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Arbuscular mycorrhizal fungi (AMF) symbionts not only promote the growth of host plant
but also alleviate abiotic stresses. This study aimed to investigate the putative role of
AMF in salt stress regulation of upland pigmented rice cv. Leum Pua (LP) comparing
with Pokkali salt tolerant (positive check). In general, LP is a variety of glutinous rice
that contains anthocyanin pigment in the black pericarp, due to which it possesses high
antioxidant activities compared to non-pigmented rice. Pot experiment was conducted
to evaluate the impact of inoculated AMF, Glomus etunicatum (GE), Glomus geosporum
(GG), and Glomus mosseae (GM) strains, in the LP plantlets subjected to 0 (control)
or 150 mM NaCl (salt stress) for 2 weeks in comparison with Pokkali (a salt tolerant
rice cultivar), which was maintained as a positive check. Root colonization percentage
under NaCl conditions ranged from 23 to 30%. Na+ content in the flag leaf tissues
was increased to 18–35 mg g−1 DW after exposure to 150 mM NaCl for 14 days
in both inoculated and un-inoculated LP plants, whereas Na:K ratio was very low in
cv. Pokkali. Interestingly, sucrose content in the flag leaf tissues of un-inoculated LP
plants under salt stress was increased significantly by 50 folds over the control as
an indicator of salt stress response, whereas it was unchanged in all AMF treatments.
Fructose and free proline in GE inoculated plants under salt stress were accumulated
over control by 5.75 and 13.59 folds, respectively, for osmotic adjustment of the cell,
thereby maintaining the structure and functions of chlorophyll pigments, Fv/Fm, 8PSII,
and stomatal function. Shoot height, flag leaf length, number of panicles, panicle length,
panicle weight, and 100-grain weight in GE inoculated plants of cv. LP under salt stress
were maintained similar to cv. Pokkali. Interestingly, cyanidin-3-glucoside (C3G) and
peonidin-3-glucoside (P3G) in the pericarp of cv. LP were regulated by GE inoculation
under salt stress conditions. In summary, AMF-inoculation in rice crop is a successful
alternative approach to reduce salt toxicity, maintain the yield attributes, and regulate
anthocyanins enrichment in the pericarp of grains.

Keywords: AMF-inoculation, anthocyanins, cyanidin-3-glucoside, peonidin-3-glucoside, photosynthetic abilities,
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INTRODUCTION

Saline soil affects agricultural productivity in several regions
of the world including United States, Argentina, Australia,
China, Egypt, India, Iran, Iraq, Pakistan, and Thailand (i.e., an
area > 800 million ha; Rengasamy, 2010). It is estimated that
5% or 3.85 million ha of the total cultivated area in the world
(77 million ha) is affected by salt stress (Sheng et al., 2008),
accounting by nearly 50% of arable land (Wang et al., 2003).
By the year 2050, salt affected soil is predicted to be increased
up to 16.2 million ha, which may result in food insecurity
for world’s population (Yadav et al., 2017). In Southeast Asia,
5.8 million ha arable land has been identified as salt affected
(Shrestha, 2006). In Thailand, the problem of saline soil is widely
distributed in Northeastern region (1.84 million ha), classifying
the agricultural areas as slightly, moderately, and severely salt-
affected (Arunin and Pongwichian, 2015).

Arbuscular mycorrhizal fungi (AMF) is one of the symbiotic
microorganisms that regulate phosphorus (P) content, growth,
and yield of the host plant (Gosling et al., 2006). AMF
colonizes with root organs of the host plant, and regulates its
photosynthetic abilities, growth characteristics, and abiotic stress
tolerance (Panneerselvam et al., 2017; Basu et al., 2018; Mbodj
et al., 2018). Glomus mosseae (GM), Glomus geosporum (GG),
Glomus intraradices, Acaulospora sp., and Scutellospora sp. are
AMF species that generally colonize with rice (Gosling et al.,
2006; Maiti et al., 2013; Zhang et al., 2014; Tisarum et al.,
2019). Previous studies have reported a positive relationship
between AMF symbiosis and salt defense mechanisms of the
host plants (Ruiz-Lozano and Azcón, 2000). For example,
ion homeostasis (influx/efflux), compartmentalization (vacuolar
storage), and Na+ translocation from root to shoot via
apoplastic and/or symplastic routes have been regulated by AMF-
inoculation (Evelin et al., 2009; Porcel et al., 2012; He and
Huang, 2013; Porcel et al., 2016; Yadav et al., 2017; Evelin
et al., 2019). Better defense responses in terms of the higher
production of free proline, glycine betaine, and soluble sugars
in AMF inoculated plants against salt stress have also been
reported (Campanelli et al., 2013; Evelin et al., 2013; Garg
and Baher, 2013; Talaat and Shawky, 2014). The regulation of
proline biosynthesis [pyrroline-5-carboxylate synthetase (P5CS)]
and inhibition of proline degradation [proline dehydrogenase
(PDH)] are evidently observed when AMF-inoculated plants are
exposed to salt stress (Jahromi et al., 2008; Garg and Baher,
2013). Similarly, several antioxidant enzymes, i.e., superoxide
dismutase (SOD), catalase (CAT), peroxidase (POD), and
ascorbate peroxidase (APX), are upregulated as salt defense
responses in AMF inoculated plants under salt stress (Borde
et al., 2011; Ruiz-Lozano et al., 2012; Evelin and Kapoor, 2014;
Chang et al., 2018).

