class Ib)/hevein, chitinase, class I chitinase, disease resistance response
protein, pathogenesis-related protein 1, pathogenesis-related thaumatin family protein, plant
basic secretory protein (BSP) family protein, pre-hevein-like protein, stromal 70 kDa heat
shock-related protein, CAP, cysteine-rich secretory protein, antigen 5

Oxidation-reduction process: anionic peroxidase swpb3 protein, class III peroxidase,
peroxidase family protein, peroxidase1b, peroxidase2

Cadmium
stress

Stems (soluble and
cell wall enriched
proteins)

2-D DIGE (MALDI
TOF/TOF)

Cell wall modification: pectinesterase/pectinesterase inhibitor, polygalacturonase
non-catalytic protein, polygalacturonase-inhibiting protein 1
Chloroplast protein degradation: chloroplastic aspartyl protease isoforms
Cell wall: class III peroxidase, lignin biosynthetic peroxidase, chitinases

Gutsch et al.
(2018b)

Stem growth Different regions of
stems (apical,
intermediate, and
basal)

2-D gel
electrophoresis
(MALDI TOF/TOF)

Chloroplast protein synthesis: CSP41-b, EF-Tu, EF-G, Cpn 60, HSP70
Lignin biosynthesis: transketolase, enolase
Cytoplasmic protein synthesis: eIF-5a, endoplasmic protein disulfide isomerase, HSP90,
ribosomal protein P3-like

Printz et al.
(2015)

Vesicular trafficking: clathrin light chain

Stress response: peroxisomal membrane protein, monodehydroascorbate reductase,
flavoprotein wrbA-like, Pprg2

Sieve element development: sieve element occlusion by forisomes 3

Cadmium
stress and
hydrogen-
rich water

Roots iTRAQ (nano-LC
MS/MS)

Defense response: mitogen-activated protein kinase, pathogenesis-related thaumatin family
protein, pathogenesis-related protein bet V I family protein, disease-resistance response protein
Nitrogen metabolism: glutamate dehydrogenase
Sulfur compound metabolic process: cysteine synthase, ATP sulfurylase

Dai et al. (2017)

Secondary metabolism: chalcone-flavonone isomerase family protein

Waterlogging Leaves of two
cultivars
contrasting in
tolerance to
waterlogging

iTRAQ
(reverse-phase
HPLC fractionation
and LC-MS/MS)

Cell wall and defense response: acidic endochitinase, expansin-like B1, early nodulin-like
protein 2, thaumatin-like protein, 1,4 alpha-glucan-branching enzyme 1, pathogenesis-related
protein
Stress response: glutathione S-transferase, protein C2-DOMAIN ABA-RELATED 9, aldo-keto
reductase family 4 member C9, Fe superoxide dismutase 2, 1
aminocyclopropane-1-carboxylate oxidase homolog 5,

Zeng et al.
(2019)

Proteolysis: vacuolar-processing enzyme

Different
developmental
stages
(budding and
mid-flowering)

Leaves TMT labeling
(nano-LC MS/MS)

Metabolites: D-mannose hemicellulose precursor (upregulated in mid flowering),
L-phenylalanine, L-tyrosine, L-phenylalanine
Metabolism: alpha glucosidase, alpha amylase
Cell wall modification: UDP-glucuronic acid decarboxylase (xylan production), cinnamyl
alcohol dehydrogenase (lignin biosynthesis)

Fan et al.
(2018)

Fall dormancy Terminal buds of fall
dormant and
non-fall dormant
cultivars

iTRAQ (SCX
fractionation, LC
MS/MS)

Nitrogen metabolism: L-asparaginase
Auxin polar transport: stilbene synthase family protein, monothiol glutaredoxin-S17 protein
Lignin biosynthesis: cinnamyl alcohol dehydrogenase
Pyruvate metabolism and transport: pyruvate carrier protein

Du et al. (2018)

Vitamin B1 metabolism: thiazole biosynthetic enzyme
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(TAL effector nucleases or TALENs), and clustered regularly
interspaced short palindromic repeat/CRISPR–associated protein
9 (CRISPR/Cas9). Among these, TALENs and CRISPR/Cas9
are the preferred SSNs for research purposes (Kanaar et al.,
1998; Pastwa and Blasiak, 2003; Smith et al., 2006; Pâques and
Duchateau, 2007; Hartlerode and Scully, 2009; Sander et al.,
2011; Qi, 2015; Steinert et al., 2016; Malzahn et al., 2017;
Shan et al., 2020).

The history of gene targeting technologies started in 1988
when the first gene-targeting experiment was performed on
tobacco (Nicotiana tabacum) protoplasts (Paszkowski et al.,
1988). Later, Puchta et al. (1993) discovered that gene-targeting
efficiency can be improved by DSBs in plant cells. More than
a decade later, ZFNs were adapted in tobacco and were used
in a few plant species for trait improvement (Wright et al.,
2005). Subsequently, TALENs were introduced into the group
of plant genome editing technologies (Christian et al., 2010).
Finally, CRISPR/Cas9 technology has been used in plants such
as Arabidopsis thaliana, N. benthamiana, Oryza sativa, and
T. aestivum (Li J. F. et al., 2013; Nekrasov et al., 2013; Shan et al.,
2013, 2020).

