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Wheat spike number, which could be rapidly and accurately estimated by the image
processing technology, serves as the basis for crop growth monitoring and yield
prediction. In this research, simple linear iterative clustering (SLIC) was performed
for superpixel segmentation of the digital images of field-grown wheat. Firstly, certain
characteristic color parameters were extracted and analyzed from the digital images,
and the classifiers with the highest accuracy were chosen for subsequent image
classification. Next, the main body of wheat spike was extracted through a series of
morphological transformation and estimate was performed for each region. Backbone
of the head was extracted, and the number of inflection points of backbone was
detected. Then the wheat spike number was determined by combining the estimate
of inflection points of backbone and the estimate for each region. Finally, the wheat
spike number estimate was verified under four nitrogen fertilizer levels. The results were
as follows: (1) Super green value (Eg) and normalized red green index (Dgr) were used
as classification features to recognize wheat spikes, soil and leaves; (2) compared
with pixel-based image processing, wheat spike recognition effect was much better
after superpixel segmentation, as the main body of wheat spike extracted was more
clear and morphology more intact; and (3) wheat plants had better growth under high
nitrogen fertilizer level, and the accuracy of wheat spike number estimation was also the
highest, which was 94.01%. The growth status was the worst under no nitrogen fertilizer
application, and the accuracy of wheat spikes number estimation was also the lowest,
which was only 80.8%. After excluding the no nitrogen condition, the accuracy of wheat
spikes number estimation among mixed samples with more uniform growth status was
up to 93.8%, which was an increase by 10.1% than before the exclusion. Wheat spikes
number estimate based on superpixel segmentation and color features was a rapid and
accurate method that was applicable to the field environment. However, this method
was not recommended for use when the growth status of wheat was poor or of high
heterogeneity. The findings provided reference for field-grown wheat yield estimate.
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INTRODUCTION

Wheat has been the most important cereal crop worldwide
and also one of the most important food crops in China. For
China, a major importer of wheat, standardization of production
management and quality stabilization of wheat varieties were key
pathways toward yield improvement, and this in turn was closely
related to the national economy and food security. Number
of spikes per unit area has been an important component of
wheat yield, and fast and accurate estimate of wheat spike
number was of high significance for high-yield cultivation and
superior species selection and breeding (Nerson, 1980; Siddique
and Whan, 1993). However, conventional field survey based
on manpower was time- and labor-consuming. Along with the
rising of agricultural informatization and mechanization level,
image processing technology has found extensive applications in
crop production. Moreover, computer vision with its advantages
of high precision and intelligence attracted it as an alternative
to human inspection. This technology was a dramatic boost
for pest detection (Boissard et al., 2008; Shahin and Symons,
2011; Ding and Taylor, 2016; Senthilkumar et al., 2017), growth
monitoring (Clevers and Leeuwen, 1996; Chaerle and Straeten,
2000; Wang et al., 2013; Silva et al., 2014), yield prediction
(Salazar et al., 2007; Dunn and Martin, 2010; Aggelopoulou et al.,
2011; Aguate et al., 2017) and species recognition (Neuman
et al., 1987; Lópezgranados et al., 2006; Tellaeche et al., 2011;
Pantazi et al., 2016).

A large number of studies have been conducted on
capturing wheat phenotypic traits by using the image processing
technology. Jin et al. (2017) proposed a method for high-
throughput phenotype information extraction of wheat seedling
density in field environment during the seedling stage by
using images from low-altitude high-resolution unmanned
aerial vehicle. Hosoi and Omasa (2009) used three-dimensional
portable lidar imaging technology to estimate the density profile
of vertical planting area and growth parameters of wheat canopy
at different growth stages, and achieved good results. Walter et al.
(2017) performed 3D point cloud processing to estimate wheat
canopy height and harvest index reliably. The model reliability
was further improved by increasing the number of images fitted.
Wheat spike was one of the important agronomic components,
and accurate determination of wheat spike number was very
important for estimating wheat yield, which was the key step
of field phenotype study (Zhang et al., 2007). spikeDue to the
complexity of the field environment (e.g. light intensity, soil
reflectivity, weeds, etc. changing color, texture and shape of the
image of wheat spike), accurate segmentation and identification
of wheat spike has remained a major challenge. Balasubramaniam
et al. proposed intuitionistic fuzzy C-means color clustering
algorithm to segment the nutrition-deficient pixels in crop
images after normalization. By comparing other methods, the
effectiveness of this method was proved (Balasubramaniam and
Ananthi, 2016). Li et al. (2017) detected wheat spikes by using
the neural network based on Laws texture energy measure. The
detection effect was improved by combining area and height
thresholds to well over 80%. The spike area was effectively
measured as well (Li et al., 2017). Schirrmann et al. (2016)

