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Date palm (Phoenix dactylifera L.) is a socio-economically important crop in the Middle
East and North Africa and a major contributor to food security in arid regions of the
world. P. dactylifera is both drought and salt tolerant, but recent water shortages and
increases in groundwater and soil salinity have threatened the continued productivity
of the crop. Recent studies of date palm have begun to elucidate the physiological
mechanisms of abiotic stress tolerance and the genes and biochemical pathways that
control the response to these stresses. Here we review recent studies on tolerance
of date palm to salinity and drought stress, the role of the soil and root microbiomes
in abiotic stress tolerance, and highlight recent findings of omic-type studies. We
present a perspective on future research of abiotic stress in date palm that includes
improving existing genome resources, application of genetic mapping to determine the
genetic basis of variation in tolerances among cultivars, and adoption of gene-editing
technologies to the study of abiotic stress in date palms. Development of necessary
resources and application of the proposed methods will provide a foundation for future
breeders and genetic engineers aiming to develop more stress-tolerant cultivars of
date palm.

Keywords: date palm, abiotic stress, omics, desert microbiome, genetic transformation, breeding program

INTRODUCTION

Among the greatest challenges currently facing crop productivity worldwide are the salinization of
arable land and pressures from various sources of abiotic stress. These challenges are exacerbated in
arid and semi-arid regions where climate change and chronic water shortages have reduced arable
land area and reduced crop yields. As fresh water resources are depleted, irrigation with brackish
water, drought, evaporation and excessive heat in these regions cause large amounts of soluble salt
to accumulate in the soil. These conditions, together with other sources of abiotic stress such as
heavy metal exposure and nutrient stress, increasingly pose a threat to crop yields and food security.
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The date palm (Phoenix dactylifera L., 2n = 36) is a
commercially important fruit crop in arid regions of the Middle
East and North Africa. Date palms are dioecious and have a
long juvenile phase that includes a minimum of 4 years to
first flowering and 10 years or more to produce basal offshoots
and reach maximum yield capacity (Chao and Krueger, 2007).
Like other dioecious fruit crops, cultivation practices utilize
vegetative propagation such as transfer of basal offshoots or
micropropagation in tissue culture to clone female cultivars.
These practices maintain a rich diversity of more than 3,000
named varieties worldwide which are valued primarily for their
sweet fleshy fruits (Zaid and de Wet, 2002). Micropropagation
has become the primary means of propagating elite cultivars for
commercial production in many areas, but bringing new cultivars
into tissue culture is difficult and time consuming (Aaouine,
2003; Mazri and Meziani, 2015). Sexual reproduction has also
been adopted in some areas, but seedlings are undesirable in
most commercial contexts owing to heterogeneity in fruit quality
(Johnson et al., 2013).

Date palms inhabit harsh desert environments and remain
viable even in areas with saline soils and survive long periods
with limited water supply (Nixon, 1951; Wickens, 1998; Maas
and Grattan, 1999; Ramoliya and Pandey, 2003; Sané et al.,
2005; Elshibli et al., 2016; Müller et al., 2017). Despite high
tolerance to abiotic stress, date palms require large volumes of
water to produce commercial grade fruit and suffer from lower
productivity and reduced fruit quality when subject to drought
and salinity stress (Alhammadi and Kurup, 2012; Hussain et al.,
2012). Date palms can grow in soils up to 12 dS m−1 without
showing symptoms of salt stress (Ramoliya and Pandey, 2003).
However, Maas and Grattan (1999) reported that for every unit of
increasing salinity above 4 dS m−1, date palm experience a 3.6%
decline in yield. Therefore, modest increases to soil salinity can
have measurable impacts on crop productivity (Hussain et al.,
2012) and long term irrigation with saline water may not be
commercially viable (Tripler et al., 2007, 2011). In addition to
impacts on yield, salinity impacts important agronomic traits
including extending the juvenile stage by 2 years and delaying
fruit development in adults (Tripler et al., 2007, 2011).

Many date palm growing areas are increasingly affected by
saline soils (Pitman and Läuchli, 2004; Malash et al., 2008; Haj-
Amor et al., 2016), drought (Elshibli et al., 2016), falling water
tables (see references in Al-Muaini et al., 2019a), and increased
groundwater salinity (Alfarrah and Walraevens, 2018). These
factors have had significant effects on date palm cultivation.
For example, in the United Arab Emirates (U.A.E.), soil salinity
is high in many areas due to over-irrigation with increasingly
saline water such that a large percentage of farms have soil
salinities in the 16–20 dS m−1 range (Dakheel, 2003). This
has resulted in declining productivity in salt-affected areas and
the abandonment of farms and crop failure in severe cases
(Dakheel, 2003). In addition to regional concerns about date palm
productivity, the high water usage requirements of date palm (i.e.,
up to 210 L per day per tree in the summer and approximately
1/3 of total groundwater use in the U.A.E.; Al-Muaini et al.,
2019a) are putting pressure on regional authorities to moderate
irrigation practices and evaluate the impact of irrigating date

palms with increasingly saline water (Al-Muaini et al., 2019a,b).
These concerns motivate expanding research on abiotic stress in
date palm and laying a foundation for crop improvement.