TALENs
TALENs are created by the fusion of DNA binding TALE repeats
to the Fok1 nuclease domain. TALENs are less toxic and are easier
to engineer than ZFNs. Each of these two platforms has unique
limitations, and they are not routinely used in plants. The main
advantages of TALENs over CRISPR are that they have less off-
target effects due to their ∼30 bp target requirement, as well as
their lack of PAM requirement, as unlike CRISPR, TALENs are
able to target any sequence. On the other hand, TALENs have
more disadvantages: an increased time and financial investment
due to the difficulty in protein engineering, a highly variable
efficiency for each construct, an inability to target methylated
DNA, and the difficulties in engineering nickase (Christian et al.,
2010; Li et al., 2011; Mahfouz et al., 2011; Miller et al., 2011;
Malzahn et al., 2017; Chen et al., 2019). So far, a successful
application of TALEN technology has not been published for
either alfalfa or barrel medic. Nevertheless, TALENs have been
used for the targeted mutagenesis of another legume, namely
soybean (Haun et al., 2014; Demorest et al., 2016; Du et al., 2016;
Curtin et al., 2018). The use of TALENs for the mutagenesis of
higher plants was recently reviewed by Malzahn et al. (2017)
and Khan et al. (2017).

CRISPR/Cas9
In bacteria and archaea, CRISPR and Cas9 function together
against invading phages, plasmids, and viruses in adaptive
immune system by cleaving the invader’s nucleic acids. The first
component is single guide RNA (sgRNA) that associates with a
Cas9 protein a Cas9/sgRNA complex. The second component
Cas9 belongs to the single-protein effectors of Class 2 CRISPR-
Cas systems and is composed of two endonuclease domains,
namely, the RuvC-like domain and the HNH, each cutting
one strand of DNA. The CRISPR/Cas9 constituents can be
transformed into plant cells by different strategies, including
Agrobacterium-mediated delivery, gene gun (biolistic delivery),

or using virus-based guide RNA (gRNA). Out of the primary
SSN classes, CRISPR/Cas9 technology has been the most used
and adopted in recent years (Barrangou et al., 2007; Marraffini
and Sontheimer, 2008; Wiedenheft et al., 2012; Graham and
Root, 2015; Schiml and Puchta, 2016; Makarova et al., 2017;
Malzahn et al., 2017; Chen et al., 2019). The CRISPR/Cas system
has the potential for numerous applications, such as fusing
dCas9 (deactivated Cas9) with other proteins, which can be
used for DNA imaging, epigenome editing, gene regulation,
and genomic labeling (Chen et al., 2019). One of the main
limitations of CRISPR/Cas9 technology might be the generation
of undesired off-target effects. Nevertheless, whole-genome
sequencing revealed very limited off-target effect mutations in
Arabidopsis (Feng et al., 2013), rice (Zhang H. et al., 2014; Tang
et al., 2018), and tomato (Nekrasov et al., 2017). Using software
tools such as CRISPR-P (Liu H. et al., 2017) and CRISPRGE
(Xie et al., 2017) can further decrease any potential off-target
occurrence by designing highly specific guide RNAs. Finally,
breeding processes may remove any off-target mutations that
have negative effects and may keep positive or neutral off-target
mutations (Mao et al., 2019).

CRISPR/Cas9 in Alfalfa
CRISPR/Cas9 technology was very recently used for targeted
mutagenesis in alfalfa. Selected SQUAMOSA PROMOTER
BINDING PROTEIN-LIKE 9 (SPL9) gene was successfully
mutagenized and transgenic lines were pre-selected by using
droplet digital PCR (ddPCR) for high-throughput screening
of large populations. It was further confirmed by restriction
enzyme digestion after PCR amplification and sequencing of sub-
clones. Comparison of editing efficiency with available data on
barrel medic showed lower efficiency in alfalfa, which might
be related to its tetraploid genome possessing highly repeated
clusters (Meng et al., 2017, 2019; Gao et al., 2018). Gao et al.
(2018) concluded that CRISPR/Cas9-mediated modifications of
tetraploid alfalfa genome have been successfully performed, but
there is still a need to improve editing efficiency. Alfalfa plants
with silenced SPL9 had no visible phenotype so ddPCR-based
estimation of concentration of the event per µl was a direct
indicator of the genome editing rate. Sequencing analysis showed
no off-target effects in the alfalfa genome and proved that the
sgRNAs of SPL9 were highly specific to the recognition site. In
other legumes such as barrel medic, CRISPR/Cas9 technology
has been used as well (Michno et al., 2015; Meng et al.,
2017, 2019; Curtin et al., 2018; Wen et al., 2019; Yin et al.,
2020). Recently, Meng et al. (2019) developed an optimized
Agrobacterium-dependent CRISPR/Cas9 system and successfully
edited an endogenous PHYTOENE DESATURASE (MtPDS)
gene. CRISPR/Cas9 technology for the mutagenesis was also used
in L. japonicus (Wang et al., 2016, 2019), and G. max (Cai et al.,
2015; Jacobs et al., 2015; Li et al., 2015; Sun et al., 2015; Du et al.,
2016; Tang et al., 2016; Curtin et al., 2018; Bao et al., 2019; Wang
et al., 2020). Utilization of CRISPR/Cas9-based mutagenesis in
several non-leguminous plant species, including data on delivery
method, integration into the genome, and editing efficiency, has
been reviewed recently (Belhaj et al., 2013; Jaganathan et al.,
2018; Liu X. et al., 2019; Kuluev et al., 2019; Mao et al., 2019;
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FIGURE 1 | Overview and integration of omics and molecular genetics approaches aiming to improve agronomic traits and performance of alfalfa.
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Moradpour and Abdulah, 2020; Shan et al., 2020). Approaches
such as transgene integration and gene stacking developed for
diploid crop species (e.g., corn, cotton, soybean) might be less
suitable for alfalfa due to its auto-tetraploid character (Kumar
et al., 2018), but the CRISPR/Cas9 technology seems to work well.

