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Plant cell walls define the shape of the cells and provide mechanical support. They
function as osmoregulators by controlling the transport of molecules between cells and
provide transport pathways within the plant. These diverse functions require a well-
defined and flexible organization of cell wall components, i.e., water, polysaccharides,
proteins, and other diverse substances. Cell walls of desiccation tolerant resurrection
plants withstand extreme mechanical stress during complete dehydration and
rehydration. Adaptation to the changing water status of the plant plays a crucial role
during this process. This review summarizes the compositional and structural variations,
signal transduction and changes of gene expression which occur in cell walls of
resurrection plants during dehydration and rehydration.
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INTRODUCTION

Plants as sessile organisms cope with environmental challenges by adopting a wide spectrum of
strategies (Bartels and Salamini, 2001). Drought, a pervasive stress, causes water deficit (Bray,
1997) and may even lead to desiccation, a condition where only the bound water is left in the plant
cells (Ramanjulu and Bartels, 2002; Zhang and Bartels, 2018). Although seeds of higher plants
withstand desiccation (Bewley, 1979), vegetative tissues of most plants do not tolerate a water
content which is below 60–30% (Challabathula and Bartels, 2013; Zhang and Bartels, 2018).
However, some bryophytes, ferns, and a few angiosperms can survive in an extremely arid
environment (Alpert, 2000). The desiccation tolerant plants, termed resurrection plants, can
equilibrate their vegetative tissues with nearly 0% relative humidity (Gaff, 1971), stay in a
dehydrated, quiescent stage for months, and resurrect once water is available again. Water loss
leads to plasmolysis and subsequently causes mechanical stress (Moore et al., 2006; Plancot et al.,
2019). Desiccation tolerant tissues can avoid or resist detrimental effects of this stress through
increased vacuolation and/or cell wall folding (Figure 1) (Webb and Arnott, 1982; Moore et al.,
2006; Farrant et al., 2007) which requires structural flexibility as well as physiological and
molecular responses in the cell wall. In this review, we will focus on the changes in polysaccharide
Abbreviations: OGAs, Oligosaccharides; WAKs, Wall-associated protein kinases; ROS, Reactive oxygen species; RLKs,
Receptor-like kinases; ABA, abscisic acid; GRP, Glycine-rich protein; AGPs, Arabinogalactan proteins; XTHs, Xyloglucan
endotransglucosylases/hydrolases.
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composition, cell wall signaling, and transcriptional changes,
which are linked to reversible cell wall folding in resurrection
plants (Figure 1).
DYNAMIC PECTIN CHANGES IN
RESURRECTION PLANTS UPON
DESICCATION/REHYDRATION

The cell walls encapsulate plant cells and provide mechanical
strength. They define the morphology, and are implicated in plant
growth and responses to environmental stresses (Pilling and
Höfte, 2003; Hamann, 2014). Important building blocks of cell
walls are cellulose, callose, pectin, and hemicelluloses. Pectin is the
most abundant component and accounts for up to 50% (w/w) of
the cell wall in Arabidopsis thaliana (Zablackis et al., 1995).
Cellulose and callose are linear homopolysaccharides and are
composed of b-(1,4)- and b-(1,3)-linked glucose residues,
respectively. Cellulose microfibrils are interconnected by
hemicelluloses and pectin and form rigid structures which build
up the mechanical scaffold of the cell wall (Nishiyama, 2009;Wang
et al., 2012). Pectin is a heterogenous matrix of homogalacturonan,
rhamnogalacturonan-I, and rhamnogalacturonan-II .
Homogalacturonan is typically most abundant and accounts for
about 65% of pectin. Rhamnogalacturonan-I accounts for 20–35%
and rhamnogalacturonan-II is a minor component (Mohnen,
2008). a-(1,4)-Linked D-galacturonic acid is a building
block of homogalacturonan, where it is arranged in linear
chains. Galacturonic acid is also the building block of
rhamnogalacturonan-II and, together with rhamnose, the
backbone of rhamnogalacturonan-I. Rhamnogalacturonan-I
and rhamnogalacturonan-II are more complex than
homogalacturonan, because galacturonic acid and rhamnose are
substituted by other sugar residues. The biosynthesis of pectin has
been reviewed recently (Harholt et al., 2010; Lampugnani et al.,
2018) and will not be described further. Xyloglucan and xylan are
the most abundant hemicelluloses in dicot cell walls and crosslink
cellulose fibrils (Park and Cosgrove, 2015; Simmons et al., 2016).
Xyloglucan has a b-(1,4)-linked glucose backbone with side chains
which contain xylose, galactose (possibly acetylated), fucose, and
Frontiers in Plant Science | www.frontiersin.org 2
arabinose. Xylan is made of b-(1,4)-linked xylose residues with
side chains of a-arabinofuranose and a-galacturonic acid.
Modifications such as transglucosylation, acetylation, or
methylesterification and cross-linking of the different cell wall
components play a major role in modifying the mechanical
properties of plant cell walls (O’Neill et al., 2001; Ryden et al.,
2003; Caffall and Mohnen, 2009; Caffall et al., 2009; Park and
Cosgrove, 2015). Analyzing the behavior of the polysaccharide
matrix in response to stress is essential to understand the flexibility
of cell walls. Upon desiccation, the vacuole shrinks, and the cell
contents are drawn inwards, which results in more tension
between the plasmalemma and the cell wall (Levitt and Levitt,
1987). Callose synthesis is induced in response to different stresses
and it functions as a local cell wall stabilizer (Nielsen et al., 2012;
De Storme and Geelen, 2014). Upon desiccation most resurrection
plants undergo extensive folding of the cell wall, a process which is
quickly reversed during rehydration (Phillips et al., 2008; Jung
et al., 2019). Controlled cell wall folding prevents tearing of the
plasmalemma from the cell wall, which is essential to maintain cell
integrity (Thomson and Platt, 1997; Farrant and Sherwin, 1998;
Vicré et al., 1999; Farrant, 2000; Vicré et al., 2004b). The degree of
folding depends on the leaf morphology and the leaf area e.g. the
leaves of the desiccation tolerant grass Oropetium thomaeum
(VanBuren et al., 2017) are narrow and the degree of folding is
less than in Craterostigma plantagineum. Cells of desiccated leaves
show the most extensive folding after dehydration compared to
cells of roots or stems.