Studies of date palm have begun to elucidate the mechanistic
basis for abiotic stress tolerance in this species. For example,
a recent report characterized a unique form of embryonic
dormancy known as remote germination that protects organs and
meristematic cells of early stage seedlings from dry surface soils
and heat stress and may represent an adaptation to harsh desert
conditions (Xiao et al., 2019). In the last few years, a number
of studies have reported variation in the response to abiotic
stresses among cultivars and their seedling progeny (Alhammadi
and Edward, 2009; Al Kharusi et al., 2017; Al-Khateeb et al.,
2019). Others have begun to probe the complex responses to
abiotic stresses using genome-wide omic technologies such as
transcriptomics, proteomics, methylomics, and metabolomics
(Yaish and Kumar, 2015; Safronov et al., 2017; Yaish et al.,
2017; Al-Harrasi et al., 2018; Rikek et al., 2019). Other recent
developments include advances in transformation strategies for
genetic engineering and gene editing (Prieto, 2011; Cardi et al.,
2017), use of heterologous expression systems for studies of
gene function (Patankar et al., 2019a,b), improvements to the
date palm genome (Hazzouri et al., 2019), and demonstration
of genome-wide association studies (GWAS) for mapping
phenotypic trait variation in date palm (Hazzouri et al., 2019).
Despite these advances, there is presently limited prospect of
crop improvement using conventional breeding or genomic
selection owing to many challenges faced by perennial fruit crops
(Laurens et al., 2012).

Salt and drought stress response mechanisms in date palms
and other plants has been reviewed in a number of recent
comprehensive treatments (date palms: Alhammadi and Kurup,
2012; Hussain et al., 2012; plants: Munns and Tester, 2008; Hanin
et al., 2016; He et al., 2019). In this review, we highlight recent
work on the effects of salt and drought on P. dactylifera including
studies using omics-based technologies and those examining root
and soil microbiomes effects on stress tolerance in this species.
We also provide a perspective on directions for future genomic
research and emphasize a need for application of forward genetic
approaches (e.g., GWAS) to complement genome editing and
other reverse genetic approaches to dissecting the molecular
basis of stress tolerance traits. Finally, we discuss the need
for improved resources including well-established protocols for
transformation and gene editing, plant materials such as those
required for mapping studies, and broader application of omic-
related technologies to diverse cultivars of P. dactylifera and its
Phoenix wild relatives.

SALINITY

Salinity Tolerance in Date Palms
Salinity induces detrimental changes to the anatomy, physiology,
and growth of plants. These changes are counteracted by
mechanisms that mitigate the effects of stresses including osmotic
and ion toxicity stress. Salinity inhibits water uptake and
increases the concentration of toxic ions such as Na+, threatens
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membrane integrity, results in the accumulation of reactive
oxygen species (ROS), and contributes to imbalances in nutrient
uptake. These effects have negative impacts on plant physiology
including reduced photosynthetic capacity, impaired signaling,
and alterations to cellular metabolism (Munns and Tester, 2008).
These effects jointly contribute to reduced growth rates, increased
rates of senescence, and lower yields of crops (Fricke et al., 2006;
Sahi et al., 2006; Munns and Tester, 2008).

Plants mitigate these effects with diverse and complex
sensing, signaling, and response pathways that determine the
tolerance of a plant to salt (Hanin et al., 2016). These
pathways interact to mount salt tolerance responses such as the
production of compatible solutes (Munns and Tester, 2008),
ion compartmentalization (e.g., in vacuoles), and neutralization
of ROS. For example, plants neutralize ROS by producing
antioxidant metabolites such as ascorbate, glutathione, and
tocopherols or by expressing ROS-detoxifying enzymes such as
superoxide dismutase (SOD), Ascorbate peroxidase isoenzymes
(APX), and catalase (CAT) (Huang et al., 2019). Another strategy
is to exclude salt ions from entering the root or restricting the
transport of Na+ within the plant. These mechanisms include
changes to root anatomy such as limiting xylem Na+ loading and
translocation, modifying membrane permeability to exclude toxic
ions, and active exclusion of ions from cells via ion pumps (Zhu,
2003; Munns and Tester, 2008; Hanin et al., 2016).

Many early studies characterized the impact of salinity on
date palm growth, physiology and tolerance response and
revealed that date palm respond to salt with many of the same
strategies as other plants (Alhammadi and Kurup, 2012; Hussain
et al., 2012). For example, salt stress triggers the production of
osmolytes and compatible solutes in date palm including proline
(Djibril et al., 2005; Yaish, 2015). Other studies have reported
that date palm ameliorate the effects of ROS by increasing
the expression of anti-oxidant enzymes (Ait-El-Mokhtar et al.,
2019) and increasing concentrations of anti-oxidant metabolites
(Al Kharusi et al., 2019a).

Recent studies have characterized the effects of salt on
different cultivars (or their seedling progeny). For example,
in a study of seedling progeny of 10 cultivars, Al Kharusi
et al. (2017) suggested that date palms could be separated
into salt tolerant and sensitive cultivars based on root and
shoot growth characteristics. They reported that the most salt
sensitive varieties have elevated Na+ in roots and shoots,
reduced shoot K+, reduced relative water content in leaves,
and higher electrolyte leakage. A similar study of seedling
offspring from 12 date palm cultivars reported similar changes
in Na+ and K+, but also reported decreased Ca+ and Mg+
particularly in roots and changes in nitrogen and phosphorus
contents in both roots and shoots in response to salt treatments
(Alhammadi and Edward, 2009).

Al Kharusi et al. (2019b) studied the seedling offspring
of a salt tolerant variety, ‘Umsila,’ and salt sensitive variety,
‘Zabad.’ They reported that salt tolerant seedlings responded to
salinity by developing a thicker protective Casparian strip in
roots, increasing osmolyte and compatible solute concentrations
including proline, glycine betaine, and total sugar. These
changes were associated with increased photosynthesis rates and

development of a larger root system and leaf areas. Another study
by these same authors suggested that the seedling offspring of
the salt tolerant variety also balance their uptake of Na+ and K+
and maintain a higher concentration of antioxidant metabolites
(Al Kharusi et al., 2019a).