PHOSPHORYLATION-DEPENDENT
POST-TRANSLATIONAL MODIFICATION
BY MAPKs

Multiple abiotic stress stimuli, such as wounding, cold,
salinity, or drought, are perceived by plants through the
activation of MAPKs (Šamajová et al., 2013b). Activated
MAPKs phosphorylate, and thereby regulate, several intracellular
targets including other protein kinases, cytoskeletal components,
nuclear transcription factors, and proteins involved in vesicular
trafficking (Komis et al., 2011; Šamajová et al., 2013a). In
alfalfa, STRESS-INDUCED MAPK (SIMK), was identified as
a salt- and elicitor- stress induced MAPK (Cardinale et al.,
2002). SIMK in response to salt stress is specifically activated
by upstream STRESS-INDUCED MAPKK (SIMKK; Kiegerl
et al., 2000; Bekešová et al., 2015). SIMK is localized to
nuclei and cytoplasm of root cells, while in developing root
hairs it relocated from the nucleus to the growing tip (Šamaj
et al., 2002). Moreover, stimulus-dependent activation and the
subsequent subcellular relocation of both SIMK and its upstream
SIMKK were induced by salt stress (Ovečka et al., 2014). Such
activity-dependent and coordinated relocation of SIMK-SIMKK
module from the nucleus to cytoplasm under salt stress were
observed in alfalfa and thale cress. Transgenic thale cress plants
stably producing SIMKK-YFP exhibited enhanced MITOGEN-
ACTIVATED PROTEIN KINASE 3 (MPK3) and MITOGEN-
ACTIVATED PROTEIN KINASE 6 (MPK6) activation and
conferred altered sensitivity to salt stress. These data suggested
that SIMKK may serve as a negative regulator of the salt stress
response in alfalfa (Ovečka et al., 2014).

CONCLUSION AND PERSPECTIVES

Alfalfa is a perennial, cross-pollinated, autotetraploid
(2n = 4x = 32) plant with genome size of 800–900 Mbp. It
is often mentioned as the “queen of forages” due to the very high
production potential as hay, silage or as a biofuel feedstock for
ethanol production (Blondon et al., 1994). However, tetraploid
nature made understanding and improving of alfalfa by
traditional breeding methods rather challenging. Therefore, the
use of modern biotechnological, omics and genetic engineering
approaches for alfalfa improvement is highly actual and desirable
task for crop researchers.

This review provides an overview of the biotechnological
potential of alfalfa based on the integration of various omics
and molecular tools as depicted in the Figure 1. Recent
advances in high-throughput sequencing technology have
opened another scientific boundary, and many species, including

economically important crops, have been subjected to whole-
genome sequencing by de novo assembly and resequencing.
Several novel genes have been identified owing to whole-
genome duplications and structural variations in chromosomes
(Van et al., 2013). Since plant responses to stresses are often
very specific, proteomic and transcriptomic approaches should
be targeted to individual cell types and tissues at different
developmental stages. Such approach was already reported for
root hairs and root border cells of barrel medic (Breakspear et al.,
2014; Watson et al., 2015). In this respect, the integration of
fast-developing omics methods and bioinformatics into systems
biology at the single cell level might bring new opportunities to
improve plant stress tolerance (Libault et al., 2017).

Biotechnological approaches provide a great potential to
increase crop production for the constantly growing global
population. Introducing tolerance to environmental abiotic and
biotic stresses is crucial for improving the productivity of crop
legumes (Farooq et al., 2017). Extensive research conducted
on alfalfa stress tolerance suggests that it is able to cope with
abiotic stresses using general mechanisms such as antioxidant
defense, protein folding, and cell wall remodeling. Research in
the field of alfalfa biotechnology also aimed to identify genes
involved in the energy production pathway or in enhancing
environmental tolerance (Pennycooke et al., 2008; Aranjuelo
et al., 2011; Mo et al., 2011). Scientists grew alfalfa plants under
different conditions in order to analyze gene expression profiles
and to identify crucial genes and proteins, as well as to understand
global correlations between genes, proteins, and metabolites
using omics approaches.

The potentials of these methods have only partially been
exploited in alfalfa research. Continued research toward the
development of alfalfa proteome studies (Komatsu and Ahsan,
2009) should permit the rapid comparison of alfalfa cultivars,
mutants, and transgenic lines.
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Hrbáčková et al. Alfalfa Biotechnology: Omics and Genetic Engineering

long-read sequencing. Plant Mol. Biol. 99, 219–235. doi: 10.1007/s11103-018-
0813-y

Chen, J., Han, G., Shang, C., Li, J., Zhang, H., Liu, F., et al. (2015). Proteomic
analyses reveal differences in cold acclimation mechanisms in freezing-tolerant
and freezing-sensitive cultivars of alfalfa. Front. Plant Sci. 6:105. doi: 10.3389/
fpls.2015.00105

Chen, K., Wang, Y., Zhang, R., Zhang, H., and Gao, C. (2019). CRISPR/Cas genome
editing and precision plant breeding in agriculture. Annu. Rev. Plant Biol. 70,
667–697. doi: 10.1146/annurev-arplant-050718-100049

Chen, L., Chen, Q., Zhu, Y., Hou, L., and Mao, P. (2016). Proteomic identification
of differentially expressed proteins during alfalfa (Medicago sativa L.) flower
development. Front. Plant Sci. 7:1502. doi: 10.3389/fpls.2016.01502

Chen, T. H., and Murata, N. (2002). Enhancement of tolerance of abiotic stress
by metabolic engineering of betaines and other compatible solutes. Curr. Opin.
Plant Biol. 5, 250–257. doi: 10.1016/s1369-5266(02)00255-8

Chen, T. H., and Murata, N. (2008). Glycinebetaine: an effective protectant against
abiotic stress in plants. Trends Plant Sci. 13, 499–505. doi: 10.1016/j.tplants.
2008.06.007

Cheung, F., Haas, B. J., Goldberg, S. M. D., May, G. D., Xiao, Y., and Town, C. D.
(2006). Sequencing Medicago truncatula expressed sequenced tags using 454
Life Sciences technology. BMC Genom. 7:272. doi: 10.1186/1471-2164-7-272

Christian, M., Cermak, T., Doyle, E. L., Schmidt, C., Zhang, F., Hummel, A.,
et al. (2010). Targeting DNA double-strand breaks with TAL effector nucleases.
Genetics 186, 757–761. doi: 10.1534/genetics.110.120717