used the wheat field images obtained by unmanned aerial
vehicle (UAV) to analyze the relationship between biophysical
parameters and image variables, proving the applicability of
UAV images in identifying the temporal and spatial patterns of
wheat canopy development. Zhou et al. (2018) proposed a new
algorithm that used computer vision to accurately identify wheat
spikes in digital images, and adopted multi-feature optimization
and a twin-support-vector-machine segmentation (TWSVM-
Seg) model to determine the number of spikes. Jose et al. applied
Laplacian filter and median filter to the digital wheat photos
captured in field environment to extract the main part of wheat
spikes. Peak detection algorithm was used to extract image
peaks and to determine spike number. Moreover, the relationship
between spike number and yield at different stages was analyzed,
and it was found that the spike number at the flowering stage had
the highest correlation to yield (Fernandez-Gallego et al., 2018).

Previous studies on wheat spike recognition were mostly
based on pixel segmentation, and the influence of varying
growth status on the recognition effect was rarely considered.
Here, after certain pre-processing, pixels on the digital images
of wheat were grouped together into superpixels, and wheat
spikes were recognized based on superpixel segmentation, to
reduce the interference from non-relevant pixels in the process of
extracting image features and to improve the recognition effect.
Moreover, variation of wheat growth status was simulated by
applying nitrogen gradient to the seedlings, and the wheat spike
number estimate was compared under different nitrogen fertilizer
application levels, to improve the reliability of wheat spike
number estimate. In order to estimate wheat spike number in
field environment rapidly and accurately, simple linear iterative
clustering (SLIC) was applied to the digital images for superpixel
segmentation, and the wheat spikes were recognized based on
color features. Then backbone of the head was extracted and
the wheat spike number was estimated based on the number
of inflection points of backbone. Accuracy of wheat spike
number estimate was compared under different nitrogen fertilizer
application levels. The influence of varying growth status on the
recognition effect was discussed. The purpose was to provide a
new reliable pathway to accurate wheat spike estimate.

MATERIALS AND METHODS

Experimental Design
Experiments were conducted in the experimental field of
Agricultural College of Yangzhou University in 2018 (119◦23′26′′
E, 32◦23′53′′ N), and a completely randomized design was
adopted (Figure 1). Representative wheat cultivars were Yangmai
16 and Yangmai 17, both were spring wheat cultivars with
medium maturity and long awn, and the spike types were
spinning type and rectangle type, respectively. The former crop
was rice, while sandy loam was the soil texture. In the soil layer
of 0–30 cm, soil organic matter was 22.7 g·kg−1 and available
nitrogen was 101.8 mg; moreover, available phosphorus was
27.2 mg and available potassium was 84.6 mg. To investigate
differences in the growth and biochemical composition of wheat,
four levels of nitrogen fertilizer application (urea) were set up,
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FIGURE 1 | Experimental design. (V1 and V2 represent Yangmai 16 and Yangmai 17 varieties, respectively. N1, N2, N3 and N4 represent different nitrogen
treatments of 0, 225 kg·ha−1,450 kg·ha−1,900 kg·ha−1, respectively. Each level had two replicates. A total of 16 plots, the area of each experimental plot was
8*10 m2).

namely, 0 (N1), 225 kg·ha−1 (N2, 1/2 of the normal level),
450 kg·ha−1 (N3, normal level), and 900 kg·ha−1 (N4, excessive
level). Each level had two replicates, and 16 plots for the two
winter wheat varieties were prepared. Other field management
measures were administered as usual. Data source was digital
images of wheat in the field.

Data Acquisition
Acquisition of Digital Images of Wheat
At 5:00 p.m. on May 22st, 2018 (grain filling stage, solar zenith
angle 65◦04′54′′, azimuth 94◦38′27′′), which was a sunny windless
day, digital images of wheat were shot with SONY DSC-H9
camera against the light and in a vertical direction. The filming
height was about 1m above the wheat canopy. The area shot
was about 0.75 m2 per image. For each plot, four wheat images
with resolution of 2592∗1944 were shot, thus 64 images were
obtained in total.