Two recent studies by Patankar et al. (2019a,b) have
studied the function of date palm salinity-response genes
by expressing them in heterologous systems. Metallothioneins
(MTs) are cysteine rich proteins that play a role in reducing
oxidative damage under abiotic stress conditions. Patankar et al.
(2019a) expressed the date palm metallothionein gene, PdMT2A,
in a salt-sensitive yeast (Saccharomyces cerevisiae) mutant
which conferred tolerance to salinity, drought and oxidative
stresses. Overexpression of PdMT2A in transgenic Arabidopsis
resulted in reduced Na+ accumulation and maintenance of
potassium/sodium (K+/Na+) ratio compared to wild type, which
they attributed to the HKT transporter. In addition, transgenic
lines showed higher chlorophyll content, higher superoxide
dismutase activity (SOD) and better scavenging ability of ROS
and were drought and oxidative stress tolerant.

In a related study, Patankar et al. (2019b) expressed date palm
aquaporin PdPIP1;2 in yeast and reported improved tolerance to
salinity and oxidative stresses. On the other hand, overexpression
of the same gene in Arabidopsis showed symptoms of improved
tolerance including enhanced biomass, chlorophyll content, root
length under salt and drought conditions and high K+/Na+
compared to wild type. These two studies illustrate an approach
to studying date palm gene function including the mechanisms
by which genes may confer tolerance to abiotic stress.

These recent advances have provided new insight into the
physiological basis for differences in the salinity response among
date palm cultivars and highlighted approaches to characterizing
the function of individual genes in salinity response pathways. At
present, however, the genetic basis for variation in this response
remains poorly understood and no candidate genes or mutations
have been identified that might control variation in these traits
among cultivars.

Omic Studies of Salinity Tolerance in
Date Palm
Omic technologies have the potential to yield a system-
level perspective on salinity response mechanisms through
characterization of stress inducible genes, regulatory networks
and biochemical pathways. A number of studies have adopted
NGS (Next Generation Sequencing)-based profiling of
the transcriptome and methylome. Others have adopted
metabolomics or proteomic approaches to characterize the
salinity response (Table 1). For example, Radwan et al. (2015)
compared salt-treated and control samples of ‘Deglet Beida’
seedlings and reported differential gene expression (DGE)
of a large percentage of genes in young roots including
downregulation of sodium uptake and transport genes and
upregulation of the ABA-signaling pathway. Other differentially
expressed genes included members of the cell wall suberization
and DNA repair pathways, and a putative cinnamoyl reductase
enzyme that may divert flux from the phenylpropanoid pathway
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TABLE 1 | Omic studies of abiotic stress in date palm.

Technology Abiotic stress Description Date palm
material

Publication

RNA-seq Salinity DGEa analysis of root tissue from ‘Deglet Beida’ after salinity stress Seedlings Radwan et al., 2015

RNA-seq Salinity DGE analysis of leaf and root from ‘Khalas’ after salinity stress Seedlings Yaish et al., 2017

Small RNA-seq Salinity miRNA target assessment and DGE analysis of leaf and root from
‘Khalas’ after salinity stress

Seedlings Yaish et al., 2015b

RNA-seq ABA-treatment Leaves were treated with ABA followed by DGE analysis between
treatment and control

Seedlings Müller et al., 2017

RNA-seq and
methylomics

Salinity Differential methylome and transcriptome analysis of ‘Khalas’ roots
in response to salinity

Seedlings Al-Harrasi et al., 2018

Proteomics Drought and salinity Proteomic analysis of 18-month palms subjected to drought and
salinity stress

Tissue
culture

Rabey et al., 2016

Metabolomics Salinity and silicon
treatments

Non-targeted metabolomics analysis on leaf and root tissues after
treatments with salt and silicon.

Seedlings Jana et al., 2019

RNAseq+Metabolomics Mild heat, drought,
and combined heat
and drought

Transcriptomic and metabolomic analysis of P. dactylifera under
mild heat, drought, and combined.

Seedlings Safronov et al., 2017

aDGE, differential gene expression.

into lignin biosynthesis necessary for strengthening the cell wall.
Future studies might use single-cell transcriptome analyses (Liu
and Trapnell, 2016) to evaluate these hypotheses (Libault et al.,
2017; Palovaara et al., 2017; Shulse et al., 2019).

Another RNA-seq study reported DGE in the leaves and
roots of salt-treated versus control samples (Yaish et al., 2017).
Genes that were differentially expressed in the leaves had
roles in photosynthesis, starch and sucrose metabolism, and
oxidative phosphorylation, while differentially expressed genes
in the roots function in tryptophan, purine, and thiamine
metabolism. Some genes, including High-Affinity Potassium
Transporter 8 (HKT8 = HKT1;5), vacuolar proton pump, and
the auxin-conjugating enzyme GH3, were differentially expressed
in both the leaves and the roots. The authors also observed the
upregulation of phosphoenolpyruvate carboxylase (PEPC) in leaf
in response to salt which they speculated could indicate salinity-
induced activation of C4 or CAM photosynthesis pathways.

Yaish et al. (2015b) quantified microRNAs, or miRNA,
expression in the leaves and roots of seedlings in control versus
salt stressed conditions. They reported 57 and 25 miRNAs that
were differentially expressed in leaf and root in response to salt
stress. The authors listed a number of mRNA targets of these
miRNAs that they speculated may be salinity-related including
hormone response elements (e.g., abscisic acid responsive
elements-binding factor), kinases, transcription factors, and
transporters (Yaish and Kumar, 2015). The observation that
microRNAs are differentially expressed in response to salinity
stress suggests a possible role for these genes in the salinity
response, although the authors cautioned that their observations
would benefit from further validation.