In resurrection plants, changes in homogalacturonan,
rhamnogalacturonan-I, rhamnogalacturonan-II , and
hemicelluloses were investigated in leaves of C. plantagineum, C.
wilmsii, and Lindernia brevidens during dehydration and
rehydration to understand cell wall plasticity (Vicré et al., 1999;
Jung et al., 2019). Higher levels of de-methylesterified
homogalacturonan were found upon desiccation which was
reversed after rehydration. Homogalacturonan is synthesized in
the methylesterified form and subsequently de-methylesterified in
the cell wall , which suggests de novo synthesis of
homogalacturonan during rehydration (Zhang and Staehelin,
1992; Staehelin and Moore, 1995; Sterling et al., 2001). A high
proportion of de-methylesterified homogalacturonan upon
FIGURE 1 | Surface images of Craterostigma plantagineum leaves taken with a scanning electron microscope. Micrographs were taken from untreated (RWC = 100%),
desiccated (RWC = 2%) and rehydrated (RWC = 90%) leaves.
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desiccation in combination with calcium (Vicré et al., 1999) leads
to the formation of the so-called “egg-box” structures (Figure 2)
(Grant et al., 1973; Jarvis, 1984; Moore et al., 1986; Lloyd, 1991)
which are proposed to strengthen the cell wall (Vicré et al., 1999;
Jung et al., 2019). Highly de-methylesterified homogalacturonan
provides additional binding sites for pectin binding proteins which
might be important to sense the cell wall hydration status (Giarola
et al., 2016; Jung et al., 2019). A role of homogalacturonan in
desiccation tolerance is supported by a report that correlates
accumulation of homogalacturonan with desiccation resistance
in the green algae Zygnema sp. (Herburger et al., 2019). Changes in
rhamnogalacturonan-I, rhamnogalacturonan-II, and the
hemicelluloses may reinforce the cell wall upon desiccation in
resurrection plants. In C. wilmsii and C. plantagineum the
xyloglucan levels increased upon desiccation (Vicré et al., 1999;
Jung et al., 2019). More xyloglucan points to an increase of
interconnected cellulose fibrils and thus enhances cell wall
rigidity (Moore et al., 1986; Fry, 1989; Park and Cosgrove,
Frontiers in Plant Science | www.frontiersin.org 3
2015). Xylan, another cellulose-linking cell wall component, is
also increased upon desiccation but motile and flexible cell wall
components like b-1,4-galactan and a-1,5-arabinan do not change
(Jung et al., 2019). In C. plantagineum, dehydration leads to
changes in rhamnogalacturonan-II (Jung et al., 2019). In the
studied resurrection plants, the changes in the pectin
composition lead to a more rigid cell wall upon dehydration
(Vicré et al., 1999; Jung et al., 2019). Crosslinking of
homogalacturonan via Ca2+ and rhamnogalacturonan-II via
borate strengthens the cell wall (Kobayashi et al., 1996).
CELL WALL SIGNALING IN
RESURRECTION PLANTS DURING
DEHYDRATION

The plant cell wall has a complex signaling system which
monitors cell wall integrity by detecting chemical and physical
FIGURE 2 | The predicted interactions among apoplastic proteins and signaling molecules in resurrection plants during dehydration. Dehydration induces turgor
pressure changes, which are sensed by mechanosensitive (MS) calcium channels As a consequence [Ca2+]cyt levels rise. The plasma membrane-localized NADPH
oxidases (respiratory burst oxidase homologs, RBOHs) are activated through binding [Ca2+]cyt and produce O2