Curtin, S. J., Xiong, Y., Michno, J. M., Campbell, B. W., Stec, A. O., Čermák, T.,
et al. (2018). CRISPR/Cas9 and TALENs generate heritable mutations for genes
involved in small RNA processing of Glycine max and Medicago truncatula.
Plant Biotech. J. 16, 1125–1137. doi: 10.1111/pbi.12857

Dai, C., Cui, W., Pan, J., Xie, Y., Wang, J., and Shen, W. (2017). Proteomic analysis
provides insights into the molecular bases of hydrogen gas-induced cadmium
resistance in Medicago sativa. J. Proteom. 152, 109–120. doi: 10.1016/j.jprot.
2016.10.013

de Zélicourt, A., Diet, A., Marion, J., Laffont, C., Ariel, F., Moison, M., et al. (2011).
Dual involvement of a Medicago truncatula NAC transcription factor in root
abiotic stress response and symbiotic nodule senescence. Plant J. 70, 220–230.
doi: 10.1111/j.1365-313X.2011.04859.x

Demorest, Z. L., Coffman, A., Baltes, N. J., Stoddard, T. J., Clasen, B. M., Luo, S.,
et al. (2016). Direct stacking of sequence-specific nuclease-induced mutations
to produce high oleic and low linolenic soybean oil. BMC Plant Biol. 16:225.
doi: 10.1186/s12870-016-0906-1

Deokar, A. A., Kondawar, V., Jain, P. K., Karuppayil, S. M., Raju, N. L.,
Vadez, V., et al. (2011). Comparative analysis of expressed sequence tags
(ESTs) between drought-tolerant and -susceptible genotypes of chickpea under
terminal drought stress. BMC Plant Biol. 11:70. doi: 10.1186/1471-2229-11-70

Diaz-Vivancos, P., de Simone, A., Kiddle, G., and Foyer, C. H. (2015). Glutathione–
linking cell proliferation to oxidative stress. Free Radical Biol. Med. 89, 1154–
1164. doi: 10.1016/j.freeradbiomed.2015.09.023

Dong, L., Liu, H., Zhang, J., Yang, S., Kong, G., Chu, J. S., et al. (2015). Single-
molecule real-time transcript sequencing facilitates common wheat genome
annotation and grain transcriptome research. BMC Genom. 16:1039. doi: 10.
1186/s12864-015-2257-y

Doyle, J. J., and Luckow, M. A. (2003). The rest of the iceberg. Legume diversity
and evolution in a phylogenetic context. Plant Physiol. 131, 900–910. doi: 10.
1104/pp.102.018150

Du, H., Shi, Y., Li, D., Fan, W., Wang, Y., Wang, G., et al. (2018). Proteomics reveals
key proteins participating in growth difference between fall dormant and non-
dormant alfalfa in terminal buds. J. Proteom. 173, 126–138. doi: 10.1016/j.jprot.
2017.11.029

Du, H., Zeng, X., Zhao, M., Cui, X., Wang, Q., Yang, H., et al. (2016). Efficient
targeted mutagenesis in soybean by TALENs and CRISPR/Cas9. J. Biotechnol.
217, 90–97. doi: 10.1016/j.jbiotec.2015.11.005

Ebert, J. (2007). Alfalfa’s bioenergy appeal. Ethanol Prod. Mag. 88–94.
Echt, C. S., Kidwell, K. K., Knapp, S. J., Osborn, T. C., and McCoy, T. J. (1994).

Linkage mapping in diploid alfalfa (Medicago sativa). Genome 37, 61–71. doi:
10.1139/g94-008

Edwards, D., and Batley, J. (2010). Plant genome sequencing: applications for
crop improvement. Plant Biotechnol. J. 8, 2–9. doi: 10.1111/j.1467-7652.2009.
00459.x

Eid, J., Fehr, A., Gray, J., Luong, K., Lyle, J., Otto, G., et al. (2009). Real-time
DNA sequencing from single polymerase molecules. Science 323, 133–138. doi:
10.1126/science

Elgin, J. H. Jr., and Ostazeski, S. A. (1985). Inheritance of resistance to race 1
and race 2 anthracnose in Arc and Saranac AR alfalfa. Crop Sci. 25, 861–865.
doi: 10.2135/cropsci1985.0011183X002500050032x

Elgin, J. H. Jr., Welty, R. E., and Gilchrist, D. B. (1988). Breeding for disease
and nematode resistance. Alfalfa Alfalfa Impr. 29, 827–858. doi: 10.2134/
agronmonogr29.c27

Esnault, R., Buffard, D., Breda, C., Sallaud, C., Turk, J., and Kondorosi, A.
(1993). Pathological and molecular characterizations of alfalfa interactions with
compatible and incompatible bacteria, Xanthomonas campestris pv. alfalfae
and Pseudomonas syringae pv. pisi. Mol. Plant Microbe Interact. 6, 655–664.
doi: 10.1094/MPMI-6-655

Fan, W., Ge, G., Liu, Y., Wang, W., Liu, L., and Jia, Y. (2018). Proteomics integrated
with metabolomics: analysis of the internal causes of nutrient changes in alfalfa
at different growth stages. BMC Plant Biol. 18:78. doi: 10.1186/s12870-018-
1291-8

Farooq, M., Gogoi, N., Hussain, M., Barthakur, S., Paul, S., Bharadwaj, N., et al.
(2017). Effects, tolerance mechanisms and management of salt stress in grain
legumes. Plant Physiol. Biochem. 118, 199–217. doi: 10.1105/10.1016/j.plaphy.
2017.06.020

Feng, Z., Zhang, B., Ding, W., Liu, X., Yang, D. L., Wei, P., et al. (2013). Efficient
genome editing in plants using a CRISPR/Cas system. Cell Res. 23, 1229–1232.
doi: 10.1038/cr.2013.114