Rice is an important carbohydrate crop providing a staple
food to more than half of the world’s population (Khush, 2005).
The crop is highly susceptible to salt stress and its productivity
declines even at very low concentrations of salt (Zeng and
Shannon, 2000; Grattan et al., 2002). Pokkali cultivar of rice is
a salt tolerant cultivar, which is used as a positive check in the
screening of salt tolerant rice cultivars (Senadhira et al., 2002)

and as a parental line in rice breeding programs conducted to
develop salt tolerant traits (de Leon et al., 2016). In Thailand, rice
is one of the major cultivating crops, and premium rice varieties
with high antioxidant capacities, good cooking quality, and better
fragrance are produced and exported globally (Vanavichit et al.,
2018). Leum Pua (LP) is one such upland cultivar of glutinous rice
with black pericarp, good cooking qualities, fine aroma, excellent
flavor, high nutritional values, soft texture, and high antioxidant
activities (Kerdphol et al., 2015; Nakaew and Sungthong, 2018;
Piyawanitpong et al., 2018; Pornputtapitak et al., 2018; Sansenya
et al., 2018; Seekhaw et al., 2018). Upland aerobic rice is known
for AMF colonization (Maiti et al., 2011); however, studies
investigating salt tolerance ability of AMF colonized upland
rice are still lacking. Moreover, the physiological adaptations,
i.e., photosynthetic pigments, chlorophyll fluorescence, net
photosynthetic rate, stomatal conductance and transpiration
rate, morphological responses, and yield attributes, in AMF
colonized upland rice under salt stress are critically evaluated
as major parameters to investigate salt toxicity (Dodd and
Pérez-Alfocea, 2012; Hameed et al., 2014; Latef and Miransari,
2014; Muthukumar et al., 2017; Bhattacharjya et al., 2018).
Therefore, the objective of this investigation was to evaluate the
potential of three Glomus spp. in alleviating the salt stress in
pigmented pericarp upland rice (cv. LP) based on physiological
and biochemical changes, and yield traits. To the best of
our knowledge, this is the first study reporting regulation of
salt tolerant abilities in LP using AMF-colonization under salt
stress conditions.

MATERIALS AND METHODS

Plant Material, AMF-Inoculation, and
Water Deficit Treatment
Seeds of pigmented upland rice cv. “LP (salt sensitive)” and
positive check cv. Pokkali (Pok; salt tolerant) were sown in the
mixed soil (EC = 2.69 dS m−1; pH = 5.5; organic matter = 10.36%;
total nitrogen = 0.17%; total phosphorus = 0.07%, and total
potassium = 1.19%) for 4 weeks. Healthy seedlings were
transplanted into plastic bags containing 2 kg mixed soil in two
groups: (a) sterilized soil without AMF and (b) sterilized soil with
AMF species: Glomus etunicatum (GE; synonym Claroideoglomus
etunicatum), GG (synonym Funneliformis geosporum), and GM
(synonym Funneliformis mosseae) @ 10 g or 250 spores per
plastic bag. Arbuscular mycorrhizal fungus powder was provided
by Maejo University, Chiang Mai, Thailand. The powder was
inoculated in the soil following the method of Pitaktamrong
et al. (2018). The rice plants were grown in a net house
under 500–1000 µmol m−2 s−1 photosynthetic photon flux
density (PPFD) with a 10 h d−1 photoperiod, 35 ± 2◦C (day
time)/28 ± 2◦C (night time) temperature, and 80 ± 5% RH
until booting stage. Thereafter, Pok without AMF (Pok), LP
without AMF (LP), and LP with AMF (LP + GE; LP + GG; and
LP + GM) were exposed to 0 mM NaCl (control) or 150 mM
NaCl (salt stress) for 14 days. Morphological characters, AMF
colonization percentage, inorganic ions (Na+, K+, and Ca2+),
total phosphorus, osmotic potential, free proline, soluble sugar,

Frontiers in Plant Science | www.frontiersin.org 2 March 2020 | Volume 11 | Article 348

https://www.frontiersin.org/journals/plant-science
https://www.frontiersin.org/
https://www.frontiersin.org/journals/plant-science#articles


fpls-11-00348 March 24, 2020 Time: 16:1 # 3

Tisarum et al. Improving Salt-Tolerant Rice Using AMF

FIGURE 1 | Root AMF colonization (A), total phosphorus in roots (B), and flag leaf tissues (C) of “Leum Pua” (LP) plants inoculated with AMF (GE; Glomus
etunicatum, GG; G. geosporum, and GM; G. mosseae) at booting stage, and subsequently exposed to salt stress conditions for 14 days. Error bar in each treatment
represents by ± SE (n = 6). Different letters in each bar represent significant difference at p ≤ 0.01 according to Tukey’s HSD.

chlorophyll content, chlorophyll fluorescence, net photosynthetic
rate, stomatal conductance, and transpiration rate were measured
in these 10 sets of observations. In addition, the grain yield traits,
number of panicles, panicle length, grain fertility percentage,
panicle weight, total grain yield per clump, 100-grain weight,
and anthocyanin content of cyanidin-3-glucoside (C3G) and
peonidin-3-glucoside (P3G) were evaluated in the pericarp of LP
rice at the time of harvest.

AMF Colonization Assay
Fresh roots (3.0 ± 0.5 cm in length) were collected from each
set of observations, washed with distilled water, cut into 1.0 cm
length and kept in 60% ethanol (used as a storage solution). Roots
were washed thrice with distilled water, transferred to 10% KOH,
and incubated at 95◦C for 30 min. Cleaned roots were again
washed with distilled water and stained using 0.05% (w/v) Trypan
blue for 15 min. AMF-colonization in the roots was observed
under light microscope (Zeiss, Germany) to count the arbuscules,
vesicles, and mycorrhizal hyphae (Supplementary Figure S1),
according to the method of Brundrett et al. (1996).

Plant Biochemical Analysis
Na+, K+, and Ca2+ were assayed following the modified method
of Tanaka et al. (1999) and Hossain et al. (2006). In brief, flag leaf

tissues were collected and washed by deionized water to remove
surface contaminating ions. The tissue was ground into a powder
in liquid nitrogen, extracted with boiling distilled water, and
centrifuged at 10,000× g for 10 min. The supernatant was filtered
through a 0.45 µm membrane filter (VertiPureTM, Vertical R©).
Cellular Na+, K+, and Ca2+ concentrations were determined
using Waters HPLC coupled with 432 Conductivity Detector and
WATER IC-PACKTM ion-exclusion column (Waters Associates,
Millford, MA, United States). Mobile phase, a mixed solution of
0.012 µM nitric acid and 71.73 µM Na-EDTA (ethylene diamine
tetraacetic acid disodium salt dehydrate) in deionized water, was
used at 0.6 mL min−1 flow rate. Na+, K+, and Ca2+ (Sigma,
United States) were used as standards.