Artificial Wheat Spike Number Estimate
Artificial and automatic wheat spike number estimate was
combined in this study (Figure 2). First, the digital images of
wheat were interpreted by researchers, who marked out the
portions of wheat spikes. Then the marked points were extracted
from the images using MATLAB R2016a. These points were
counted and numbered in the images so as to accurately and
intuitively determine the wheat spike number.

Method of Wheat Spike Recognition
Wheat spike recognition consisted of the following steps:
superpixel segmentation, sample labeling, color feature analysis,
classifier training and recognition (Figure 3). To be specific,

(1) SLIC-based superpixel segmentation was applied to the
digital images of wheat for pre-processing. Superpixels
refer to the image blocks composing adjacent pixels with
homogeneous features. Superpixel segmentation, which is
to group these pixels into superpixels, has been widely
used in image pre-processing (Kavzoglu and Tonbul, 2018).
SLIC is the representative algorithm among a myriad
of superpixel segmentation methods. SLIC is based on

color similarity and spatial distance and employs K-means
clustering for local iterative clustering to form superpixels
(Radhakrishna et al., 2012; Akyilmaz and Leloglu, 2016; Zu
et al., 2019). This algorithm involves two key parameters:
pixel number of pre-segmetation (n) and pixel compactness
(m). Pixel number n is the number of clusters centers in the
image, which is uniformly assigned in the image according
to the preset n. Generally speaking, the larger the n, the
smaller the superpixels and the better the segmentation
effect, though this may bring about the problems of higher
calculation load and lower overall efficiency. Therefore,
the n value should be reasonably set according to image
size. Pixel compactness m is the weight assigned to the
maximum distance within each cluster (including spatial
distance and color distance). The larger the m value, the
more regular the superpixel boundaries will be. For a more
complex image, a smaller m value is usually needed. The
main parameters of the algorithm included pixel number
and pixel compactness of pre-segmentation, which were set
to 10,000 and 10 based on the size of images used in the
experiment (2592∗1944).

(2) Under each nitrogen fertilizer application level (regardless
of wheat variety), five wheat images of 500∗500
were randomly clipped as samples for artificial pre-
segmentation. Then the superpixels were labeled based on
the results of artificial pre-segmentation. That is, pixels
with proportion of wheat spikes exceeding 0.8 were labeled
1, and those below it 0.

(3) Some commonly used color indices were analyzed and
appropriate ones were chosen as classification features
(Stajnko et al., 2004; Moffett and Gorelick, 2013), which
included super green value (Eg), normalized red green
index (Dgr) and normalized blue green index (Dgb),
given by:

Eg = 2g − r − b

Dgr = (g − r)/(g + r)

Dg b = (g − b)/(g + b)
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FIGURE 2 | Wheat spikes manual counting process. [The location of wheat spikes were manually marked and the marked points were extracted and counted. The
red points marked in panel (A) indicated the position of wheat spikes, and the red numbers in panel (B) indicated the serial number of wheat spikes in the picture].

where g, r and b are green, red and blue component
values, respectively.

(4) Classification Learner in MATLAB R2016a was used to
select appropriate indices based on color feature analysis
as feature values for classification. Two classifiers, support
vector machine (SVM) and K nearest neighbor (KNN),
were trained (Table 1). The one with the better accuracy
based on the training results was chosen as the classier.

(5) The selected classifier was then applied to superpixel
classification for preprocessed images. The classification
results were subjected to simple morphological processing
(removing the fragments) to obtain the final wheat spike,
namely wheat spikes recognition.