Another study examined the effect of silicon on salt-stressed
date palm seedlings. Jana et al. (2019) used metabolic profiling
to measure thousands of metabolites, such as antioxidant
compounds (e.g., pyridoxine, cepharanthine), osmoregulators
(e.g., mucic acid) and intermediate detoxification (e.g.,
S-D-lactoylglutathione, beta-cyano-L-alanine) in roots and
leaves that accumulated in response to silicon, salt, and in

combination. They showed that in non-stressful conditions,
silicon promotes growth of date palm seedlings, whereas in the
salinity treatment, silicon acted as a negative regulator of salt
stress. Studies of the differential accumulation of metabolites in
response to silicon and salt treatments could yield insight into
the protective role of silicon under salinity stress.

DROUGHT

Tolerance to Drought in Date Palms
The availability of water is central to virtually all components
of plant physiology and plants have evolved a complex array
of mechanisms to maintain high water potential in drought
conditions (Jarvis and Jarvis, 2006). Maintenance of water
potential is achieved by minimizing water loss via transpiration
and maximizing water uptake and includes rapid response
mechanisms including closure of stomata (Cowan, 1977) and
longer term changes to plant anatomy and gene expression
(Chaves et al., 2003). For example, plants control water loss
by modifying leaf characteristics, such as the production of
cuticle wax (Hadley and Smith, 2011) and reducing leaf area and
stomatal conductance through leaf senescence (Munné-Bosch
and Alegre, 2004). At the physiological level, reduced water
availability causes systemic changes in plant physiology including
increased osmotic stress, reduced photosynthetic rates and the
production of ROS. Among the most important responses to
these effects are the production of molecular chaperones, anti-
oxidants and compatible solutes via many of the same stress
responsive pathways induced by salinity stress that constitute a
general response to abiotic stress (He et al., 2018).

Date palms have a number of anatomical characteristics that
contribute to tolerance of hyper-arid conditions. For example,
date palms maintain thick, waxy cuticle and pinnately compound
leaves covered with many spines, which insulate the tip growing
point. The deep root system in date palms traps water in
various types of soils. Those traits reduce evaporation and
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maximize water uptake and contribute to P. dactylifera tolerance
for drought stress (Nixon, 1951; Wickens, 1998; Ramoliya and
Pandey, 2003; Sané et al., 2005). Nevertheless, long periods of
drought negatively impact date palm by reducing growth, fruit
quality and yield (Elshibli et al., 2016).

One active area of research has focused on anatomical features
of date palm roots that may represent adaptations to desert
conditions including drought. Xiao et al. (2019) reported a novel
form of germination where organs and meristem cells experience
a period of developmental arrest. They reported that date palm
develop a tuber-like structure called the cotyledonary petiole that
protects the developing embryo in the soil. This same study also
reported that date palms maintain suberized and lignified xylem,
phloem and bundle cells in roots and produce pneumatophores,
a specialized type of root. These authors speculated that these
anatomical features may account for the adaptation of date palm
to drought and salinity.

Arab et al. (2016), subjected 2 year old date palm seedlings
to drought and heat. Briefly, the authors reported that
photosynthesis was not affected by these stresses, despite a
drop in the concentration of antioxidants including ascorbate
and glutathione in leaves. The authors suggested that reduced
concentrations of anti-oxidants may be compensated by a
concomitant increase in the activity of a anti-oxidant enzyme,
glutathione reductase. Furthermore, increased emission of
isoprene under heat supported its role as an antioxidant. Finally,
they also reported a change in fatty acid composition under
drought, but not heat, which could suggest that date palms have
independent response pathways to drought and heat stress.

A recent study by Yaish (2015) reported that date palm
seedlings accumulate proline not only in response to drought and
salinity stress, but also in response to extreme temperatures and
abscisic acid treatments. They concluded that proline production
is a common response for multiple stressors, which make it a
possible marker in date palm breeding programs that aim to
improve drought and salt tolerance.

In contrast to the study of salinity, fewer studies have assessed
variation in the response of date palm cultivars to reductions
in the availability of water. A recent study by Al-Khateeb et al.
(2019) simulated osmotic stress in micropropagated date palm
plantlets by adding mannitol to the culture medium. The three
cultivars studied showed reduced root, shoot, and total biomass,
intercellular CO2 assimilation rate, transpiration rate and water
content in water-stressed conditions at the seedling stage.
However, they reported that there were only weak differences
among cultivars in their tolerances.

Omic Studies of Water Shortage in Date
Palm
There are presently few omics studies of drought in date palm
(Table 1). A recent proteomics study identified genes involved in
salt and drought tolerance in P. dactylifera (Rabey et al., 2016).
The researchers challenged 3-month seedlings of the ‘Sagae’
cultivar with polyethylene glycol (82.5 g/L) and salinity (43 g/L)
and identified 47 differentially expressed genes in the leaves.
Thirteen of the genes were responsive to both salt and drought,

17 others were responsive only to salt stress, while the remaining
only under drought. Some of the differentially expressed genes
that were downregulated under drought included ribulose-1,5-
bisphosphate, carboxylase/oxygenase, oxygen-evolving enhancer
protein 2, chloroplastic-like, and cytochrome P450 implying the
deactivation of the photosynthetic pathways in response to the
treatment conditions.

Safronov et al. (2017) used transcriptomic and metabolomic
profiling to characterize the response to heat and drought
stress in P. dactylifera (Table 1). The two stresses had similar
effects including the upregulation of soluble carbohydrates and
increased antioxidant activity in the cytosol, chloroplasts, and
peroxisomes. Differentially expressed genes involved in circadian
and diurnal rhythm in response to combined heat and drought
were reported and implied a novel stress-avoidance strategy.