Available phosphorus (P) was extracted and determined
spectrophotometrically as blue molybdate–phosphate complexes
under partial reduction with ascorbic acid (Jackson, 1958).
Briefly, 100 mg of dried root and flag leaf samples in each
treatment were ground, transferred to 1 mL digestion mixture
(0.42 g Se, 14 g LiSO4·2H2O added to 350 mL H2O2,
and 420 mL H2SO4), and then placed on the hot plate
(gradually increased from 50 to 150◦C) until the mixture
turned back. Five-hundred microliters of 72% HClO4 was
added to each sample and heated until the material became
colorless. After cooling, the samples were diluted with equal
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FIGURE 2 | Sodium (A), potassium (B), calcium (C) ions, and Na:K ratio (D) in flag leaf tissues of “Leum Pua” (LP) plants inoculated with AMF (GE; Glomus
etunicatum, GG; G. geosporum, and GM; G. mosseae) at booting stage, and subsequently exposed to salt stress conditions for 14 days. Error bar in each treatment
represents by ± SE (n = 6). Different letters in each bar represent significant difference at p ≤ 0.01 according to Tukey’s HSD.

volume of HClO4, filtered (Whatman #42, United Kingdom)
and then mixed with 0.5 mL of Barton’s reagent [25 g
ammonium molybdate (400 mL), 1.25 g ammonium meta-
vanadate (350 mL), and HNO3 (250 mL)] for 10 min.
Total P (mg g−1 DW) was measured at 420 nm by UV-
spectrophotometer (HACH DR/4000; Model 48,000, HACH
Company, Loveland, CO, United States) using KH2PO4 as a
calibration standard.

Free proline in the flag leaf tissues was extracted and analyzed
according to the method of Bates et al. (1973). Fifty milligrams
of fresh material was ground with liquid nitrogen in a mortar.
The homogenate powder was mixed with 1 mL of aqueous
sulfosalicylic acid (3%, w/v) and filtered through filter paper
(Whatman#1, United Kingdom). The extracted solution was
reacted with an equal volume of glacial acetic acid and ninhydrin
reagent (1.25 mg ninhydrin in 30 mL glacial acetic acid and 20 mL
6 M H3PO4) and incubated at 95◦C for 1 h. The reaction was
terminated by placing the container in an ice bath. The reaction
mixture was mixed vigorously with 2 mL of toluene. After cooling
to 25◦C, the chromophore was measured at 520 nm by UV–Vis
spectrophotometer using L-proline as a calibration standard.

Soluble sugars (sucrose, glucose, and fructose) in the flag leaf
tissues were assayed following the method of Karkacier et al.
(2003). In brief, 50 mg of flag leaf sample was ground in a
mortar with liquid nitrogen. One milliliter of nanopure water was

added and centrifuged at 10,000× g for 15 min. The supernatant
was collected and filtered through a 0.45 µm membrane filter
(VertiPureTM, Vertical R©). Twenty microliters of the filtrate was

TABLE 1 | Sucrose, glucose and fructose contents in “Leum Pua” (LP) plants
inoculated with AMF (GE; Glomus etunicatum, GG; G. geosporum, and GM;
G. mosseae) of rice cv. at booting stage, and subsequently exposed to salt stress
conditions for 14 days.

Treatment NaCl
(mM)

Sucrose (mg
g−1 DW)

Glucose (mg
g−1 DW)

Fructose (mg
g−1 DW)

Pok 0 4.67b 88.03b 139.70ab

150 23.21b 104.97ab 159.16ab

LP 0 2.36b 97.77b 112.32bc

150 146.72a 115.91a 166.78a

LP + GE 0 14.81b 53.80c 6.72d

150 26.52b 58.31c 91.34bc

LP + GG 0 44.94b 47.29c 77.46c

150 52.31b 88.02b 113.11bc

LP + GM 0 50.27b 77.76bc 121.53b

150 55.25b 96.13b 120.41b

Significant level ** ** **

Pok: Pokkali, salt tolerant genotype, positive check. ** represents highly significant
difference at p ≤ 0.01. Different letters in each column show significant difference
at p ≤ 0.01 according to Tukey’s HSD.
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FIGURE 3 | Total soluble sugar (A), free proline (B), osmotic potential in flag leaf (C), and relationship between free proline and osmotic potential in flag leaf (D) of
“Leum Pua” (LP) plants inoculated with AMF (GE; Glomus etunicatum, GG; G. geosporum, and GM; G. mosseae) at booting stage, and subsequently exposed to
salt stress conditions for 14 days. Error bar in each treatment represents by ± SE (n = 6). Different letters in each bar represent significant difference at p ≤ 0.01
according to Tukey’s HSD.

injected into a Waters HPLC equipped with a MetaCarb 87C
column and a guard column. Deionized water was used as the
mobile phase at a flow rate of 0.5 mL min−1. The online detection
was performed using a Waters 410 differential refractrometer
detector and the data were analyzed by Empower R© software.
Sucrose, glucose, and fructose (Fluka, United States) were used
as the standards.

Total anthocyanins (C3G and P3G) were assayed following
the method of Chandra et al. (2001). Hand-dehusked seeds (2 g)
were weighed and transferred in capped glass vials and then
1.5 mL of 1% HCl in methanol were added (Supplementary
Figure S2). Extracted solution was vortexed and kept in the
dark on the shaker (150 r/min) for 12 h in the cold room
(8◦C). Supernatant was collected and filtered through a 0.45 µm
PTFE filter (VertiPure, Vertical Chromatography). Each sample
was analyzed by Waters HPLC equipped with a Waters 2998
photodiode array detector set at 520 nm, and fitted with an
ODS C18 Hypersil column (250 mm × 4.6 mm; 5 µm, Thermo
Fisher Scientific Inc., CA, United States). The mobile phase
comprised of: Solvent A (0.5% aqueous phosphoric acid, v/v),
and solvent B (water/acetonitrile/glacial acetic acid/phosphoric
acid, 50: 48.5: 1: 0.5, v/v/v/v) used as following gradient:
0 min, 20% B (i.e., 80% solvent A and 20% solvent B); 1–
26 min, 60% B, 27–30 min, 20% B, 31–35 min, 20% B (80%).
Flow rate was set at 0.8 mL min−1. Column temperature

was set at 30◦C and injection volume was 20 µL. C3G and
P3G (Sigma–Aldrich, United States) were injected as standards
(Supplementary Figure S3).