Determination of Wheat Spike Number
As shown in Figure 4, the wheat spike recognition results were
binarized. During wheat spike counting, greater emphasis was
given to the main part of spikes and not to morphology. The main
part of spikes was preserved by morphological transformation
such as erosion and dilation operation (Possa et al., 2014),
while the edges were weakened to reduce adhesion to adjacent
spikes. Statistics were performed for the regions in the binarized
images. Traits such as number (nregion) and area of regions
in the binarized images were calculated. In addition to the
complex field environment, the grains were plump and the spikes
were larger in size during the grain filling stage. Therefore,
the binarized images after morphological transformation still
contained a few wheat spike overlap. These overlaps were
screened based on the area and morphology (length-to-width
ratio) of the regions. Backbone of the head was extracted from
the overlaps (Cremers et al., 2007; Delgado-Friedrichs et al.,
2015) and the number of inflection points of backbone (Liu
et al., 2001) (npoint) was calculated. The wheat spike number for
the overlaps was npoint + 1, and the total wheat spike number
was nregion + npoint .

Statistical Analysis
SPSS 22.0 software was used for statistical analysis. The
relationship between automatic count and artificial count was
analyzed based on Pearson’s correlation coefficient (r) and linear
regression analysis. Such correlations were compared under
different nitrogen fertilizer application levels, and the accuracy
(A) was calculated by using the artificial count as benchmark.
Thus accuracy of wheat spike number estimate was compared
under different nitrogen fertilizer application levels to discuss the
influence of growth status on the recognition effect. Accuracy A
was given below:

A =
(

1−
|Nc − Na|

Na

)
× 100%

where Nc is the automatic count; Na is the artificial count;
A is accuracy.

RESULTS AND ANALYSIS

Wheat Spike Recognition
Analysis of Classification Features
Three color indices associated with G component, namely,
super green value (Eg), normalized red green index (Dgr)
and normalized blue green index (Dgb), were applied to
the calculation in wheat spike, leaf and soil samples during
the grain filling stage, respectively, (Figure 5). The results
showed that Eg of soil samples was generally smaller and
had a concentrated distribution, with nearly no overlap with
the spikes; the distribution range and curve morphology of
Eg in leaf and wheat spike samples were very close to
each other, resulting in severe overlap. Therefore, Eg was
fit for differentiation between spikes and soil, but not for
reducing leaf interferences in the images (Figure 5A). Dgr of
the soil samples was generally small and there was serious
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FIGURE 3 | Wheat spikes recognition process. [A was the original digital photo. SLIC was Simple linear iterative clustering. (B) was the superpixel block. (C) was the
artificial pre-segmentation sample. (D) was the label sample. Two classifiers were support vector machine (SVM) and K nearest neighbor (KNN). (E) was the
superpixel classification result, and F was the wheat spikes segmentation result].

overlap in the above-zero part with the curve of wheat
spikes. However, Dgr of leaf samples was distributed within
a broader range, showing little overlap with the curve of
wheat spike samples and having large peak difference, which
was helpful to discriminate between the wheat spikes and
leaves. Dgb curves of the three types of samples almost
coincided with each other, indicating little value for wheat
spike recognition.

Results of Classifier Training
Eg and Dgr were chosen as classification features to train the
SVM and KNN classifiers (Table 1) in the MTLAB R2016a
toolbox. Then the appropriate classifier was chosen based
on the training results (Table 2). The results showed that
the classifier accuracy was 80% without nitrogen fertilizer
application (N1), and medGSVM took on the highest level
with the accuracy of 85.63%. Under low nitrogen fertilizer
application level (N2), different classifiers varied little in accuracy,

which was generally around 88%. finGSVM was the optimal
classifier under this level, with accuracy reaching 90.93%.
Under normal nitrogen fertilizer application level (N3), nearly
all classifiers had accuracy above 90%. medGSVM was the
optimal one, with the accuracy of 93.82%. Under high nitrogen
fertilizer application level (N4), all classifiers had accuracy
above 90%. cubSVM was the optimal one under this level,
with the accuracy of 94.01%. Under mixed nitrogen fertilizer
application level, weiKNN was the optimal classifier with the
accuracy of 90.61%. In a word, SVM classifiers had a higher
performance under single nitrogen fertilizer application level
and had higher accuracy; but under mixed nitrogen fertilizer
application level, KNN classifiers outperformed SVM classifiers
in terms of accuracy. As the nitrogen fertilizer application level
increased, the classification accuracy also rose and trended to
a stable level. For example, as compared with N1 level, the
classifiers had an improvement of accuracy by 5.3% under
N2 level; as compared with N2 level, the accuracy increased
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TABLE 1 | Different types of classifier features.