Another study applied ABA to date palm leaves to mimick
the effects of drought (Table 1; Müller et al., 2017). The
authors reported a DGE analysis between ABA-treatment and
control conditions and reported a broad overlap in differentially
expressions genes in date palm and drought stress-responsive
genes in Arabidopsis. For example, the date palm response
to ABA includes well-known genes in Arabidopsis including
phosphatases in the PP2C family, ATP binding cassette (ABC)
transporters, late embryogenesis abundant proteins (LEAs) and
MYB74, a guard cell transcription factor.

THE DATE PALM MICROBIOME AND
ABIOTIC STRESS

Plants have evolved associations between roots and soil microbes
that confer tolerance to abiotic stress. This root-associated
microbiome, or rhizobiome, consists of plant roots and their
associated bacteria and fungi that alter plant development and
physiology, confer resistance to pathogens, and confer tolerance
to various abiotic stresses such as salinity and drought (Mefteh
et al., 2017; Yaish et al., 2017; Jones et al., 2019). For example,
plants improve their tolerance of abiotic stress by altering
root exudates and modifying the species composition of the
rhizobiome (Berg et al., 2013; Mapelli et al., 2013; Hacquard et al.,
2017; Berendsen et al., 2018; Sasse et al., 2018; Whitaker et al.,
2018). The microbiome enhances stress resistance by promoting
osmolyte accumulation, alleviating oxidative stress by enzymatic
and non-enzymatic mechanisms, or synthesizing hormone-
like substances that modulate root expansion and hormone
homeostasis (Bérard et al., 2011; De Zélicourt et al., 2013).

The ability of the plant root system to be colonized by
endophytes (beneficial microbes able to colonize the root inner
tissues) is essential for plants to receive benefits including
protection against abiotic stress. For instance, bacterial acetyl
co-carboxylase deaminase (ACCD) enzyme facilitates plant
growth under environmental constraints and was found to
help endophytic colonization within plants (Sessitsch et al.,
2012). Heterologous expression of ACCD in P. dactylifera could
promote the colonization of various beneficial endophytes.

Phoenix dactylifera thrives in oasis ecosystems, where
microbial communities help plants to tolerate environmental
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extremes (Kumar et al., 2011). Although endophytic bacteria
enhance plant growth under abiotic stress (Rolli et al., 2014),
there are few studies on P. dactylifera endophytic bacteria and
their role in the acquisition of salt and drought tolerance. The
use of NGS will enhance the characterization of endophytic
microbiota of P. dactylifera and would lead to a better
understanding of the biodiversity in the rhizosphere. This would
help dissect the function of beneficial microbial symbiosis and
the molecular mechanisms by which symbiosis is established and
exerts beneficial effects (Köberl et al., 2011; Marasco et al., 2012).

The root and leaf microbiomes of date palm represent
diverse communities comprised of bacterial and fungal species.
In a recent study in the Sahara Desert in Tunisia, the
bacterial communities selected by the root system of date
palm were dominated mainly by Gammaproteobacteria and
Alphaproteobacteria irrespective of the edaphic conditions or
geographical location (Mosqueira et al., 2019). A study by Cherif
et al. (2015) of the ecology of date palm root endophytes
from oasis desert farms in southern Tunisia indicates that date
palm roots select diverse endophytic communities that are able
to promote plant growth under drought conditions. Another
study identified endophytic bacterial and fungal communities in
P. dactylifera grown under salt stress using pyrosequencing and
showed that the composition of those microbial communities
changed significantly in response to changes in salinity (Yaish
et al., 2015a, 2016).

The most common fungal endophytes isolated from
P. dactylifera are Penicillium citrinum isolate TDPEF34 and
Geotrichum candidum isolate TDPEF20, which represent a
promising source of diverse bioactive metabolites (Mefteh et al.,
2018). The most frequently isolated genus of endophytic bacteria
from P. dactylifera is Pseudomonas, which is well-known for
its growth-promoting properties (Roca et al., 2012; Skz et al.,
2013). In drought-like conditions, innoculation of date palm
roots with these endophytic bacteria promotes growth (Cherif
et al., 2015). Pseudomonas isolated from P. dactylifera showed a
number of potential plant growth promoting (PGP) properties
including enhanced inorganic phosphate solubilization,
nitrogen fixation, and the production of siderophores,
phytohormones,1-aminocyclopropane-1-carboxylate deaminase,
and exopolysaccharide.

Fungi also provide PGP services. The most studied group of
PGP fungi are the Arbuscular Mycorrhizal Fungi (AMF), which
belong to the Glomeromycota and form symbiotic associations
with plants by colonizing the root. A recent study of the effect
of innoculating date palm roots with AMF improved tolerance
under drought and salt-stressed conditions (Meddich et al.,
2018). Ait-El-Mokhtar et al. (2019) also reported that date
palm seedling roots colonized by AMF structures improved
tolerance to salt stress.

The research focus has changed in the past few years from
the identification of individual microbial strains with growth-
promoting effects to metagenomic studies of the abundance
and diversity of root microbiomes. Studies that have applied
high-throughput sequencing analyses have revealed that the
rhizosphere niche is an ecological hotspot where roots host a
tremendous array of microbial taxa (Bulgarelli et al., 2013; Busby

et al., 2017; Yu et al., 2018; Khare et al., 2018). NGS-based
technologies have yet to be applied to studies of the date palm
root microbriome.

There are many strategies for engineering the plant
microbiome such as host-mediated and multi-generation
microbiome selection, inoculation of bulk soils and the
rhizosphere, and other approaches (Orozco-Mosqueda et al.,
2018; Timm et al., 2018; Jochum et al., 2019a,b; Khan et al., 2019).
Engineering of the root-associated microbiome can be used to
alter microbiome composition and potentially improve tolerance
to abiotic stress. While bioengineering of the plant microbiome is
in its infancy, it is an interesting option to improve the biological
capabilities of plants (Qiu et al., 2019).