−, a substrate of the cell wall superoxide dismutase
(SOD). The apoplastic H2O2 as the product of SOD also leads to Ca2+ influx. Cell wall peroxidases produce hydroxyl radicals (OH−) with apoplastic H2O2 as
substrate. The reactive OH− is able to rupture glycosidic bonds and leads to cell wall loosening. In addition to OH−, expansin and xyloglucan endotransglucosylase/
hydrolase (XTH) may contribute to loosening the cell wall by disrupting the interaction between hemicellulose and cellulose during the early stages of dehydration and
rehydration. Cell wall peroxidases facilitate wall stiffness by reinforcing the cross-linking of extensin with cell wall polysaccharides. Excessive [Ca2+]cyt is toxic and thus
[Ca2+]cyt is transported to the extracellular space by Ca2+ efflux systems (Ca2+ exchangers are shown). The alkalization in the apoplast affects the activity of many cell
wall proteins, one of which is pectinmethylesterase (PME). PME exerts its demethylesterifying role on pectin in alkalized apoplast and generates negatively charged
pectins, which form the egg-box pectin gelatin with apoplastic Ca2+ and increase wall stiffness. Wall-associated kinase (WAK) forms a complex with the glycine-rich
protein (GRP) and can detect the egg-box pectin. This then in turn activates the vacuolar invertase activity. The classic (glycosylphosphatidyl inositol) GPI-anchored
cell wall arabinogalactan proteins (AGPs) are involved in signal transduction between the intracellular and extracellular compartments and act as plasticizers in
resurrection plants against desiccation. The signaling pathway and the interactions in the apoplast are hypothesized according to the available literatures and the
current research on cell walls of resurrection plants.
January 2020 | Volume 10 | Article 1698
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modifications of the cell wall polymers and then transduces this
information into the cell to trigger appropriate responses (Seifert
and Blaukopf, 2010; Voxeur and Höfte, 2016). Signaling pathways
resemble yeast signaling mechanisms and can be activated by
various stimuli including drought stress (Hamann, 2014).
Different molecules, including reactive oxygen species (ROS) and
hormones, are integrated in cell wall-mediated signaling cascades
(Miller et al., 2010; Choudhury et al., 2017; Novaković et al., 2018).
An overview of the different physical and chemical signals and
pathways is provided in the following paragraphs.

Turgor Pressure and Turgor Sensors
Turgor pressure is the result of the osmotic pressure in the
symplast and the mechanical strength of the cell wall (Cleland,
1971; Lewicki, 1998; Ringli, 2010). Altered turgor pressure can be
perceived as physical signal by cell wall sensors such as ion
channels, leading to the flow of Ca2+ between intra- and
extracellular spaces according to the plasma membrane tension
(Seifert and Blaukopf, 2010; Hamann, 2014; Hamilton et al.,
2015) (Figure 2). Dehydration lowers the turgor pressure, thus
stopping cell expansion and growth (Tardieu et al., 2014). The
resurrection plant Myrothamnus flabellifolia maintains cell
turgor and copes with the mechanical stress by increasing cell
wall elasticity with plasticizers, i.e., arabinose-containing
polymers (Moore et al., 2013). These polymers might act as
“mechanosensors” as well (Moore et al., 2006; Moore et al., 2008;
Le Gall et al., 2015).

Turgor pressure changes, as a result of dehydration, are
perceived as mechanical signals by a specialized plasma
membrane localized-mechanosensory gauge, termed mechano-
sensitive or stretch-activated ion channel (Figure 2) (Seifert and
Blaukopf, 2010; Hamilton et al., 2015). The pore-forming
mechano-sensitive ion channels control ion passage via sensing
the membrane tension and thus trigger the downstream
signaling. In this way the change of mechanical force is sensed
at the membrane-wall interface and acts as cell wall integrity
sensor (Seifert and Blaukopf, 2010; Wolf et al., 2012; Basu and
Haswell, 2017). In plants, three mechanosensitive channel
families have been characterized, namely MscS-like channels,
two-pore domain K+ channels, and Mid1-complementing
activity channels (Hamilton et al., 2015; Basu and Haswell,
2017). The non-selective mechanosensitive-like channels
are classified into three groups, among which the plastid-
localized group II MscS-like 2 and MscS-like 3 are correlated
with plastid osmotic stress and abscisic acid (ABA) induction.
Overexpression of plasma membrane-localized group III MscS-
like 10 can result in H2O2-associated cell death (Veley et al.,
2014; Hamilton et al., 2015). The Mid1-complementing activity
channels (Ca2+-permeable mechanosensitive channels) are
tightly associated with Ca2+ influx and involved in regulating
Ca2+ homoeostasis (Hamilton et al., 2015). The transcriptome
analysis of the angiosperm resurrection plant C. plantagineum
and the desiccation-tolerant lichen Cladonia rangiferina
revealed elevated expression of genes encoding pore calcium
channels and other non-defined ion channels upon dehydration
(Rodriguez et al., 2010; Junttila et al., 2013; Giarola et al., 2015).
Frontiers in Plant Science | www.frontiersin.org 4
Pectin-Derived Oligosaccharides
Many studies identified breakdown products of pectin as
signaling molecules (Bidhendi and Geitmann, 2016;
Cosgrove, 2016; Voxeur and Höfte, 2016). Pectin-derived
oligosaccharides (OGAs) were first discovered in plant
pathogen studies and belong to a class of elicitors, leading to
damage-associated molecular patterns (DAMPs) or pathogen-
associated molecular patterns (PAMPs), which are related to
wounding or diseases (De Lorenzo et al., 2018; Nürnberger and
Kemmerling, 2018). The cell wall surveillance system is able to
distinguish the degree of polymerization and conformation of
OGAs and to trigger different responses, accordingly (Cabrera
et al., 2008; Osorio et al., 2008; Cabrera et al., 2010). In A.
thaliana de-methylesterified pectin stretches bind to calcium and
form so-called “egg-box” structures which are recognized by cell
wall-associated protein kinases (WAKs) (Decreux and Messiaen,
2005). Dehydration leads to a higher level of de-methylesterified
pectin and an increase in the concentration of calcium in the cell
wall of the resurrection species Craterostigma (Vicré et al., 1999;
Vicré et al., 2004a; Jung et al., 2019), which is the basis for the
“egg-box” formation and the pectin-WAK association. These
results support a role for OGAs as signal molecules in
resurrection plants during water deficit (Figure 2). The
xyloglucan-derived OGAs also regulate cell wall expansion
(Pilling and Höfte, 2003; Seifert and Blaukopf, 2010). Fry et al.
(1990) observed the modulating effects of xyloglucan-derived
OGAs in plant growth. Takeda et al. (2002) proposed the
involvement of the xyloglucan metabolism in cell elongation.
During dehydration the structure and distribution of xyloglucan
are significantly altered in resurrection plants (Vicré et al., 1999;
Vicré et al., 2004a; Vicré et al., 2004b). Therefore, it is tempting
to speculate that xyloglucan is involved in defense responses
under dehydration, when other intrinsic defense systems are
shut-down.