Classifier type Prediction speed Memory usage Interpretability Model flexibility

linSVM Binary: Fast
Multiclass: Medium

Medium Easy Low
Makes a simple linear separation between classes

quaSVM Binary: Fast
Multiclass: Slow

Binary: Medium
Multiclass: Large

Hard Medium

cubSVM Binary: Fast
Multiclass: Slow

Binary: Medium
Multiclass: Large

Hard Medium

finGSVM Binary: Fast
Multiclass: Slow

Binary: Medium
Multiclass: Large

Hard High, creases with kernel scale setting
Makes finely detailed distinctions between classes, with
kernel scale set to sqrt(P)/4

medGSVM Binary: Fast
Multiclass: Slow

Binary: Medium
Multiclass: Large

Hard Medium
Medium distinctions, with kernel scale set to sqrt(P)

coaGSVM Binary: Fast
Multiclass: Slow

Binary: Medium
Multiclass: Large

Hard Low
Makes coarse distinctions between classes, with kernel
scale set to sqrt(P)*4, where P is the number of predictors

finKNN Medium Medium Hard Finely detailed distinctions between classes. The number of
neighbors is set to 1

medKNN Medium Medium Hard Medium distinctions between classes. The number of
neighbors is set to 10

coaKNN Medium Medium Hard Coarse distinctions between classes. The number of
neighbors is set to 100

cosKNN Medium Medium Hard Medium distinctions between classes, using a cosine
distance metric. The number of neighbors is set to 10

cubKNN Slow Medium Hard Medium distinctions between classes, using a cubic
distance metric. The number of neighbors is set to 10

weiKNN Medium Medium Hard Medium distinctions between classes, using a distance
weight. The number of neighbors is set to 10

by 2.89% under N3 level; the accuracy under N4 level only
improved by 0.19% as compared with N3 level. On the whole,
the classification accuracy was close with the two classifiers
on samples with nitrogen fertilizer application (N2, N3 and
N4). The growth status of wheat seedlings was worse without
nitrogen fertilizer application, and there were considerable
differences in uniformity, color and size as compared with
those with nitrogen fertilizer application. Therefore, the greater
the heterogeneity within the mixed samples, the lower the
classification accuracy.

Results of Wheat Spike Recognition
Based on the above analysis, the classifiers established were
applied to wheat spike classification recognition from
preprocessed images (Figure 6). As control, color features
Eg and Dgr were used for automatic thresholding. The results
of two thresholding segmentation were superimposed for
pixel-wise segmentation of spikes. The results showed that the
recognition effect was better with superpixel classifiers under
single nitrogen fertilizer application level than under the mixed
level, with significantly less leaf confounding. As compared with
pixel-based thresholding segmentation, superpixel recognition
led to higher integrity of the main body of spikes, effective
improvement of patches in spikes, and better representation
of spikes in morphology and size. As the nitrogen fertilizer
application level increased, the wheat spike morphology was
more clearly visualized and the recognition effect was improved.
The spikes in regions with nitrogen fertilizer application (N2,
N3 and N4) could be all effectively recognized. The actual

classification results were consistent with the training results of
the classifiers.

Wheat Spikes Number Estimate
Wheat Spike Number Estimate Under Different
Nitrogen Fertilizer Application Levels
The samples were mixed together under single nitrogen fertilizer
application level and under mixed level, respectively. The
classifiers were trained for wheat spike extraction based on
superpixel blocks. Then based on wheat spike recognition
result, the wheat spike number was automatically determined.
The artificially counted wheat spike number was used as
benchmark to calculate the accuracy. Linear regression was
performed between automatic count and actual count to form
a 1:1 relationship diagram (Figure 7). Automatic counts were
compared under different nitrogen fertilizer application levels.
The overall accuracy was 80.8% under no nitrogen fertilizer
application. Severe deviation was observed in the automatic
count under a small wheat spike number, and the correlation
between automatic count and artificial count was also worse
(R2 = 0.23, p > 0.05), respectively. That is to say, the difference
was of no statistical significance and the automatic count
was less satisfying. By contrast, higher accuracy was achieved
under all other three nitrogen fertilizer application levels
(Alow = 92.8%, Anormal = 93.1%, Ahigh = 94.2%). Besides, there
was good correlation between automatic count and actual count
(R2

low = 0.71, R2
normal = 0.76, R2

high = 0.79), which was of extreme
statistical significance (P < 0.01). The accuracy of automatic