Plant Physiological Assay
Osmotic potential in the flag leaf of “LP” rice was measured
according to Lanfermeijer et al. (1991). In brief, 100 mg of fresh
tissue were chopped into small pieces, transferred to 1.5 mL
micro tube, and then crushed using a glass rod. The 20 µL of
extracted solution was dropped directly onto a filter paper in an
osmometer chamber (5520 Vapro R©, Wescor, UT, United States)
and subsequently, the data were collected. Then, the osmolarity
(mmol kg−1) was converted to osmotic potential (MPa) using
conversion factor of osmotic potential measurement.

Chlorophyll a (Chla), chlorophyll b (Chlb), and total
chlorophyll (TC) in the flag leaf tissues were analyzed
according to the method of Shabala et al. (1998), whereas total
carotenoid (Cx+c) content was assayed following the method
of Lichtenthaler (1987). One hundred milligrams of leaf tissue
was homogenized in glass vials using 10 mL of 99.5% acetone
and blended using a homogenizer (model T25 Ultra Turrax R©,
IKA, Malaysia). The glass vials were sealed with Parafilm R© to
prevent evaporation, and then stored at 4◦C for 48 h. Chla and
Chlb concentrations were measured at 662 and 644 nm, whereas
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Cx+c concentration was measured at 470 nm using UV–Vis
spectrophotometer against acetone (99.5%) as a blank.

Chlorophyll fluorescence emission was measured from the
adaxial surface of flag leaf using a fluorescence monitoring
system (model FMS 2; Hansatech Instruments Ltd., Norfolk,
United Kingdom) in the pulse amplitude modulation mode
(Loggini et al., 1999). A leaf, kept in dark for 30 min, was initially
exposed to the modulated measuring beam of far-red light (LED
source) with typical peak at wavelength 735 nm. Original (F0) and
maximum (Fm) fluorescence yields were measured under weak
modulated red light (<85 µmol m−2 s−1) with 1.6 s pulses of
saturating light (>1500 µmol m−2 s−1 PPFD) and calculated
using FMS software for Windows R©. The variable fluorescence
yield (Fv) was calculated using the equation: Fv = Fm–F0. The
ratio of variable to maximum fluorescence (Fv/Fm) was calculated
as the maximum quantum yield of PSII photochemistry. The
photon yield of PSII (8PSII) in the light was calculated as:
FPSII = (Fm

′-F)/Fm
′ after 45 s of illumination, when steady state

was achieved (Maxwell and Johnson, 2000).
Net photosynthetic rate (Pn; µmol m−2 s−1), transpiration

rate (E; mmol H2O m−2 s−1), and stomatal conductance (gs;
mmol m−2 s−1) were measured using a Portable Photosynthesis
System fitted with an Infra-red Gas Analyzer (IRGA, Model LI
6400, LI-COR R© Inc., Lincoln, NE, United States). All parameters
were measured continuously by monitoring the content of
the air entering and exiting in the IRGA headspace chamber,
according to Cha-um et al. (2007).

Plant Morphological Characterization
and Yield Traits
Shoot height, number of leaves, leaf length, leaf width, and
number of tillers were measured in LP rice at booting stage
(Supplementary Figure S4). Total grain yield, number of

TABLE 2 | Chlorophyll a (Chla), chlorophyll b (Chlb), and total carotenoids (Cx+c)
contents in “Leum Pua” (LP) plants inoculated with AMF (GE; Glomus etunicatum,
GG; G. geosporum, and GM; G. mosseae) of rice cv. at booting stage, and
subsequently exposed to salt stress conditions for 14 days.

Treatment NaCl
(mM)

Chlorophyll a
(µg g−1 FW)

Chlorophyll b
(µg g−1 FW)

Total
carotenoids
(µg g−1 FW)

Pok 0 63.49c 52.88c 7.46bc

150 58.75c 51.26c 7.05bc

LP 0 233.70a 118.72a 12.60ab

150 82.99c 76.71bc 6.24c

LP + GE 0 209.94ab 133.76a 16.66a

150 98.88bc 88.79abc 13.39ab

LP + GG 0 214.61ab 133.82a 16.89a

150 70.35c 66.22c 6.73c

LP + GM 0 217.01ab 135.36a 19.00a

150 72.69c 68.10c 7.91bc

Significant level ** ** **

Pok: Pokkali, salt tolerant genotype, positive check. ** represents highly significant
difference at p ≤ 0.01. Different letters in each column show significant difference
at p ≤ 0.01 according to Tukey’s HSD.

panicles, panicle dry weight, panicle length, seed fertility, and
100-grain weight were also evaluated at harvesting stage.

Statistical Analysis
The experiment was arranged as Completely Randomized Design
(CRD) with six biological replicates (n = 6) in each treatment.
The mean values obtained from 10 set of observations were
compared using Tukey’s HSD and analyzed by SPSS software
(version 11.5 for Window R©).

RESULTS AND DISCUSSION

AMF Colonization and Total P Assay
Arbuscular mycorrhizal fungi colonization percentage in the root
tissues of rice cv. LP inoculated with GE, GG, and GM was found
to be >26%, irrespective of the salt treatment (Figure 1A). Total
P content in the root tissues was greater than that of leaf tissues.
Under salt stress, total P content in the root tissues was nearly
same in the inoculated and un-inoculated plants. In addition, P
content in the root tissues of rice cv. Pokkali (Pok) under control
was greater than cv. LP as well as LP + GG (Figure 1B). On
the other hand, P content in leaf tissues of LP + GG (1.35 mg
g−1 DW) was greater than LP (0.81 mg g−1 DW) by 1.67 folds
(Figure 1C). Moreover, P content in the leaf tissues of LP + GM
under salt stress declined by 31.25% over the control.

In the present study, root colonization of AMF inoculated
plants was evidently demonstrated in both control and salt stress
conditions, whereas it was undetected in un-inoculated plants.
As per a previous report inoculation of AM fungus isolated
from salt affected soil (Cabo de Gata Natural Park, Spain)
showed a positive relation between degree of salt treatments (75
and 150 mM NaCl) and root colonization, and also increased
the total P in both shoots and roots (Porcel et al., 2016).
Interestingly, root colonization of Rhizophagus intraradices
(collected), C. etunicatum, and Septoglomus constrictum was
alleviated by salt-treated (66 and 100 mM NaCl) maize plants
(Estrada et al., 2013a). In contrast, when Glomus spp. collected
from rhizosphere of maize plants was inoculated in wheat plants,
and subsequently exposed to salt stress, a decline in AM-fungal
colonization, especially at high salinity levels (4.7 and 9.4 dS
m−1) was observed (Talaat and Shawky, 2014). Similarly, in
alfalfa, colonization percentage of AMF (Glomus viscosum) was
sharply declined, in relation to the degree of salt treatments
(100–150 mM NaCl) (Campanelli et al., 2013). Colonization
percentage of R. intraradices, Massilia sp. RK4, and their mixtures
(collected from rhizosphere of the Phragmites sp., Saemangeum
reclamation land, South Korea) in maize plants was significantly
dropped when subjected to 40 and 80 mM NaCl for 22 days
(Krishnamoorthy et al., 2016). In Leymus chinensis seedlings, AM
root colonization was only detected in AMF inoculation under
salt stress (100–200 mM NaCl), whereas it was undetected in
un-inoculated plants (Lin et al., 2017).