Calcium
Calcium participates in multiple biological processes and has
different functions in the cell wall. Besides a structural role in
forming “egg-box” structures, calcium can move in and out of
the cell and functions as second messenger (Parre and Geitmann,
2005; Bose et al., 2011; Kurusu et al., 2013). The majority of Ca2+

is localized in the apoplast and vacuole (Medvedev, 2005). In the
apoplast, the excess of free Ca2+ is sequestered via the formation
of “egg-box” structures (Voxeur and Höfte, 2016), which also
serves as reservoir for cytosolic calcium ([Ca2+]cyt). Transient
[Ca2+]cyt elevation is a ubiquitous signal when plant cells
encounter abiotic or biotic stress (Bose et al., 2011), which can
be induced by OGAs (Moscatiello et al., 2006), and ascorbate
(Makavitskaya et al., 2018). [Ca2+]cyt elevation activates ROS
production, and vice versa. ROS can also cause Ca2+ influx thus
facilitating signal propagation (Seifert and Blaukopf, 2010;
Kurusu et al., 2013) (Figure 2). Because Ca2+ reacts with
proteins and other substances in the cytoplasm, high
concentrations of [Ca2+]cyt are detrimental. Therefore it
is necessary to maintain the basal [Ca2+]cyt levels with the
help of cytosolic buffering systems and Ca2+ efflux systems
January 2020 | Volume 10 | Article 1698
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(Ca2+-ATPases and Ca2+ exchangers) (Bose et al., 2011)
(Figure 2). Repetitive Ca2+ influx and efflux give rise to
cytosolic calcium oscillations, which vary in magnitude,
frequency, and shape and are related to the severity and type
of stress (Bose et al., 2011). Long term drought in soybean
induced large Ca2+ efflux from mesophyll cells, accompanied
by large K+ efflux and H+ influx, which may prime the ABA
signal transduction in guard cells and finally lead to stomata
closure (Mak et al., 2014). Similar to soybean, the apoplastic Ca2+

was also increased in the resurrection plant C. wilmsii upon
dehydration, but with no significant change of K+ in the cell wall
(Vicré et al., 2004a), which suggests that the resurrection plants
may have a specific Ca2+ signaling mechanism. Mihailova et al.
(2018) speculated that the accumulation of Ca2+ in the cell wall
of C. wilmsii resulted from electrolyte leakage. This explanation
may overlook the fact that neither the apoplastic K+ nor
the phosphate significantly increased. The apoplastic Ca2+ in
C. wilmsii was quantified using secondary ion mass spectrometry
technology. However, the studies of Ca2+ signature require more
real-time data and Ca2+ levels should be determined using
microelectrode ion flux measurement and dynamic calcium
imaging (Krebs et al., 2012).

Protons
The proton influx and efflux across the plasma membrane can
lead to apoplastic alkalization or acidification, which dictates the
activities of pH-dependent cell wall modifying enzymes and
finally affects cell wall structures. Water deficit, similar to other
stresses such as salinity or pathogen infection tends to decrease
proton concentrations in the apoplast (Geilfus, 2017). Increased
apoplastic pH inhibits expansin activity and activates pectin-
methylesterases, which together with elevated [Ca2+]apo
eventually strengthen the cell wall (Wolf et al., 2012) (Figure 2).
The cell wall pH also varies spatially with a lower pH in the
growing tip, thereby promoting cell wall loosening in apical tips
(Moore et al., 2008; Mangano et al., 2018). Systemic apoplastic
alkalinization is considered as a stress signal stimulating ABA
accumulation in guard cells and stomatal closure during
dehydration (Geilfus, 2017; Karuppanapandian et al., 2017).
Therefore it is essential to consider the effect of pH on the activity
of cell wall modifying enzymes in more detail.