Frontiers in Plant Science | www.frontiersin.org 6 March 2020 | Volume 11 | Article 259

https://www.frontiersin.org/journals/plant-science
https://www.frontiersin.org/
https://www.frontiersin.org/journals/plant-science#articles


fpls-11-00259 March 5, 2020 Time: 20:7 # 7

Tan et al. Wheatears Recognition Method

FIGURE 4 | Wheat spikes counting process. [(A) Segmentation of wheat
spikes: binarization of recognition results. (B) Morphological transformation:
mathematical morphology open operator was used to reduce the
disturbances. (C) Skeleton inflection point in the overlap area of wheat spikes:
the overlapping region was detected according to the shape and area
parameters of the region].

wheat spike number estimate was generally high. As the nitrogen
fertilizer application level increased, the automatic wheat spike
number estimate was also improved and it was the best under
high nitrogen fertilizer application level, with accuracy reaching
up to 94.2%. Automatic wheat spike number estimate was based
on processing and statistics of regions in binarized image of
wheat spike segmentation. Therefore, the automatic wheat spike
number estimate and wheat spike segmentation were consistent
under different nitrogen fertilizer application levels. However, the
classifiers were of poor applicability under no nitrogen fertilizer
application, while all statistics were effective for regions with
nitrogen fertilizer application. When all samples were mixed
together regardless of the nitrogen fertilizer application level, the
accuracy of automatic wheat spike number estimate was 83.7%,
and R2 was 0.22. Under the condition of 240 spikes per image in
the present study, this accuracy was quite low and could not meet
the requirements of wheat production practice.

Wheat Spike Number Estimates for Plots
Applied With Nitrogen Fertilizer
Based on the above results, samples under no nitrogen fertilizer
application were removed from the training samples. In order to
establish representative mixed samples set applied to train the
classifiers, the remaining samples were mixed and used to train
the classifiers after K-means clustering. Overall accuracy and
wheat spike segmentation accuracy was determined according to
the training results (Table 3), and weiKNN classifier was further
used for superpixel classification to extract the spikes. Finally,
automatic wheat spike number estimate was obtained (Figure 8).
As compared with the statistics under the mixed nitrogen
fertilizer application level (Figure 7E), the estimate performance
was significantly improved. Accuracy increased from 83.7 to
93.8%, and the correlation between the automatic count and
actual count was also improved significantly, with R2 rising
from 0.22 to 0.74. Therefore, in regions with nitrogen fertilizer
application, segmentation and statistics might be performed
without considering the differences in nitrogen level, and the
estimate is reliable.

DISCUSSION

The accuracy of automatic ear number estimate relies upon
reliable segmentation of ear images. Among the existing image
segmentation methods, image features extracted based on target
features mainly included color, texture and shape (Caelli and
Reye, 1993; Mukherjee et al., 2015). However, texture features
received large interference from the leaves in the process of
spike image segmentation during the grain filling stage, and
the segmentation effect was less satisfactory (Felzenszwalb and
Huttenlocher, 2004). Moreover, due to large number of wheat
plants during the grain filling stage, the spikes overlapped
with each other, which increased the difficulty in extracting
shape features as well. According to field observation, wheat
spikes changed substantially in color during the grain filling
stage, namely, from green to yellowish green, while the stalks
and leaves still remain green. So, color features were fit for
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FIGURE 5 | Color histogram of wheat spike, leaf and soil samples. [(A) Super green index, Eg=2g-r-b. (B) Normalized red green index, Dgr= (g-r)/(g+r). (C)
Normalized blue green index, Dgb = (g-b)/(g+b). The yellow, red and blue lines represented spikes, leaves and soil, respectively].

TABLE 2 | Classifier training results (Classification classification accuracy,%; single
nitrogen level, n = 3 000; mixed nitrogen level, n = 10 000).