PERSPECTIVES

Increases in ground and soil salinity and depletion of fresh
water resources necessitate characterization of abiotic stress
response pathways and creation of a road map that outlines steps
toward developing a more tolerant date palm crop. Breeding for
improvement in P. dactylifera using conventional breeding was
conducted in the United States into the 1970s but has since been
terminated (Krueger, 2001). The prospect for improvement via
conventional breeding or modern approaches, such as genomics-
assisted breeding (Kole et al., 2015) or genomic selection as used
in oil palm (Nyouma et al., 2019), faces challenges owing to
significant economic and technical constraints. However, despite
many challenges, it is our belief that a combination of omics,
forward genetics, and reverse genetics approaches provide a
potential path to improvement of the data palm crop. Below
we describe approaches to genetic mapping of stress tolerance
traits that can yield candidate genes and mutations that control
variation in tolerance among cultivars. We then describe how
genes discovered by genetic mapping can be targeted by gene
editing [e.g., by clustered regularly interspaced short palindromic
repeats (CRISPR) associated protein 9 (Cas9)] toward the goal of
engineering varieties with improved stress tolerance.

Genome Resources
There is a need for continued improvement to the genome
assembly and gene annotation of date palm. There are presently
three draft assemblies including two female (Al-Dous et al., 2011;
Al-Mssallem et al., 2013) and one male genome (Hazzouri et al.,
2019). The two female draft genomes are fragmented assemblies
of the ‘Khalas’ cultivar with low contiguity, while the male
assembly is derived from a fourth generation backcross male of a
cross with the ‘Barhee’ cultivar as the recurrent parent. This BC4
male assembly is the only one of the three genomes to include
long read sequencing technology (i.e., Pacific Biosciences),
integrate a genetic map to place contigs on linkage groups
(Mathew et al., 2014), and use a diploid aware assembler (i.e.,
FALCON-Unzip). The BC4 male primary assembly represents a
substantial improvement to previous assemblies that consists of
approximately 50% of the genome sequence being placed on the
18 linkage groups (Hazzouri et al., 2019). The primary sequence
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and gene models can be accessed at the Date Palm Genome Hub
website1 (Hazzouri et al., 2019).

There remains much room for improvement of the date palm
genome. Some of the factors currently limiting improvement are
the absence of a high density genetic map and the heterozygosity
of date palm cultivars including the BC4 male. Improvements to
the current assemblies can be achieved by adopting improved
diploid aware assembly software, inclusion of a high density
genetic map, and incorporation of additional technologies (e.g.,
Hi-C, Dudchenko et al., 2017). Despite the prospect of additional
improvements using these methods, a high quality assembly
for date palm may require generation of a homozygous double
haploid variety (Das et al., 2018). For example, sequencing of
a double haploid contributed to dramatic improvements to the
apple genome compared with an earlier assembly derived from
a heterozygous sample (Daccord et al., 2017). Improvements
to the date palm genome will assist in many areas of abiotic
stress research including providing a more complete set of gene
models and chromosome-level sequences that will improve the
prospect of discovering candidate genes with genetic mapping
and enhance discovery using many other omic technologies.

Linkage Mapping and GWAS
A primary objective of mapping studies is to determine loci that
control heritable variation in phenotypic traits. These ‘forward
genetic’ approaches comprise a powerful set of methods to
identify genes that control variation in phenotypic traits and
dissect their genetic basis. Genetic mapping can yield candidate
genes and mutations that control variation in a trait and suggest
strategies for its modification using genetic engineering. In other
cases, genetic mapping can lead to discovery of linked markers
that can be used in marker-assisted selection (MAS) (Das et al.,
2017) and crop breeding.

Linkage mapping of QTL in fruit and other tree crops is
typically initiated with a cross between non-inbred parents (Khan
and Korban, 2012). In the simplest experimental design, full-sib
progeny of outbred parents are genotyped at set of anonymous
markers and phenotyped for a trait of interest. Linkage mapping
is then conducted to identify marker-trait associations using
statistical models appropriate for this design (e.g., the double
pseudo-testcross approach; Grattapaglia and Sederoff, 1994). This
approach has been applied to map naturally occuring variants
in many forest trees and fruit crops (Wu et al., 2010; Khan and
Korban, 2012) and could in principle be applied to map traits
in plants produced by mutagenesis of somatic embryogenic cell
suspensions (Jain, 2012). Linkage mapping is possible in date
palm as hundreds to thousands of seedlings from controlled
crosses (i.e., pollen from a single male used to pollinate a single
female) can be generated to produce full-sib progeny for standard
linkage mapping or half-sib progeny (i.e., one male used to
pollinate different female cultivars) for use in a pedigree-based
mapping designs.

An alternative approach is to leverage natural variation
to map traits using GWAS (Khan and Korban, 2012;
Korte and Farlow, 2013). In a typical GWAS experiment,

1https://datepalmgenomehub.abudhabi.nyu.edu

hundreds of unrelated samples are phenotyped typically in a
common garden such as a nursery or farm for a trait of interest
and then genotyped (e.g., using NGS-based whole genome
re-sequencing). This is an attractive alternative with a number
of advantages over linkage mapping. First, a trait is more likely
to segregate in a large GWAS panel than in a cross between two
samples. Second, QTL intervals are smaller in GWAS studies
in most tree and fruit crops due to the rapid decay of linkage
disequilibrium (Khan and Korban, 2012). This makes discovery
of candidate genes more likely provided that marker density is
sufficiently high to detect marker-trait associations.