Na+, K+, Ca2+, and Na: K Ratio
Na+ levels in the flag leaf tissues of rice cvs. Pok (30.66 mg g−1

DW) and LP (35.20 mg g−1 DW) were increased in response
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FIGURE 4 | Total chlorophyll content (A), photon yield of PSII (B), net photosynthetic rate (C), and relationship between photon yield of PSII and net photosynthetic
rate in flag leaf (D) of “Leum Pua” (LP) plants inoculated with AMF (GE; Glomus etunicatum, GG; G. geosporum, and GM; G. mosseae) at booting stage, and
subsequently exposed to salt stress conditions for 14 days. Error bar in each treatment represents by ± SE (n = 6). Different letters in each bar represent significant
difference at p ≤ 0.01 according to Tukey’s HSD.

to 150 mM NaCl treatment over the control by 43.20 and 52.50
folds, respectively (Figure 2A). Compared to control, 32.90–
40.60 folds increase in Na+ level in AMF inoculated plants (GE,
GG, and GM) in LP under salt stress was observed. Interestingly,
K+ in LP was significantly decreased when plants, both with
and without AMF, were exposed to 150 mM NaCl salt stress for
14 days, while it was maintained in cv. Pok (Figure 2B). Ca2+

was found to be 18.47 mg g−1 DW in LP without AMF under
salt stress (28.4 folds over control), whereas it was 9.89 mg g−1

DW in Pok under salt stress (17.7 folds over control) (Figure 2C).
Na:K ratio in salt stressed LP plants, both with and without AMF,
was significantly increased; however, it was maintained in cv.
Pok (Figure 2D).

Na+ and Ca2+ were accumulated (by > 10 folds) in the
flag leaf tissues of rice cvs. Pok and LP under 150 mM NaCl
for 14 days irrespective of AMF-inoculation, whereas K+ in
LP declined, leading to greater Na+:K+ ratio. Therefore, Na+
enrichment in LP with GE, GG, or GM was lower than that of LP
without AMF inoculation. Na+ in AMF (R. intraradices, Massilia
sp. RK4, and their mixtures) inoculated maize (cv. Shrunken-2)
plants grown under 40 mM NaCl for 17 days was lower than
that in the plants without AMF-inoculation (Krishnamoorthy
et al., 2016). Similarly, Na+ in shoots of AMF (R. intraradices,
C. etunicatum, and S. constrictum) inoculated maize plants under
66 and 100 mM NaCl was lower than that in the plants without
AMF (Estrada et al., 2013a). In wheat cv. Henta, Na+ in shoots

of AMF (GM and Glomus deserticola) inoculated plants was
significantly lesser than in un-inoculated plants and Gigaspora
gergaria inoculated plants (Abdel-Fattah and Asrar, 2012). In

TABLE 3 | Maximum quantum yield of PSII (Fv/Fm), stomatal conductance (gs),
and transpiration rate (E) in AMF-inoculated plants (GE; Glomus etunicatum, GG;
G. geosporum, and GM; G. mosseae) of rice cv. “Leum Pua” (LP) at booting stage
subsequently exposed to salt stress conditions for 14 days.

Treatment NaCl
(mM)

Fv/Fm gs (mmol
H2O

m−2 s−1)

E (mmol
H2O

m−2 s−1)

Pok 0 0.865a 0.42a 4.28ab

150 0.793ab 0.32ab 3.60b

LP 0 0.839ab 0.29b 3.98ab

150 0.629c 0.20c 2.83c

LP + GE 0 0.858a 0.40ab 4.98a

150 0.818ab 0.32ab 4.13ab

LP + GG 0 0.842ab 0.39ab 4.77a

150 0.812ab 0.32ab 4.09ab

LP + GM 0 0.844ab 0.35ab 5.01a

150 0.818ab 0.31ab 4.20ab

Significant level ** ** **

Pok: Pokkali, salt tolerant genotype, positive check. ** represents highly significant
difference at p ≤ 0.01. Different letters in each column show significant difference
at p ≤ 0.01 according to Tukey’s HSD.
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FIGURE 5 | Overall growth performances (A) and panicles (B) of “Leum Pua” (LP) plants inoculated with AMF (GE; Glomus etunicatum, GG; G. geosporum, and
GM; G. mosseae) at booting stage, and subsequently recovered until grain harvesting process.

alfalfa cv. icon, low levels of Na+ in AMF inoculated plants
were demonstrated when compared with the control (Campanelli
et al., 2013). In citrus (red tangerine) seedlings, Na+ enrichment
is generally antagonist with K+ when subjected to 100 mM
NaCl for 60 days and also, Na+ in AMF inoculated plants (GM
and Paraglomus occultum) was significantly lower than in un-
inoculated plants (Wu et al., 2010). Moreover, Na+ in AMF
inoculated wheat cv. Sids 1 was unchanged, whereas it was
increased in cv. Giza 168 over AMF un-inoculated plants, in
response to the degree of salinity levels (Talaat and Shawky,
2014). Interestingly, Na+ in the shoots of rice cv. Puntal with
AMF-inoculation (C. etunicatum) was similar to that of the un-
inoculated plants, whereas Na+ levels in the root tissues of AMF-
inoculated plants were higher than control and this involved
upregulation of plasma membrane Na+/H+ antiporter (OsSOS1)
and high affinity potassium transporter (OsHKT2;1) (Porcel et al.,
2016). In addition, it was confirmed that expression of vacuolar
Na+/H+ antiporter gene (LeNHX1) in the root tissues of salt-
stressed tomato was upregulated by AMF (GM) inoculation
(He and Huang, 2013).