Classifier type Nitrogen level

N1 N2 N3 N4 Mix

linSVM 80.54 87.65 90.48 90.26 83.57

quaSVM 84.55 88.09 91.25 91.13 87.02

cubSVM 85.04 87.89 91.54 94.01 55.78

finGSVM 83.37 90.93 90.07 92.42 88.61

medGSVM 85.63 88.87 93.82 91.03 86.61

coaGSVM 80.92 87.43 90.97 90.17 84.75

finKNN 83.47 87.89 87.43 90.64 83.67

medKNN 84.26 88.28 90.64 91.33 83.67

coaKNN 81.90 86.81 89.17 90.26 85.63

cosKNN 83.27 87.79 90.46 90.33 85.53

cubKNN 83.96 88.18 89.34 90.75 85.53

weiKNN 84.84 89.46 90.48 91.54 90.61

Single nitrogen level (N1, N2, N3, N4), n = 3 000; Mixed nitrogen level, n = 10 000.

wheat spike image segmentation at this stage, which was in
agreement with previous researches. Besides, most of the image
segmentation algorithms were based on pixels while ignoring

the inherent spatial relationship between the pixels. As a result,
the image processing effect was poor under non-structured
natural scenes (Zhang et al., 2017). Recent years have witnessed
an increasing application of remote sensing technology. For
large-scale remote sensing images, pixel-based segmentation
could hardly meet the requirements on calculation efficiency.
Compared with pixels, superpixels had the following advantages:
effective utilization of spatial relationship between pixels,
reducing object scale and complexity of subsequent processing,
while increasing processing efficiency (Alex et al., 2009; Derksen
et al., 2019). Based on previous studies (Mangasarian and Wild,
2006; Xiong et al., 2017), we used superpixel segmentation
for image pre-processing and extracted color information as
wheat spike features, so as to improve the wheat spike
recognition effect.

Then, based on the extracted image features, SVM and KNN
classifiers were applied to wheat spike recognition, respectively.
The results showed that the SVM classifier outperformed KNN
classifier under a single nitrogen fertilizer application level and
had higher classification accuracy. But for mixed samples, the
accuracy of KNN classifier was higher than that of SVM classifier.
SVM, built upon the theory of statistical learning, was more
adapted to the classification problems with small sample size,
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FIGURE 6 | Wheat spikes recognition results. [For nitrogen level mixing model, nitrogen level model, and color feature threshold segmentation model, recognition
under different nitrogen level gradient. The left picture was nitrogen level mixing model, the middle picture was nitrogen level model, the right picture was color
feature threshold segmentation. N1, N2, N3 and N4 represented 0 (nitrogen-free), 225 kg·ha−1 (1/2 of the normal nitrogen level), 450 kg·ha−1 (normal nitrogen
level), and 900 kg·ha−1 (excessive nitrogen level), respectively].

non-linearity and high dimensionality. However, the recognition
effect might be poor when applied to the classification problems
with large number of training samples and support vectors
(Weinberger et al., 2009). KNN, a classical lazy learning
algorithm, usually has the features of large computation load and
low efficiency, but for samples with much overlap or of large
scale, it might be a favored method (Zhang and Zhou, 2007).
In this study, SVM classifier outperformed the KNN classifier
when the sample size was small, while KNN classifier was better
in the case of larger sample size, which is typical of the two
types of classifiers.

Moreover, recognition results under different nitrogen
fertilizer application levels indicated a worse wheat spike
recognition effect without nitrogen fertilizer application than
with nitrogen fertilizer application. Wheat seedlings grown on
nitrogen-deficient soils would have tender stalks and yellowish
green leaves, stalks and spikes. In that case, the use of color
features extracted from the images for wheat spike recognition
would lead to misclassification and poor recognition effect.
Moreover, Nitrogen status affects the accumulation of dry matter
and nitrogen in the spike (Demotes-Mainard and Jeuffroy, 2004).

Wheat spikes are short and small when nitrogen is deficient.
They might be easily misinterpreted as background fragments
and removed in post-classification processing, leading to severe
missed classification. That is why the wheat spike recognition
effect is poor without nitrogen fertilizer application.