Mapping approaches have not been widely applied in date
palms. Hazzouri et al. (2019) conducted GWAS on fruit-related
traits in 145 varieties of date palm using high density genotyping
using moderate coverage (i.e., the average number of sequencing
reads spanning each genomic position) whole genome Illumina
sequencing reads mapped to an improved genome assembly. In
date palm, the decay of linkage disequilibrium is sufficiently fast
(Hazzouri et al., 2015; Flowers et al., 2019) that GWAS yielded
candidate genes and probable causal mutations for fruit color and
fruit sugar composition (Hazzouri et al., 2019). The successful
high resolution mapping of these traits demonstrated the viability
of combined NGS-based sequencing and standard structured
association mapping in date palm and produced markers for sex
determination and commercially important fruit traits that could
in principle be incorporated in future MAS experiments.

Mapping abiotic stress-related traits in adult date palms
is currently intractable owing to the long juvenile stage and
cost of growing and maintaining large mapping populations.
An alternate solution would be to map such traits in early
stage seedlings where environmental conditions can be carefully
controlled. For example, linkage mapping on full-sibs from a
controlled cross, GWAS on unrelated seedlings (e.g., diverse
female cultivars pollinated with unrelated males), or a hybrid
approach such as F1 association mapping (FOAM, Romero
Navarro et al., 2017) are all plausible approaches to mapping
in early stage date palm seedlings. A disadvantage of these
approaches is that individual seedlings cannot be cloned easily
for the purpose of generating replicate samples for phenotyping
owing to the difficulty of establishing new micropropagation lines
(Mazri and Meziani, 2015). These approaches therefore require
phenotyping single samples as is common in animal and human
genetics, but less common in plants. Such single plant linkage
mapping or GWAS (“sp-GWAS,” Gyawali et al., 2019) suffers
from increased error in phenotypic measurements owing to lack
of replication and the inability to phenotype a seedling genotype
in multiple environments or treatments (Figure 1).

An alternate approach would be to conduct GWAS on early
stage plants from diverse varieties propagated in tissue culture
(Figure 1). Use of micropropagated varieties would (1) allow
expensive genotyping steps to be performed only once on a
clonal lineage followed by phenotyping of many traits, (2)
facilitate phenotyping of replicates of a clone thereby reducing
the effects of measurement error and plant-to-plant variability
in phenotypic measures, (3) allow experiments to be replicated
in different environments or treatments to ensure stability of
QTLs (4) allow more complex experimental designs to be
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FIGURE 1 | Approaches to mapping abiotic stress traits in date palm.

adopted. For example, clones of each genotype would allow
paired measurements of phenotypic responses to abiotic stress
through measurements of the phenotype in a clone grown in both
treatment and control conditions. Adoption of tissue culture-
propagated cultivars in large-scale experimental programs would
require a significant effort including expansion of the numbers of
cultivars currently being propagated in tissue culture.

Mapping of early stage stress response traits from
micropropagated cultivars or seedling offspring from controlled
crosses suffers from additional challenges. First, sample
sizes required for successful mapping depend on the genetic
architecture of the trait. Even the simplest traits can require
hundreds of samples and more complex traits may require
much larger sample sizes. Second, both approaches require
genotyping of large numbers of seedling progeny or clonally
propagated varieties which in date palm are both highly
heterozygous. NGS-based whole genome re-sequencing
approaches to genotyping offer the best opportunity to identify
candidate genes and mutations. However, use of this approach
to genotype highly heterozygous samples likely requires
moderate to deep sequencing because imputation – the use
of linkage information to infer missing genotypes – may
not be possible without reference panels and low coverage
sequencing approaches used in inbred crops (Wang et al.,
2016) may not be viable owing to high genotyping error rates
at heterozygous sites. Reduced representation libraries [e.g.,
Genotype-by-sequencing (GBS); Elshire et al., 2011)] or array-
based genotyping may provide more cost effective solutions, but

they may yield insufficient marker density to map traits with
GWAS (Figure 1).

Genetic Transformation and Gene Editing
The genetic engineering of date palm lags behind that of other
species such as rice, barley, and maize and fruit crops such
as apple (Waltz, 2015; Nishitani et al., 2016) and oil palm
(Budiani et al., 2018) where genetic transformation has been
adopted for improvements at the commercial level. The factor
currently limiting advancements in date palm is that there
is not a well-established transformation protocol. Attempts to
transform P. dactylifera using either Agrobacterium tumefaciens
or microprojectile bombardment has been met with limited
success, and no conclusive report of stable transformants of an
expressed gene in date palm have yet been successful (Jain, 2012).

Genome editing methods, such as zinc finger nucleases
(ZFNs), transcription activator-like effector nucleases (TALENs),
and CRISPR/Cas9 have all enhanced the prospect of genetic
modification of crops (Kanchiswamy et al., 2015). The former
technologies are expensive and time consuming and require
protein engineering, which makes them less suitable and limits
their application (Jaganathan et al., 2018), while CRISPR/Cas9 is
popular because it is affordable, scaleable, and relatively simple to
apply (Jia and Wang, 2014; Jia et al., 2016).

CRISPR/Cas9 gene editing can be used to knockout, activate
or repress the expression of target genes. Successful editing can
use transformation of a construct containing Cas9 and a guide
RNA (sgRNA) that is homologous to a target gene in the plant
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genome, or may use alternative “DNA-free” approaches such as
CRISPR/Cas9 ribonucleoproteins (RNPs). Key considerations for
the prospect of CRISPR/Cas9 editing in plants include the gene
to target, the sgRNA sequence, the delivery method and plant
tissue (e.g., callus), and the regeneration of fertile plants (Altpeter
et al., 2016; Wang et al., 2019). Many of these and additional
considerations are reviewed in detail by Sattar et al. (2017) in the
context of improvement of date palm. For example Sattar et al.
(2017) highlighted that high heterozygosity of date palm cultivars
can make it challenging to design the sgRNA, which must match
a target region near a protospacer adjacent motif (PAM) site.