Feyissa, B. A., Arshad, M., Gruber, M. Y., Kohalmi, S. E., and Hannoufa, A.
(2019). The interplay between miR156/SPL13 and DFR/WD40–1 regulate
drought tolerance in alfalfa. BMC plant Biol. 19:2059. doi: 10.1186/s12870-019-
2059-5

Flajoulot, S., Ronfort, J., Baudouin, P., Barre, P., Huguet, T., Huyghe, C., et al.
(2005). Genetic diversity among alfalfa (Medicago sativa) cultivars coming from
a breeding program, using SSR markers. Theor. Appl. Genet. 111, 1420–1429.
doi: 10.1007/s00122-005-0074-4

Fleming, M. B., Patterson, E. L., Reeves, P. A., Richards, C. M., Gaines, T. A.,
and Walters, C. (2018). Exploring the fate of mRNA in aging seeds: protection,
destruction, or slow decay? J. Exp. Bot. 69, 4309–4321. doi: 10.1093/jxb/ery215

Frendo, P., Harrison, J., Norman, C., and Jiménez, M. J. H. (2005). Glutathione
and homoglutathione play a critical role in the nodulation process of Medicago
truncatula. Mol. Plant-Mic. Int. 18, 254–259. doi: 10.1094/MPMI-18-0254

Fu, G., Grbic, V., Ma, S., and Tian, L. (2015). Evaluation of somatic embryos
of alfalfa for recombinant protein expression. Plant Cell Rep. 34, 211–221.
doi: 10.1007/s00299-014-1700-x

Fukuda, A., Nakamura, A., and Tanaka, Y. (1999). Molecular cloning and
expression of the Na+/H+ exchanger gene in Oryza sativa. Biochem. Biophys.
Acta 1446, 149–155. doi: 10.1016/s0167-4781(99)00065-2

Fürstenberg-Hägg, J., Zagrobelny, M., and Bak, S. (2013). Plant defense against
insect herbivores. Int. J. Mol. Sci. 14, 10242–10297. doi: 10.3390/ijms140510242

Gao, R., Feyissa, B. A., Croft, M., and Hannoufa, A. (2018). Gene editing by
CRISPR/Cas9 in the obligatory outcrossing Medicago sativa. Planta 247, 1043–
1050. doi: 10.1007/s00425-018-2866-1

Gao, Z., Luo, W., Liu, H., Zeng, C., Liu, X., Yi, S., et al. (2012). Transcriptome
analysis and SSR/SNP markers information of the blunt snout bream
(Megalobrama amblycephala). PLoS One 7:42637. doi: 10.1371/journal.pone.
0042637

García, A. N., Ayub, N. D., Fox, A. R., Gómez, M. C., Diéguez, M. J., Pagano,
E. M., et al. (2014). Alfalfa snakin-1 prevents fungal colonization and probably
coevolved with rhizobia. BMC Plant Biol. 14:248. doi: 10.1186/s12870-014-
0248-9

Gong, B., Li, X., Bloszies, S., Wen, D., Sun, S., and Wei, M. (2014). Sodic
alkaline stress mitigation by interaction of nitric oxide and polyamines involves
antioxidants and physiological strategies in Solanum lycopersicum. Free Radic.
Biol. Med. 71, 36–48. doi: 10.1016/j.freeradbiomed.2014.02.018

Graham, D. B., and Root, D. E. (2015). Resources for the design of CRISPR gene
editing experiments. Genome Biol. 16:26. doi: 10.1186/s13059-015-0823-x

Gutsch, A., Keunen, E., Guerriero, G., Renaut, J., Cuypers, A., Hausman, J. F., et al.
(2018b). Long-term cadmium exposure influences the abundance of proteins
that impact the cell wall structure in Medicago sativa stems. Plant Biol. 20,
1023–1035. doi: 10.1111/plb.12865

Frontiers in Plant Science | www.frontiersin.org 16 May 2020 | Volume 11 | Article 592

https://doi.org/10.1007/s11103-018-0813-y
https://doi.org/10.1007/s11103-018-0813-y
https://doi.org/10.3389/fpls.2015.00105
https://doi.org/10.3389/fpls.2015.00105
https://doi.org/10.1146/annurev-arplant-050718-100049
https://doi.org/10.3389/fpls.2016.01502
https://doi.org/10.1016/s1369-5266(02)00255-8
https://doi.org/10.1016/j.tplants.2008.06.007
https://doi.org/10.1016/j.tplants.2008.06.007
https://doi.org/10.1186/1471-2164-7-272
https://doi.org/10.1534/genetics.110.120717
https://doi.org/10.1111/pbi.12857
https://doi.org/10.1016/j.jprot.2016.10.013
https://doi.org/10.1016/j.jprot.2016.10.013
https://doi.org/10.1111/j.1365-313X.2011.04859.x
https://doi.org/10.1186/s12870-016-0906-1
https://doi.org/10.1186/1471-2229-11-70
https://doi.org/10.1016/j.freeradbiomed.2015.09.023
https://doi.org/10.1186/s12864-015-2257-y
https://doi.org/10.1186/s12864-015-2257-y
https://doi.org/10.1104/pp.102.018150
https://doi.org/10.1104/pp.102.018150
https://doi.org/10.1016/j.jprot.2017.11.029
https://doi.org/10.1016/j.jprot.2017.11.029
https://doi.org/10.1016/j.jbiotec.2015.11.005
https://doi.org/10.1139/g94-008
https://doi.org/10.1139/g94-008
https://doi.org/10.1111/j.1467-7652.2009.00459.x
https://doi.org/10.1111/j.1467-7652.2009.00459.x
https://doi.org/10.1126/science
https://doi.org/10.1126/science
https://doi.org/10.2135/cropsci1985.0011183X002500050032x
https://doi.org/10.2134/agronmonogr29.c27
https://doi.org/10.2134/agronmonogr29.c27
https://doi.org/10.1094/MPMI-6-655
https://doi.org/10.1186/s12870-018-1291-8
https://doi.org/10.1186/s12870-018-1291-8
https://doi.org/10.1105/10.1016/j.plaphy.2017.06.020
https://doi.org/10.1105/10.1016/j.plaphy.2017.06.020
https://doi.org/10.1038/cr.2013.114
https://doi.org/10.1186/s12870-019-2059-5
https://doi.org/10.1186/s12870-019-2059-5
https://doi.org/10.1007/s00122-005-0074-4
https://doi.org/10.1093/jxb/ery215
https://doi.org/10.1094/MPMI-18-0254
https://doi.org/10.1007/s00299-014-1700-x
https://doi.org/10.1016/s0167-4781(99)00065-2
https://doi.org/10.3390/ijms140510242
https://doi.org/10.1007/s00425-018-2866-1
https://doi.org/10.1371/journal.pone.0042637
https://doi.org/10.1371/journal.pone.0042637
https://doi.org/10.1186/s12870-014-0248-9
https://doi.org/10.1186/s12870-014-0248-9
https://doi.org/10.1016/j.freeradbiomed.2014.02.018
https://doi.org/10.1186/s13059-015-0823-x
https://doi.org/10.1111/plb.12865
https://www.frontiersin.org/journals/plant-science
https://www.frontiersin.org/
https://www.frontiersin.org/journals/plant-science#articles