ROS and ROS-Producing Enzymes
Reactive oxygen species (ROS), including hydrogen peroxide
(H2O2), hydroxyl radical (OH

−), superoxide anion (O2
−), and

nitric oxide (NO) are a group of reactive molecules with partially
reduced or active forms of oxygen (Choi et al., 2017). Historically
ROS were only considered to be toxic for cell metabolism, but
now it is widely accepted that ROS also act as important
transmitters for both intra- and intercellular signaling
(Hamann et al., 2009; Choudhury et al., 2017; Mittler, 2017).
The apoplastic ROS trigger multiple downstream responses
which demands a precise signal perception and transduction
from the apoplast to the nucleus (Wrzaczek et al., 2013;
Kangasjärvi and Kangasjärvi, 2014). The ROS signaling in the
extracellular compartment has not been well deciphered. The
Frontiers in Plant Science | www.frontiersin.org 5
predicted ROS sensing and transduction involve plasma
membrane receptor-like kinases (RLKs), ion channels,
aquaporins, redox balancing substances, plasma membrane
lipid oxidation, and modification of cysteine residues in
relevant proteins (Dynowski et al., 2008; Spoel and Loake,
2011; Kangasjärvi and Kangasjärvi, 2014). In resurrection
plants not many studies on apoplastic ROS signaling exist.
Based on observations of Ramonda nathaliae Jovanović et al.
(2011) proposed that controlled production of ROS is a vital part
in sensing dehydration and inducing multiple responses.

In plants, a considerable amount of ROS is generated
intracellularly due to photosynthesis, mitochondrial
respiration, photorespiration, and other processes caused by
diverse stresses (Kimura et al., 2017; Mittler, 2017). In the
extracellular space, the plasma membrane-localized NADPH
oxidases (respiratory burst oxidase homologs) and cell wall
peroxidases are the main sources for ROS production (Suzuki
et al., 2011; O’Brien et al., 2012; Choudhury et al., 2017; Kimura
et al., 2017). The respiratory burst oxidase homologs are
activated via the influx of apoplastic Ca2+, internal Ca2+

binding, and phosphorylation (Baxter et al., 2014) (Figure 2).
Under stress respiratory burst oxidase homologs are not only
ROS producers, but also transmit ROS waves from one cell to
neighboring cells (Choi et al., 2017). The apoplastic H2O2 is
derived from spontaneous chemical reactions or superoxide
dismutase-mediated mutation of superoxide which is generated
from respiratory burst oxidase homologs (Figure 2) (Baxter
et al., 2014), xanthine dehydrogenase (Ma et al., 2016), and
oxalate oxidase (Voothuluru and Sharp, 2013). The comparative
genome analysis of the desiccation tolerant lycophyte Selaginella
tamariscina and the desiccation-sensitive Selaginella
moellendorffii showed that the number of ROS-producing
genes such as respiratory burst oxidase homologues and
oxalate oxidase genes are much lower in the genome of the
desiccation tolerant S. tamariscina compared to S. moellendorffii
(Xu et al., 2018). This indicates that S. tamariscina may produce
less apoplastic ROS and thus alleviates stress to cell membranes
during water deficit. Choudhury et al. (2017) suggested that the
ROS detoxification mechanisms within the cell walls are less
effective than intracellular mechanisms, because they rely on low
levels of ascorbate and glutathione, CuZn-superoxide
dismutases, or cell wall peroxidases. This causes the
accumulation of extracellular ROS which facilitates rapid
systemic auto-propagating ROS waves (Choi et al., 2017;
Choudhury et al., 2017). Despite being known as ROS-
scavengers peroxidases also produce hydroxyl radicals from
H2O2 which are capable of cleaving cell wall polysaccharides
(Figure 2) (Fry, 1998; Passardi et al., 2004). Peroxidases in cell
walls interact with polysaccharides and extensins, and supply
phenoxy radicals for cell wall lignification and suberization
(Figure 2) (Passardi et al., 2004; Tenhaken, 2015). Hence,
peroxidases have dual functions: they contribute to wall
loosening by releasing hydroxyl radicals and they boost wall
stiffness by solidifying the extensin cross-linkages and supporting
cell wall lignification and suberization (Novaković et al., 2018).
Reinforcing the cell wall is an effective way to increase
January 2020 | Volume 10 | Article 1698
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mechanical strength and to counteract increasing osmotic stress
in response to dehydration. However, cell wall loosening is
necessary for cell growth. In some resurrection plants the
activities of peroxidases are highly increased upon rehydration,
but do not change during dehydration (Sherwin and Farrant,
1998; Rodriguez et al., 2010; Deeba et al., 2016; Yobi et al., 2017).
The limited activity of peroxidases may facilitate cell wall
loosening and help reversible cell wall folding. In other
resurrection plants, such as X. viscosa, peroxidases are up-
regulated during dehydration but down-regulated upon
rehydration, which is a prerequisite for cell wall stiffness under
drought (Sherwin and Farrant, 1998; Ingle et al., 2007). Low-level
substrates or decreased activity of peroxidases tend to generate
hydroxyl radicals which lead to cell wall loosening and on the
contrary high amounts of peroxidases, substrates, and ROS
facilitate cell wall stiffness (Tenhaken, 2015).