Soluble Sugar, Free Proline, Osmotic
Potential, and Their Relationship
Sucrose, glucose, and fructose contents in flag leaf tissues were
increased when subjected to 150 mM NaCl. Sucrose, glucose and
fructose contents in LP plants without AMF under salt stress were
peaked at 147.2, 115.9, and 166.7 mg g−1 DW and enriched by

62.17, 1.19, and 1.48 folds over the control, respectively (Table 1).
Interestingly, fructose in GE-pretreated plants and glucose in
GG-pretreated plants of cv. LP exposed to 150 mM NaCl were
increased by 13.59 and 1.86 folds over control, respectively
(Table 1). Total soluble sugar in LP without AMF was found
to be the maximum (2.02 folds over control) when exposed to
salt stress. It was maintained at low levels in AMF-pretreated
plants similar to that of salt tolerant rice, Pok (Figure 3A).
Free proline in Pok was observed to be similar in both control
and salt stressed plants. In contrast, it was significantly high
in salt stressed plants of cv. LP by 3.79 folds, LP + GM by
2.19 folds, LP + GG by 3.39 folds, and LP + GE by 5.74 folds
over control (Figure 3B). Osmotic potential in salt stressed flag
leaf of cv. Pok was maintained, whereas it was significantly
declined in LP (1.93 folds over control) and LP + GE (1.37 folds
over control). Interestingly, it was retained in LP + GG and
LP+GM under 150 mM NaCl (Figure 3C). Moreover, a negative
relationship between free proline content and osmotic potential
was demonstrated (R2 = 0.5879; Figure 3D).

In rice crop, flag leaf at booting stage is reported to
be very sensitive to salt stress (Wankhade et al., 2013). In
general, total soluble carbohydrates in the leaf tissues of AMF-
colonized plants of trifoliate orange (Zou and Wu, 2011) and
chickpea (Garg and Bharti, 2018) were upregulated. In trifoliate
orange (Poncirus trifoliata), only sucrose was accumulated in
the leaves of plants grown under 100 mM NaCl for 7 weeks,
whereas glucose and fructose were unchanged even in the
plants inoculated with GM and Glomus versiforme (Zou and
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TABLE 4 | Shoot height, flag leaf length, number of panicles, and panicle length in
“Leum Pua” (LP) plants inoculated with AMF (GE; Glomus etunicatum, GG;
G. geosporum, and GM; G. mosseae) of rice cv. at booting stage, and
subsequently exposed to salt stress conditions for 14 days.

Treatment NaCl
(mM)

Shoot
height
(cm)

Flag leaf
length
(cm)

Number
of

panicles

Panicle
length
(cm)

Pok 0 126.3a 49.5a 5.3a 27.1a

150 115.3a 48.7a 4.2ab 26.8a

LP 0 87.4b 29.7b 3.5b 22.6ab

150 82.1b 26.8b 3.0b 18.8b

LP + GE 0 86.3b 22.0b 3.0b 23.8ab

150 82.3b 20.8b 3.0b 21.1ab

LP + GG 0 88.2b 27.9b 3.0b 22.4ab

150 84.0b 24.0b 2.3b 21.4ab

LP + GM 0 88.2b 28.3b 3.2b 24.8a

150 87.3b 26.7b 2.5b 21.7ab

Significant level ** ** ** **

Pok: Pokkali, salt tolerant genotype, positive check. ** represents highly significant
difference at p ≤ 0.01. Different letters in each column show significant difference
at p ≤ 0.01 according to Tukey’s HSD.

Wu, 2011). In contrast, sucrose in chickpea cvs. PBG 5
(salt tolerant) and BG 256 (salt sensitive), inoculated with
R. intraradices, was declined in response to the degree of
salt stress. Glucose and total soluble sugar in salt tolerant
PBG 5 (both with or without AMF-inoculation) were gradually
increased when subjected to salt stress (Garg and Bharti, 2018).
Total soluble sugars in several plants, i.e., wheat, fenugreek,
and two legumes (soybean and cluster bean) grown under
salt stress were found to vary in accordance to the degree of
salt stress, AMF species, and the symbiotic interactions (Evelin
et al., 2013; Datta and Kulkarni, 2014a; Talaat and Shawky,
2014). Interestingly, free proline content in salt tolerant cv.
Pok was maintained at low levels, whereas it was enriched by
5.74-folds in salt stressed LP with GE inoculation, over the
control. An increasing rate of free proline accumulation in
the salt stressed plants has been reported in wheat genotypes,
tomato cultivars, and mustard plants in relation to salt-tolerant
abilities (Hajiboland et al., 2010; Talaat and Shawky, 2014;
Sarwat et al., 2016). On the other hand, free proline enrichment
varies according to different species of AMF as seen from
the differences observed between GM, Glomus fasciculatum
(GF), and mixed GM + GF inoculation in Acacia arabica
(Datta and Kulkarni, 2014b); R. intraradices, C. etunicatum,
and Septoglomus conicatum inoculation in maize (Estrada et al.,
2013a); and GM, G. deserticola, and G. gergaria inoculation in
wheat (Abdel-Fattah and Asrar, 2012). It was confirmed that
the P5CS plays a major role in proline biosynthesis under
salt stress in both salt tolerant PBG-5 and salt sensitive CSG-
9505 genotypes of chickpea (Jahromi et al., 2008; Garg and
Baher, 2013). Free proline and total soluble sugars are the major
osmolytes in AMF-inoculated plants under salt stress that control
the osmotic potential at the cellular level, leading to enhanced
salt tolerant ability (Campanelli et al., 2013; Yang et al., 2014;
Evelin et al., 2019). Free proline enrichment in the salt stressed

plants with AMF inoculation plays a key role as osmotic
adjustment (Chun et al., 2018), which confirmed the function
as osmolytes by mitigation of NaCl stress in mustard plant
(Sarwat et al., 2016).