fpls-11-00592 May 19, 2020 Time: 19:9 # 17
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Hrbáčková et al. Alfalfa Biotechnology: Omics and Genetic Engineering

waterlogging tolerance in soybeans. J. Exp. Bot. 68, 1835–1849. doi: 10.1093/
jxb/erw433

Van, K., Rastogi, K., Kim, K. H., and Lee, S. H. (2013). Next-generation sequencing
technology for crop improvement. SABRAO J. Breed. Genet. 45, 84–99. doi:
10.3389/fpls.2014.00367

Varshney, R. K., and Kudapa, H. (2013). Legume biology: the basis for crop
improvement. Funct. Plant Biol. 40, 5–8. doi: 10.1071/FPv40n12_FO

Volkov, V., Wang, B., Dominy, P. J., Fricke, W., and Amtmann, A. (2004).
Thellungiella halophila, a salt-tolerant relative of Arabidopsis thaliana, possesses
effective mechanisms to discriminate between potassium and sodium. Plant Cell
Environ. 27, 1–14. doi: 10.1046/j.0016-8025.2003.01116.x

Walter, M. H., Liu, J. W., Wünn, J., and Hess, D. (1996). Bean ribonuclease-
like pathogenesis-related protein genes Ypr10 display complex patterns of
developmental, dark-induced and exogenous-stimulus-dependent expression.
Eur. J. Biochem. 239, 281–293. doi: 10.1111/j.1432-1033.1996.0281u.x

Wang, K., Wang, Z., Li, F., Ye, W., and Wang, J. (2012). The draft genome of a
diploid cotton Gossypium raimondii. Nature Gen. 44, 1098–1103. doi: 10.1038/
ng.2371

Wang, L., Rubio, M. C., Xin, X., Zhang, B., Fan, Q., Wang, Q., et al. (2019).
CRISPR/Cas9 knockout of leghemoglobin genes in Lotus japonicus uncovers
their synergistic roles in symbiotic nitrogen fixation. New Phytol. 224, 818–832.
doi: 10.1111/nph.16077

Wang, L., Sun, S., Wu, T., Liu, L., Sun, X., Cai, Y., et al. (2020). Natural variation and
CRISPR/Cas9-mediated mutation in GmPRR37 affect photoperiodic flowering
and contribute to regional adaptation of soybean. Plant Biotechnol. J. 1–13.
doi: 10.1111/pbi.13346

Wang, L., Wang, L., Tan, Q., Fan, Q., Zhu, H., Hong, Z., et al. (2016). Efficient
inactivation of symbiotic nitrogen fixation related genes in Lotus japonicus
using CRISPR-Cas9. Front. Plant Sci. 7:1333. doi: 10.3389/fpls.2016.01333

Wang, Z., Gerstein, M., and Snyder, M. (2009). RNA-Seq: a revolutionary tool for
transcriptomics. Nat. Rev. Genet. 10, 57–63. doi: 10.1038/nrg2484

Wang, Z., Li, H., Ke, Q., Jeong, J. C., Lee, H. S., Xu, B., et al. (2014). Transgenic
alfalfa plants expressing AtNDPK2 exhibit increased growth and tolerance to
abiotic stresses. Plant Physiol. Biochem. 84, 67–77. doi: 10.1016/j.plaphy.2014.
08.025

Watson, B. S., Bedair, M. F., Urbanczyk-Wochniak, E., Huhman, D. V., Yang,
D. S., Allen, S. N., et al. (2015). Integrated metabolomics and transcriptomics
reveal enhanced specialized metabolism in Medicago truncatula root border
cells. Plant Physiol. 167, 1699–1716. doi: 10.1093/jxb/erx308

Wen, L., Chen, Y., Schnabel, E., Crook, A., and Frugoli, J. (2019). Comparison of
efficiency and time to regeneration of Agrobacterium-mediated transformation
methods in Medicago truncatula. Plant Met. 15:20. doi: 10.1186/s13007-019-
0404-1

Wiedenheft, B., Sternberg, S. H., and Doudna, J. A. (2012). RNA-guided genetic
silencing systems in bacteria and archaea. Nature 482, 331–338. doi: 10.1038/
nature10886

Wong, C. E., Li, Y., and Moffatt, B. A. (2006). Transcriptional profiling
implicates novel interactions between abiotic stress and hormonal responses
in Thellungiella, a close relative of Arabidopsis. Plant Physiol. 140, 1437–1450.
doi: 10.1104/pp.105.070508