Receptor-Like Protein Kinases
The decoding of environmental cues and detection of cell wall
perturbation under dehydration require special sensing
mechanisms. Components of these sensors are members of
RLK sub-families. RLKs generally consist of an extracellular
domain, presiding over the perception of signals, a
transmembrane region, and an intracellular kinase domain
which triggers the downstream intracellular signaling (Ringli,
2010; Tenhaken, 2015; Novaković et al., 2018). Cell wall RLKs
have been demonstrated to exert pivotal roles in plant
development, growth and responses under various stresses,
among which the well-characterized Catharanthus roseus
protein kinase1-like receptor kinases (CrRLKs) and cell wall-
associated protein kinases (WAKs) are candidates for cell wall
integrity sensors (Novaković et al., 2018). In A. thaliana, there
are 17 members of CrRLK (Lindner et al., 2012). Their
involvement in Ca2+ signaling and ROS production during
pollen tube growth, root hair elongation, or stress responses
have been confirmed particularly for THESEUS1, FERONIA,
and ANXUR (Hématy et al., 2007; Cheung and Wu, 2011;
Denness et al., 2011; Boisson-Dernier et al., 2013; Feng et al.,
2018). The FERONIA triggered-signaling is additionally
regulated by a group of small peptides, RALFs (rapid
alkalinization factors), which bind to FERONIA and also
regulate a H+-ATPase and thus adjust the extracellular pH
which subsequently determines activities of cell wall-
remodeling enzymes (Murphy and De Smet, 2014). In
analogy to FERONIA, the C. plantagineum WAK1
(CpWAK1) is a binding partner for the cell wall protein
CpGRP1 (C. plantagineum glycine-rich protein1) (Giarola
et al., 2016), and the A. thaliana WAK1 showed binding to
both the AtGRP-3 protein and OGAs (Figure 2) (Decreux and
Messiaen, 2005). WAKs are connected with turgor pressure as it
was demonstrated that Arabidopsis plants silenced for WAKs
had impaired cell expansion and reduced expression and
activity of the vacuolar invertase (Kohorn et al., 2006).
CpGRP1 and CpWAK1 accumulate in opposite directions
upon dehydration and rehydration with more CpGRP1 and
less CpWAK1 in desiccated samples compared to hydrated or
Frontiers in Plant Science | www.frontiersin.org 6
rehydrated samples (Giarola et al., 2016). It was recently
demonstrated that also CpGRP1 interacts with pectin and
that the interaction is dependent on the homogalacturonan
methylesterification status of pectin (Jung et al., 2019). The
CpGRP1 protein binds stronger to homogalacturonan isolated
from desiccated leaves than to homogalacturonan from
hydrated leaves, where the degree of methylesterification is
lower than in hydrated leaves. The data imply that both
CpWAK1 and CpGRP1, or the CpWAK1-CpGRP1 complex
participate in sensing changes in the cell wall organization and
might trigger cell wall remodeling processes during dehydration
(Figure 2).

Hydroxyproline-Rich Proteins
Hydroxyproline-rich proteins are composed of highly O-
glycosylated proteoglycans and exist in two forms in plants,
one of which is insoluble and localized in the apoplast (Deepak
et al., 2010; Shivaraj et al., 2018). The arabinogalactan proteins
(AGPs) and extensins are two members of the hydroxyproline-
rich protein family. Both strengthen the cell wall through
crosslinking with other cell wall components and participate
in signal transduction (Pilling and Höfte, 2003; Deepak et al.,
2010; Ringli, 2010; Seifert and Blaukopf, 2010). AGPs have
effects on cell expansion, growth, and pattern formation. The
consensus structure of AGPs comprises a large carbohydrate
moiety of type II arabinogalactans (b-(1,3)-galactan backbone
decorated with arabinose and other polysaccharides in side
chains) O-linked to the hydroxyproline (Hyp) residues of the
polypeptide backbone (repetitive AlaHyp, SerHyp, and ThrHyp
peptides) with an N-terminal signal sequence for secretion and
a C-terminal glycosylphosphatidylinositol (GPI) lipid anchor
tethering AGPs to the plasma membrane (Figure 2) (Knoch
et al., 2014; Lamport et al., 2014; Tan et al., 2018). AGPs form a
diverse class of proteins due to variable compositions of the
peptide backbone and the carbohydrate moieties. Moore et al.
(2006; 2013) supported the notion that AGPs serve as
“plasticizers” to maintain cell wall flexibility during
desiccation in the resurrection species Mohria caffrorum, M.
flabellifolia, C. plantagineum, the grass-like Xerophyta spp., and
the grass Erograstis nindensis. OGAs released from AGPs may
facilitate to maintain intracellular osmotic pressure during
dehydration according to the analysis of AGP genes in rice
(Ma and Zhao, 2010). However, the function of AGPs is
probably not only restricted to the release of OGAs as
signaling molecules, but AGPs may act as sensors (Ringli,
2010; Seifert and Blaukopf, 2010; Lamport et al., 2014;
Novaković et al., 2018).