Physiological Responses to Salt Stress
Chla, Chlb, and Cx+c degradation in cv. Pok under salt stress was
low as compared to the cv. LP, where these declined by 64.49,
35.39, and 44.05% over the control, respectively (Table 2). In
LP+GE, Chla, Chlb, and Cx+c in flag leaf tissues were maintained
when subjected to salt stress. In contrast, those parameters in
LP + GG and LP + GM under salt stress were sharply dropped
by ≥50% (Table 2). In addition, TC content in salt stressed
plants of cv. Pok was maintained, whereas it was significantly
degraded in LP (54.68% over control), LP + GE (45.39% over
control), LP+ GG (60.79% over control), and LP+ GM (60.04%
over control) (Figure 4A). Fv/Fm, 8PSII, gs, and E in the flag
leaf of cv. Pok under salt stress were retained, while these
were lowered in cv. LP by 25.03, 19.52, 31.03, and 28.89%,
respectively (Table 3 and Figure 4B). However, these parameters
were maintained by GE, GG, and GM inoculation even when
exposed to salt stress (Table 3). Pn is a very sensitive parameter
to salt stress; however, it was maintained in cv. Pok even under
salt stress. In AMF inoculated plants, it was significantly declined
by 30.10, 22.31, 29.64, and 16.75% over the control in cv. LP,
LP + GE, LP + GG, and LP + GM, respectively (Figure 4C).
A positive relation between 8PSII and Pn was also established
(R2 = 0.5994; Figure 4D).

In the present study, chlorophyll pigments: Chla, Chlb,
and Cx+c, in GE-inoculated LP plants under salt stress were
unchanged, leading to stabilized Fv/Fm, 8PSII, and Pn, whereas
these were degraded by >50% over the control in LP without
AMF inoculation. Previously, Chla and Chlb in rice crop cv.
Puntal with AMF-inoculation (C. etunicatum, isolate EEZ 163)
were elevated when compared with non-AMF inoculated crop,
both subjected to 150 mM NaCl for 4 weeks (Porcel et al., 2015).
Chla and Chlb in AMF-inoculated plants of false wheatgrass
(L. chinensis symbiont with GM) and wheat (Triticum aestivum L.
cvs. Sids 1 and Giza 168 symbiont with a mixture of Glomus spp.),
were alleviated under both normal and salt stressed conditions
(Talaat and Shawky, 2014; Lin et al., 2017). Moreover, plant–
microbe interactions are another factor that regulates the salt
tolerant abilities in the host plants. For example, Chla, Chlb, and
Cx+c in AMF-inoculated wheat grown with GM under saline soil
(860 mg kg−1 Na+) for 8 and 12 weeks were observed to be
higher than those in un-inoculated plants and AMF-inoculated
plants with G. deserticola and G. gergaria (Abdel-Fattah and
Asrar, 2012). Consequently, Fv/Fm, 8PSII, Pn, gs, and E in AMF-
inoculated rice cv. Puntal were promoted under both control
and salt stressed conditions (Porcel et al., 2015). In maize, Fv/Fm
and gs in plants inoculated with C. etunicatum, R. intraradices,
and Septoglomus claroideum under 100 mM NaCl for 30 days
were alleviated compared to the un-inoculated plants (Estrada
et al., 2013b). In rice crop cv. Puntal, efficiency of PSII and
gs in salt stressed plants (75 and 150 mM NaCl for 4 weeks)
were significantly improved using C. etunicatum isolate EEZ 163
(Porcel et al., 2016). Based on this evidence, it can be suggested
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FIGURE 6 | Grain fertility (A), panicle weight (B), total grain weight (C), and 100 grain weight (D) of “Leum Pua” (LP) plants inoculated with AMF (GE; Glomus
etunicatum, GG; G. geosporum, and GM; G. mosseae) at booting stage, and subsequently recovered until grain harvesting process. Error bar in each treatment
represents by ± SE (n = 6). Different letters in each bar represent significant difference at p ≤ 0.01 according to Tukey’s HSD.

that the regulation of osmolytes and antioxidant activities in
AMF-inoculated plant grown under salt stress plays a major
role in salt defense mechanisms and reduction of electrolyte
leakage at the cellular level (Estrada et al., 2013b). Moreover,
the photosynthetic efficiencies in AMF-inoculated plants under
salt stress are found to be dependent on type of plant species,
genotypic variations, AMF genus/species/strain, degree of salt
stress, and their interactions (Wu et al., 2010). A positive
relationship between 8PSII and Pn with a high correlation
coefficient has been observed in rice crop (R2 = 0.691; Porcel et al.,
2015) and black locust (R2 = 0.789; Zhu et al., 2014), leading to
retain the yield attributes.

Morphological Changes
Morphological and phenological characters in cvs. Pok and LP
under control and salt stress were also observed (Figure 5).
Shoot height, flag leaf length, number of panicle, and panicle
length were greater in cv. Pok than in cv. LP. Moreover,
these parameters were unchanged when plants were subjected
to 150 mM NaCl for 14 days (Table 4). Fertility percentage
in cv. Pok under salt stress was unchanged, whereas it was
sharply declined by 77.39, 43.48, 33.68, and 37.31% over control
in LP, LP + GE, LP + GG, and LP + GM, respectively

(Figure 5A). Panicle weight, total grain weight, and 100-
grain weight were unchanged in salt stressed rice cv. Pok and
LP + GG (Figures 6B–D). In contrast, panicle weight, total
grain weight, and 100-grain weight in salt stressed rice cv.
LP were significantly declined by 83.65, 84.91, and 92.19%,
respectively, over the control. It was confirmed that LP is a
salt susceptible variety of rice crop. However, yield attributes
such as fertility, panicle weight, total grain weight, and 100-
grain weight in AMF-inoculated plants of LP salt stressed rice
showed significant improvement compared with un-inoculated
plants (Figure 6).