Wright, D. A., Townsend, J. A., Winfrey, R. J. Jr., Irwin, P. A., and Rajagopal,
J. (2005). High-frequency homologous recombination in plants mediated by
zinc-finger nucleases. Plant J. 44, 693–705. doi: 10.1111/j.1365-313X.2005.
02551.x

Xia, T., Apse, M. P., Aharon, G. S., and Blumwald, E. (2002). Identification
and characterization of a NaCl-inducible vacuolar Na+/H+ antiporter in Beta
vulgaris. Physiol. Plant. 116, 206–212. doi: 10.1034/j.1399-3054.2002.1160210.x

Xie, X., Ma, X., Zhu, Q., Zeng, D., Li, G., and Liu, Y. G. (2017). CRISPR-GE: a
convenient software toolkit for CRISPR-based genome editing. Mol. Plant. 10,
1246–1249. doi: 10.1016/j.molp.2017.06.004

Xiong, L., Lee, H., Ishitani, M., and Zhu, J. K. (2002). Regulation of osmotic stress-
responsive gene expression by theLOS6/ABA1 locus in Arabidopsis. J. Biol.
Chem. 277, 8588–8596. doi: 10.1074/jbc.M109275200

Xu, B., Wang, Y., Zhang, S., Guo, Q., Jin, Y., Chen, J., et al. (2017). Transcriptomic
and physiological analyses of Medicago sativa L. roots in response to lead stress.
PLoS One 12:e0175307. doi: 10.1371/journal.pone.0175307

Yacoubi, R., Job, C., Belghazi, M., Chaibi, W., and Job, D. (2011). Toward
characterizing seed vigor in alfalfa through proteomic analysis of germination
and priming. J. Proteome Res. 10, 3891–3903. doi: 10.1021/pr101274f

Yacoubi, R., Job, C., Belghazi, M., Chaibi, W., and Job, D. (2013). Proteomic
analysis of the enhancement of seed vigour in osmoprimed alfalfa seeds
germinated under salinity stress. Seed Sci. Res. 23, 99–110. doi: 10.1017/
S0960258513000093

Yang, S., Gao, M., Xu, C., Gao, J., Deshpande, S., Lin, S., et al. (2008). Alfalfa benefits
from Medicago truncatula: the RCT1 gene from M. truncatula confers broad-
spectrum resistance to anthracnose in alfalfa. Proc. Natl. Acad. Sci. U.S.A. 105,
12164–12169. doi: 10.1073/pnas.0802518105

Yang, S. S., Tu, Z. J., Cheung, F., Xu, W. W., Lamb, J. F., Jung, H. J. G., et al. (2011).
Using RNA-Seq for gene identification, polymorphism detection and transcript
profiling in two alfalfa genotypes with divergent cell wall composition in stems.
BMC genom. 12:199. doi: 10.1186/1471-2164-12

Yang, S. S., Xu, W. W., Tesfaye, M., Lamb, J. F., Jung, H. J. G., VandenBosch, K. A.,
et al. (2010). Transcript profiling of two alfalfa genotypes with contrasting cell
wall composition in stems using a cross-species platform: optimizing analysis
by masking biased probes. BMC genom. 11:323. doi: 10.1186/1471-2164-
11-323

Yin, P., Ma, Q., Wang, H., Feng, D., Wang, X., Pei, Y., et al. (2020). SMALL Leaf and
BUSHY1 controls organ size and lateral branching by modulating the stability
of BIG SEEDS1 in Medicago truncatula. New Phytol. [Epub ahead of print]. doi:
10.1111/nph.16449

Young, N. D., Debellé, F., Oldroyd, G. E., Geurts, R., Cannon, S. B., Udvardi,
M. K., et al. (2011). The medicago genome provides insight into the
evolution of rhizobial symbioses. Nature 480, 520–524. doi: 10.1038/nature
10625

Yu, L. X., Liu, X., Boge, W., and Liu, X. P. (2016). Genome-wide association study
identifies loci for salt tolerance during germination in autotetraploid alfalfa
(Medicago sativa L.) using genotyping-by-sequencing. Front. Plant Sci. 7:956.
doi: 10.3389/fpls.2016.00956

Yu, L. X., Zheng, P., Zhang, T., Rodringuez, J., and Main, D. (2017). Genotyping-
by-sequencing-based genome-wide association studies on Verticillium wilt
resistance in autotetraploid alfalfa (Medicago sativa L.). Mol. Plant Pathol. 18,
187–194. doi: 10.1111/mpp.12389

Zeng, N., Yang, Z., Zhang, Z., Hu, L., and Chen, L. (2019). Comparative
transcriptome combined with proteome analyses revealed key factors involved
in alfalfa (Medicago sativa) response to waterlogging stress. Int. J. Mol. Sci.
20:1359. doi: 10.3390/ijms20061359

Zhang, C., and Shi, S. (2018). Physiological and proteomic responses of contrasting
alfalfa (Medicago sativa L.) varieties to PEG-induced osmotic stress. Front Plant
Sci. 9:242. doi: 10.3389/fpls.2018.00242

Zhang, H., Zhang, J., and Wei, P. (2014). The CRISPR/Cas9 system produces
specific and homozygous targeted gene editing in rice in one generation. Plant
Biotechnol. J. 12, 797–807. doi: 10.1111/pbi.12200

Zhang, J. (2004). Harvesting Inducible Gene And Promoters In Alfalfa. Dissertation
thesis, University of Guelph, Guelph, ON.