Extensins are characterized by the repetitive SerHyp4 and
SerHyp2 motif and the Tyr-Lys-Tyr sequence with Ser residues
decorated with single galactose and minor arabinogalactan
moieties attached to hydroxyproline residues (Shivaraj et al.,
2018; Tan et al., 2018). The self-assembling extensins usually
function as positively charged scaffolds, interacting with de-
methylesterified pectin via adsorption (Cannon et al., 2008;
Valentin et al., 2010). Extensins facilitate the crosslinking of
rhamnogalacturonan-II via borate and also contribute to ion-
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regulated cell wall integrity (Chormova and Fry, 2016; Tan et al.,
2018). Besides a structural role, the proline-rich extensin-like
receptor kinases have an effect on cell wall signal transduction.
The T-DNA mutant perk4 (defective extensin-like receptor
kinase) displayed decreased sensitivity to ABA and lower
[Ca2+]cyt and Ca2+ channel currents upon ABA treatment (Bai
et al., 2009). This supports a role of an extensin-like receptor
kinase in ABA signaling and Ca2+ homeostasis.

Cell Wall Modifying Proteins
The remodeling of the polysaccharide composition under
dehydration or rehydration is catalyzed by different cell wall
modifying proteins and enzymes. Understanding the activity and
regulation of these proteins and enzymes is crucial to decipher
the folding process. Cell wall modifying enzymes are a group of
cell wall proteins regulating cell wall composition and rheology.
Here, three members of cell wall modifying proteins and their
functions in resurrection plants are described.

Expansins
Expansins are hypothesized to prompt acid-induced growth and
cell wall remodeling under abiotic stress by disrupting hydrogen-
bonds between xyloglucan and cellulose microfibrils without
lytic activity (Figure 2) (Cosgrove, 2015; Tenhaken, 2015).
Plant expansins fall into two major families: a-expansins and
b-expansins according to phylogenetic analyses (Cosgrove,
2015). The expression and activity of a-expansins were studied
in C. plantagineum leaves (Jones and McQueen-Mason, 2004).
Among the three expansin transcripts the CplExp1 transcript
level was correlated with expansin activity which increased in the
early stages of dehydration and rehydration corresponding to cell
wall extensibility (Jones and McQueen-Mason, 2004). This
suggests a role of expansin-induced wall extension in the early
stages of dehydration and rehydration. However, dehydration
tends to alkalize the apoplast which leads to the question how the
activity of acid-activated expansins can be triggered upon
dehydration (Geilfus, 2017).

Xyloglucan Endotransglucosylases/
Hydrolases
Apart from expansins, the xyloglucan endotransglucosylases/
hydrolases (XTHs) are other candidates for unzipping the
hemicellulose (xyloglucan)-cellulose network via hydrolysis or
transglucosylation to increase the cell wall extensibility
(Figure 2) (Sasidharan et al., 2011; Tenhaken, 2015). In
contrast to expansins, XTHs exhibit two activities: irreversible
xyloglucan hydrolysis (XEH) and reversible xyloglucan
endotransglucosylation (XET), suggesting roles for XTHs in
cell wall loosening and re-assembling (Rose et al., 2002).
Transgenic A. thaliana and tomato plants overexpressing a
xyloglucan endotransglucosylase/hydrolase CaXTH3 from hot
pepper showed enhanced tolerance to salt and dehydration stress
(Cho et al., 2006; Choi et al., 2011). In the resurrection plant,
Haberlea rhodopensis, one putative XTH gene HrhDR35 was up-
regulated during early dehydration to desiccation and
rehydration (Georgieva et al., 2012), which corresponds to
Frontiers in Plant Science | www.frontiersin.org 7
expansin expression in C. plantagineum (Jones and McQueen-
Mason, 2004). Based on these observations it is suggested that
XTHs contribute to improve dehydration tolerance through
increasing wall extensibility and cell wall reconstruction after
stress relief in both desiccation tolerant and desiccation sensitive
plants. However, XTHs may not always contribute to cell wall
extensibility as was shown for cell walls of ripening tomato fruit
(Saladié et al., 2006)

Pectinmethylesterases
The degree of pectin methylesterification is an important factor
for cell wall structure and has an effect on cellular growth and cell
wall responses during dehydration (Wolf et al., 2009).
Pectinmethylesterases de-methylesterify pectin and thus
generate negatively charged pectin (Figure 2). This reaction is
a ffec ted by the apoplas t ic pH and the degree of
methylesterification of galacturonic acid (Micheli, 2001; Wolf
et al., 2012). The released pectin transfers Ca2+ to promote the
formation of egg-box pectin gelatin which enhances the
mechanical stability (Wolf et al., 2012; Voxeur and Höfte,
2016). Under dehydration the cell wall texture is presumably
modified by the egg-box gelatin through activating
pectinmethylesterases and inhibiting expansins due to the
increased pH of the apoplast (Figure 2) (Wolf et al., 2012).
Upon dehydration de-methylesterified pectin increases in the cell
wall of C. wilmsii, C. plantagineum, and L. brevidens which is
probably due to pectinmethylesterase activities during
dehydration (Vicré et al., 1999; Vicré et al., 2004a; Jung
et al., 2019).