In the present study, shoot height in LP plants exposed to
salt stress was unchanged irrespective of the AMF inoculation.
In general, shoot height improves by AMF inoculation, but
is subsequently inhibited by salt concentrations (Yano-Melo
et al., 2003; Campanelli et al., 2013) and different AMF species
(GM, G. deserticola, and G. gergaria) (Abdel-Fattah and Asrar,
2012). In rice crop cv. Puntal, shoot fresh weight and shoot
dry weight of AMF-inoculated plants (C. etunicatum) under
salt stress (75 and 150 mM NaCl) were greater than those
in un-inoculated plants (Porcel et al., 2015, 2016). Likewise,
number of panicles, panicle weight, grain yield, and 1000-grain
weight in rice crop inoculated with AMF (Sebacina vermifera)
and subjected to salt stress (3, 6, and 9 dS m−1 ECe NaCl)
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FIGURE 7 | HCl-methanolic extracted solution of rice grain (A), cyanidin-3-glucoside (C3G; B), peonidin-3-glucoside (P3G; C), and total anthocyanins (D) of “Leum
Pua” (LP) plants inoculated with AMF (GE; Glomus etunicatum, GG; G. geosporum, and GM; G. mosseae) at booting stage, and subsequently recovered until grain
harvesting process. Error bar in each treatment represents by ± SE (n = 6). Different letters in each bar represent significant difference at p ≤ 0.01 according to
Tukey’s HSD.

performed better than that of un-inoculated plants, but again
depending on the degree of salt stress (Pirdashti et al., 2012).
In wheat cvs. Sids 1 and Giza 168, number of grains per
plant and grain yield per plant were significantly improved by
AMF-inoculation (mixed Glomus spp.) under salt stress [4.7
and 9.4 dS m−1 (a mixture of NaCl, CaCl2 and MgSO4 at
molar ratio of 2:2:1)] (Talaat and Shawky, 2014). In maize,
the salt tolerant abilities (66 and 100 mM NaCl) in terms
of shoot dry weight of plants subjected to different AMF
strains, R. intraradices and C. etunicatum, were significantly
improved than in plants without AMF and those inoculated
with S. claroideum (Estrada et al., 2013a,b). Moreover, yield per
pot, 1000-grain weight, and grains per ear of AMF-inoculated
(Piriformospora indica) barley cvs. Ingrid and Annabell grown
under salt stress were greater than that of the un-inoculated
plants (Waller et al., 2005).

Anthocyanin Analysis
Extracted solution of anthocyanins using 1% HCl in
methanol solvent is presented in Figure 7A. Interestingly,
C3G, P3G, and total anthocyanins in cv. Pok were absent,
whereas these were accumulated in the pericarp of cv. LP,
especially in the AMF-inoculated plants subjected to salt
stress (Figures 7B–D). In LP + GE, C3G, P3G, and total

anthocyanins in salt stressed pericarp of rice grains were
increased by 1.49, 1.24, and 1.47 folds over the control,
respectively (Figures 7B–D). P3G and total anthocyanins in
LP + GG under salt stress were significantly increased by
1.35 and 1.35% over the control, respectively (Figures 7C,D).
In addition, the regulation of C3G and P3G chromatogram
profiles in LP rice cultivar under salt stress was evidently
demonstrated (Figure 8).

Total anthocyanin enrichment in the pericarp of rice grain
depends on genotype and the biotic and/or abiotic environmental
elicitors. In the present study, anthocyanins in the red pericarp
of Pok were absent, whereas two species of anthocyanins, C3G
and P3G, were present in cv. LP. In lettuce, anthocyanins in
the inner and outer leaves of cv. Maravilla de Verano (MV)
were accumulated in higher amounts than Batavia RubiaMurguia
(BRM) (Baslam et al., 2011). Anthocyanins were evidently
dominated in the stem and whole plant of basil varieties,
i.e., Cinnamon, Siam Queen, Sweet Dani, and Red Rubin,
whereas these were undetected in the roots (Seagel, 2012). In
addition, anthocyanin accumulation in pericarp of rice grain
inoculated by AMF and exposed to NaCl salt elicitor was clearly
observed. In strawberry fruits, C3G, P3G, and pelagonidin-3-
rutinoside (P3R) were alleviated in plants grown under AMF
(Glomus sp.) + Pseudomonas bacteria + 70% fertilization
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FIGURE 8 | HPLC profiles of cyanidin-3-glucoside (C3G) and peonidin-3-glucoside (P3G) of “Leum Pua” (LP) plants inoculated with AMF (GE; Glomus etunicatum,
GG; G. geosporum, and GM; G. mosseae) at booting stage exposed to control (A) and salt stress (B) conditions for 14 days, and subsequently recovered until grain
harvesting process.

FIGURE 9 | A summary of GE (Glomus etunicatum) regulation on salt tolerant
ability of “Leum Pua” (LP) plants at booting stage and subsequently recovered
until grain harvesting process.

(Lingua et al., 2013). Total anthocyanins were increased in lettuce
in AMF (commercial inoculation; mixed G. intraradices and GM)
inoculated plants compared to plants without AMF (Baslam
et al., 2011). It is possible that AMF and NaCl salt may regulate
the anthocyanin biosynthesis pathway, via targeting several
enzymes, i.e., phenylalanine ammonialyase (PAL), chalcone
synthase (CHS), and flavonol synthase (FLS) (Abdallah et al.,
2016; Battini et al., 2016). In contrast, proanthocyanidins
in the leaves of AMF (Gigaspora albida and Acaulospora
longula) inoculated “Aroeira-do-sertão” were unchanged when
compared to plants without inoculation (da Silva and Maia,
2018). Likewise, total anthocyanins declined in the leaves of

Cicer arietinum cvs. PGB5 (salt tolerant) and BG256 (salt
susceptible), inoculated with AMF (R. intraradices) in response
to the degree of NaCl salt treatments (Garg and Bharti, 2018).
Moreover, accumulation of anthocyanins in rice grain varies
with the species of Glomus genus, as seen from the greater
accumulation of anthocyanins in grains-derived from GG and
GE pretreated plants compared to plants with GM inoculation.
In lettuce cvs. Cogollos de Tudela, BRM, and Maravia de Verano,
GF, G. intraradices, and GM evidently regulated carotenoids
(neoxanthin, violaxanthin, antheraxanthin, zeaxanthin, lutein,
lactucaxanthin, and β-carotene) and tocopherols (α-, β-, and γ-
tocopherols), thereby demonstrating their role as biotic elicitors
(Baslam et al., 2013).

CONCLUSION

Root colonization by GE, GG, and GM was detected irrespective
of the salt treatment. GG inoculation leads to high level of
phosphorus accumulation in flag leaf of rice crop cv. LP, whereas
Na+ was trend to increase in salt-treated plants similar to cv. Pok
(salt tolerant). Photosynthetic abilities, chlorophyll pigments,
Chla fluorescence, and stomatal function in flag leaf of LP
inoculated with GE grown under salt stress were stabilized by the
production of total soluble sugars and free proline that acted as
osmolytes to reduce salt toxicity. Therefore, the yield attributes
were maintained, and anthocyanins content was enhanced in the
pericarp of rice cv. LP inoculated with GE (Figure 9).
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