CRISPR/Cas9 offers a number of benefits well-suited to
modification of dioecious tree crops such as date palm (Kole
et al., 2015). Any strategy for improvement in tree crops should
prioritize development of a modified plant in as few generations
as possible, ideally a single generation. One advantage of
CRISPR/Cas9 in this respect is that it produces biallelic edits
that result in homozygous changes at the target site, which
eliminates the need for a genetic cross to produce homozygous
alterations (Kole et al., 2015). Another consideration is the need
to minimize the footprint of the gene editing procedure in
the date palm genome. For example, transformation of somatic
embryos with Agrobacterium can lead to random integration
of bacterial plasmids which may contribute to GMO-related
regulatory constraints (Sattar et al., 2017). A possible alternative
is the use of next-generation DNA-free CRISPR/Cas9 RNPs,
which can be delivered directly into protoplasts as has been done
in apples in an effort to increase resistance to fire blight disease
(Malnoy et al., 2016).

Lessons from genetic engineering of oil palm (Elaeis
guineensis) may help with developing strategies for P. dactylifera.
For example, both microprojectile bombardment (Kadir et al.,
2015) and Agrobacterium (Budiani et al., 2018) have been used to
transform oil palm. Moreover, Crispr/Cas9 technology has been
succesful in oil palm. Budiani et al. (2018) used Agrobacterium
to introduce the CRISPR/Cas9 constructs for editing isoflavone
reductase and metallothionein -like protein in an effort to
introduce resistance to Ganoderma. Given the success in other
crops, we anticipate that CRISPR/Cas9 will soon provide a means
for creating stable site-directed gene edits in date palm and may
provide the best chance at modification of date palm.

Phoenix Crop Wild Relatives
Another under-utilized resource in the study of abiotic stress in
date palm is the wild relatives of date palm. Members of the genus
Phoenix are known to occupy diverse habitats ranging from the
banks of the Mekong River (Phoenix roebelenii) and coastal areas
subject to salt-water incursion (Phoenix theophrasti) (Barrow,
1998). The range of habitats occupied by Phoenix wild relatives
suggests that these species harbor a diversity of stress-tolerance
traits that could be exploited for the study and improvement
of date palm. Incorporation of wild relatives in experimental
programs is becoming increasingly important in perennial crop
improvement strategies (Migicovsky and Myles, 2017) and
first steps toward characterizing this diversity have been taken
through whole genome sequencing of the closest relatives of date
palms (Gros-Balthazard et al., 2017; Flowers et al., 2019).

Exploitation of diversity in wild relatives of cultivated Phoenix
may benefit from the fact that many species in this genus readily
hybridize and produce viable hybrids either from seed generated
from inter-specific crosses or from somatic embryogenesis (Gros-
Balthazard, 2013). A prospective area for future research is
to characterize differences in abiotic stress tolerance in the
crop wild relatives of date palm. In the long term, it may
also be possible to map traits in inter-specific crosses as has
been done in oil palm (Osorio-Guarin et al., 2019) or transfer
beneficial traits into date palm using somatic embryogenesis
(Sudhersan et al., 2009).

CONCLUSION

Application of omic methods has begun to detail the genes
and biochemical pathways that control the response to abiotic
stress in date palm. Many of these pathways such as the
abscisic acid pathway are known from studies of other crops,
but others including circadian and diurnal rhythm pathways
may suggest novel pathways in date palm (Safronov et al.,
2017). Future advances will benefit from combining omic
approaches with reverse and forward genetics. For example, Yaish
and Kumar (2015) previously advocated for reverse genetics
approaches (e.g., site-directed mutagenesis and recombinant
DNA technologies) to the study of abiotic stress in date
palm. Indeed, development of a well-established protocol for
transformation of callus or other micropropagated tissues and
development of CRISPR/Cas9 or gene editing technology for
date palm (Sattar et al., 2017) would present new opportunities
for functional studies of abiotic stress tolerance and crop
improvement. However, we also argue that genetic mapping
offers a complementary set of methods that can be applied
to identify QTLs that control variation among cultivars in
traits such as abiotic stress resistance. Localization of QTLs
to narrow genomic regions, when combined with RNA-seq
and other functional omic data, can lead to discovery of
candidate genes and causal mutations. In principle, candidate
genes and mutations identified in this fashion could then be
modified with gene editing techniques in stress sensitive elite
commercial cultivars.

The prospect of improvement of date palm to abiotic stress
described above is a long term goal. Achieving this goal will
require development of a detailed road map with input from
scientists from multiple disciplines and various stakeholders.
However, a critical review of improvement for abiotic stress
tolerance in cereals and other annual crops reported that
attempts at improvement have had limited success. Some of the
challenges include the multi-genic nature of stress resistance
traits and QTLs for yield traits are often unstable across
environments. For example, improved genotypes often show
higher yields under stress, but lower yields in non-stressed
conditions (Flowers, 2004).

For the near term, we suggest that efforts in date palm
focus on stream-lining reverse genetic technologies including
transformation methods and CRISPR/Cas9 gene editing,
expanding germplasm resources (e.g., increased numbers of
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cultivars in tissue culture), GWAS mapping of abiotic stress
traits, application of omic technologies to diverse cultivars and
crop wild relatives, and characterization and manipulation of soil
and root microbiomes. Achieving these goals would dramatically
improve the outlook for crop improvement in date palm.
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