Zhang, L. Q., Niu, Y. D., Huridu, H., Hao, J. F., Qi, Z., and Hasi, A. (2014).
Salicornia europaea L. Na+/H+ antiporter gene improves salt tolerance in
transgenic alfalfa (Medicago sativa L.). Genet. Mol. Res. 13, 5350–5360. doi:
10.4238/2014.July.24.14

Zhang, S., Shi, Y., Cheng, N., Du, H., Fan, W., and Wang, C. (2015).
De novo characterization of fall dormant and nondormant alfalfa (Medicago
sativa L.) leaf transcriptome and identification of candidate genes related
to fall dormancy. PloS One 10:e0122170. doi: 10.1371/journal.pone.01
22170

Zhang, T., Yu, L. X., Zheng, P., Li, Y., Rivera, M., Main, D., et al. (2015).
Identification of loci associated with drought resistance traits in heterozygous
autotetraploid alfalfa (Medicago sativa L.) using genome-wide association
studies with genotyping by sequencing. PLoS One 10:e0138931. doi: 10.1371/
journal.pone.0138931

Zhang, Y. M., Liu, Z. H., Wen, Z. Y., Zhang, H. M., Yang, F., and Guo, X. L.
(2012). The vacuolar Na+- H+ antiport gene TaNHX2 confers salt tolerance
on transgenic alfalfa (Medicago sativa). Funct. Plant Biol. 39, 708–716. doi:
10.1071/FP12095

Zhao, B., Liang, R., Ge, L., Li, W., Xiao, H., Lin, H., et al. (2007). Identification
of drought-induced microRNAs in rice. Biochem. Biophys. Res. Comm. 354,
585–590. doi: 10.1016/j.bbrc.2007.01.022

Zhou, C., Han, L., Pislariu, C., Nakashima, J., Fu, C., Jiang, Q., et al.
(2011). From model to crop: functional analysis of a STAY-GREEN gene
in the model legume Medicago truncatula and effective use of the gene

Frontiers in Plant Science | www.frontiersin.org 21 May 2020 | Volume 11 | Article 592

https://doi.org/10.1093/jxb/erw433
https://doi.org/10.1093/jxb/erw433
https://doi.org/10.3389/fpls.2014.00367
https://doi.org/10.3389/fpls.2014.00367
https://doi.org/10.1071/FPv40n12_FO
https://doi.org/10.1046/j.0016-8025.2003.01116.x
https://doi.org/10.1111/j.1432-1033.1996.0281u.x
https://doi.org/10.1038/ng.2371
https://doi.org/10.1038/ng.2371
https://doi.org/10.1111/nph.16077
https://doi.org/10.1111/pbi.13346
https://doi.org/10.3389/fpls.2016.01333
https://doi.org/10.1038/nrg2484
https://doi.org/10.1016/j.plaphy.2014.08.025
https://doi.org/10.1016/j.plaphy.2014.08.025
https://doi.org/10.1093/jxb/erx308
https://doi.org/10.1186/s13007-019-0404-1
https://doi.org/10.1186/s13007-019-0404-1
https://doi.org/10.1038/nature10886
https://doi.org/10.1038/nature10886
https://doi.org/10.1104/pp.105.070508
https://doi.org/10.1111/j.1365-313X.2005.02551.x
https://doi.org/10.1111/j.1365-313X.2005.02551.x
https://doi.org/10.1034/j.1399-3054.2002.1160210.x
https://doi.org/10.1016/j.molp.2017.06.004
https://doi.org/10.1074/jbc.M109275200
https://doi.org/10.1371/journal.pone.0175307
https://doi.org/10.1021/pr101274f
https://doi.org/10.1017/S0960258513000093
https://doi.org/10.1017/S0960258513000093
https://doi.org/10.1073/pnas.0802518105
https://doi.org/10.1186/1471-2164-12
https://doi.org/10.1186/1471-2164-11-323
https://doi.org/10.1186/1471-2164-11-323
https://doi.org/10.1111/nph.16449
https://doi.org/10.1111/nph.16449
https://doi.org/10.1038/nature10625
https://doi.org/10.1038/nature10625
https://doi.org/10.3389/fpls.2016.00956
https://doi.org/10.1111/mpp.12389
https://doi.org/10.3390/ijms20061359
https://doi.org/10.3389/fpls.2018.00242
https://doi.org/10.1111/pbi.12200
https://doi.org/10.4238/2014.July.24.14
https://doi.org/10.4238/2014.July.24.14
https://doi.org/10.1371/journal.pone.0122170
https://doi.org/10.1371/journal.pone.0122170
https://doi.org/10.1371/journal.pone.0138931
https://doi.org/10.1371/journal.pone.0138931
https://doi.org/10.1071/FP12095
https://doi.org/10.1071/FP12095
https://doi.org/10.1016/j.bbrc.2007.01.022
https://www.frontiersin.org/journals/plant-science
https://www.frontiersin.org/
https://www.frontiersin.org/journals/plant-science#articles


fpls-11-00592 May 19, 2020 Time: 19:9 # 22

Hrbáčková et al. Alfalfa Biotechnology: Omics and Genetic Engineering

for alfalfa improvement. Plant Physiol. 157, 1483–1496. doi: 10.1104/pp.111.
185140

Zhou, M., and Luo, H. (2013). MicroRNA-mediated gene regulation: potential
applications for plant genetic engineering. Plant Mol. Biol. 83, 59–75. doi:
10.1007/s11103-013-0089-1

Zhu, J. K. (2001). Plant salt tolerance. Trends Plant Sci. 6, 66–71. doi: 10.1016/
S1360-1385(00)01838-0

Zhu, J. K. (2002). Salt and drought stress signal transduction in plants. Ann. Rev.
Plant Biol. 53, 247–273. doi: 10.1146/annurev.arplant.53.091401.143329

Zipfel, C. (2014). Plant pattern-recognition receptors. Trends Immunol. 35, 345–
351. doi: 10.1016/j.it.2014.05.004

Conflict of Interest: The authors declare that the research was conducted in the
absence of any commercial or financial relationships that could be construed as a
potential conflict of interest.
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