Here, digital images of wheat in field environment during the
grain filling stage were subject to classification. After flowering,
the grains were fertilized and the spikes kept expanding in size.
During the grain filling stage, the spikes would finally grow to
its maximum size, and spikes would be the main components
in the digital images at this stage. But in the flowering stage,
leaves took up higher proportion in the images, while the
proportion of spikes were lower, which was not conducive to
feature extraction and analysis. During the maturity stage after
the grain fillings stage, as the grains mature and leaves age,
the wheat seedlings on the whole showed a golden color, with
little distinction between the spikes and stalks. Moreover, due
to disturbance from the soil background in the images, it was
difficult to extract image features. Therefore, we believed that
the grain filling stage was the optimal time for wheat spike
recognition. Given the distinct morphology and color changes
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FIGURE 7 | Wheat spikes recognition results. [(A) Nitrogen-free, 0 kg·ha−1. A = 80.8%, n = 16, R2 = 0.23, p-value = 0.1. (B) Low-nitrogen, 225 kg·ha−1. A = 92.8%,
n = 16, R2 = 0.71, p-value = 0.0036. (C) Normal nitrogen, 450 kg·ha−1. A = 93.1%, n = 16, R2 = 0.76, p-value = 0.0015. (D) High nitrogen, 900 kg·ha−1.
A = 94.2%, n = 16, R2 = 0.79, p-value = 0.0003. (E) Mixed nitrogen, samples were mixed at four nitrogen levels. A = 83.7%, n = 64, R2 = 0.22, p-value = 0.0061].

of wheat during the grain filling stage, we only chose digital
images of wheat during this single stage. Field image analysis and
wheat spike recognition of wheat during multiple reproductive
stages were worthy of further investigation. Field environment

might be complex for wheat spike image acquisition due to
a diversity of leave and wheat spike postures, which further
leaded to variation of illumination conditions even for the
same spikes. As the color features of spikes in the images
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TABLE 3 | Classification training results of nitrogen application samples
(n = 10 000).

Classifier type Overall
accuracy (%)

Wheat spike
accuracy (%)

Background
accuracy (%)

linSVM 86.40 87.30 85.31

quaSVM 88.49 90.27 86.30

cubSVM 83.33 76.38 90.27

finGSVM 88.49 88.29 89.28

medGSVM 89.78 91.27 88.30

coaGSVM 87.30 89.28 85.31

finKNN 86.70 86.30 86.30

medKNN 88.68 89.28 88.29

coaKNN 88.39 92.26 85.31

cosKNN 88.09 87.30 89.28

cubKNN 88.19 88.29 87.30

weiKNN 91.48 93.81 89.30

FIGURE 8 | Wheat spikes counting result in nitrogen application. [Eliminate 16
nitrogen-free samples and mix the remaining 48 samples for identification
verification. The result was A = 93.8% and R2 = 0.74, at p-value < 0.0001
level].

vary significantly, the accuracy of image segmentation based
on color features would be impaired. All of the above factors
could affect the wheat spike recognition effect, and more studies
should be conducted to find out an appropriate method for
image acquisition and processing which better represents wheat
spike feature. The methods are important for improving the
wheat spike recognition effect and accuracy of wheat spike
number estimate.

Furthermore, through color histogram analysis, wheat spikes
during the grain filling stage were effectively recognized based
on color features Eg and Dgr . As compared with pixel-based
segmentation, segmentation based on superpixel block produced
more intact wheat spike morphology, better preserved edge
information and reduced missed classification. The growth status
of wheat seedlings varied under different nitrogen fertilizer
application levels. The best wheat spike recognition effect
was achieved under higher nitrogen fertilizer application level

(Ahigh = 94.2%), and the effect was also good under normal
(Anormal = 93.1%) and low (Alow = 92.8%) nitrogen fertilizer
application levels. The recognition effect was the worst without
nitrogen fertilizer application (Anonitrogen = 80.8%). For mixed
samples, after excluding those under no nitrogen fertilizer
application, the wheat spike number estimate was improved
significantly, with accuracy reaching up to 93.8%, which was
a 10.1% increase. To conclude, automatic wheat spike number
estimate based on superpixel segmentation and color features
is a rapid and accurate method that applies to the general field
environment. However, this method is not recommended for use
when the growth status of wheat is poor or when the regions are
of high heterogeneity.

Deep learning methods have been currently very popular
(Sadeghi-Tehran et al., 2019), but their methods are mainly
based on a large amount of sample data and high-configuration
hardware. Sample preparation requires a lot of manpower and
time. Compared with the complex neural network algorithms,
this method based on traditional machine vision superpixel
segmentation is more easily accepted. It is not limited by the
performance of hardware computing, simple and efficient, and
has certain stability. This experimental method has high accuracy
in wheat spikes recognition and is suitable for popularization
and application.
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