The above-described cell wall proteins are not sufficient to
explain the cell wall behavior during dehydration/rehydration in
resurrection plants. Analyses of genome sequences have identified
several other cell wall proteins in resurrection plants (Giarola et al.,
2015). Giarola et al. (2015; 2016) identified a cysteine-rich protein
localized in the apoplast and down-regulated during dehydration
but up-regulated during rehydration, while the expression level of
the CpGRP1 protein was enhanced during desiccation, which is
consistent with the dehydration-induced GRP1 from Boea
hygrometrica (Wang et al., 2009). Also aquaporins and plasma
membrane intrinsic proteins accumulated upon dehydration or in
the presence of ABA in C. plantagineum, suggesting that water
channels are associated with ABA signaling during dehydration
(Mariaux et al., 1998).
CHANGES IN CELL WALL
TRANSCRIPTOMES UPON DEHYDRATION
IN RESURRECTION PLANTS

In the past 10 years transcriptome-wide changes upon dehydration
and rehydration have been reported for the dicot resurrection
species C. plantagineum (Rodriguez et al., 2010), H. rhodopensis
(Gechev et al., 2013), M. flabellifolia (Ma et al., 2015), and Boea
hygrometrica (Xiao et al., 2015; Zhu et al., 2015), and for the
monocot resurrection species Oropetium thomaeum (VanBuren
et al., 2015) and Sporobolus stapfianus (Yobi et al., 2017). This
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information can be used to identify genes which are related to cell
wall compartments. This will allow a comprehensive study of the
molecularmechanismswhich are activated to adapt the cell walls to
the reducing cell volume causedbywater loss in resurrectionplants.

The analysis of transcriptome data showed that several cell
wall-related genes which are involved in different processes such
as the regulation of cell wall plasticity and cell wall dynamics,
catabolic processes, and cell wall organization are differentially
modulated upon dehydration thus suggesting the importance of
cell wall remodeling during the acquisition of desiccation
tolerance (Rodriguez et al., 2010; Gechev et al., 2013; Xiao
et al., 2015; Zhu et al., 2015). One main obstacle to the
interpretation of RNA expression data resides in the fact that
genes encoding cell wall modifying enzymes belong to large gene
families and often different enzyme isoforms in these families are
differently regulated upon dehydration. Table 1 summarizes
dehydration-induced changes in the expression of genes
encoding cell wall modifying proteins and enzymes which were
reported for resurrection species. A good example of enzyme
isoforms which display an opposite expression upon dehydration
is represented by xyloglucan endotransglucosylases (XTHs) inH.
rhodopensis. Transcriptome data showed that several XTHs
isoforms are down-regulated during dehydration (Gechev
et al., 2013) (Table 1) but the presence of a dehydration-
induced XTH was previously identified by cDNA-AFLP
experiments (Georgieva et al., 2012). Genes encoding XTHs,
expansins, pectinmethylesterases, and pectinacetylesterases are
Frontiers in Plant Science | www.frontiersin.org 8
abundant in hydrated leaves of C. plantagineum and down-
regulated upon dehydration (Rodriguez et al., 2010). The stage
where the maximum transcript expression is registered can also
be hardly used as indicator for protein activity as this can be
affected by additional factors, e.g., the binding with specific
inhibitors, changes in the apoplastic pH, the substrate
accessibility, and/or the accumulation of ROS upon dehydration.

Our knowledge of structural changes in cellwalls of dehydration
sensitive species upon dehydration stress is limited and thus it is
difficult to identify which mechanisms are specific for cell wall
folding in resurrection species. Increased cell wall extensibility is
observed upon dehydration in the resurrection species
Craterostigma and it appears to be essential for cell wall folding
and survival (Jones and McQueen-Mason, 2004). Conversely,
sensitive plants subjected to drought stress tend to increase the
stiffness of their cell walls (Lu and Neumann, 1998; Tenhaken,
2015). Expansins and XTHs have been proposed to be good
candidates to increase cell wall extensibility in resurrection
species. Additionally, other cell wall modifying proteins
or enzymes, e.g., pectinmethylesterases are emerging as possible
modulators of cellwall stiffnessbyactingon themethylesterification
level of pectin. Finally, transcriptome data suggest the involvement
of several classes of cell wall modifying enzymes and cell wall
modifying enzyme inhibitors but the sole transcript data are far
fromproviding a clear picture ofhow thedifferent classes of cellwall
proteins fromthese species are recruited and coordinated to achieve
cell folding in resurrection species.
CONCLUSIONS

Cell wall remodeling is a pivotal drought tolerance mechanism for
plants (Tenhaken, 2015), which includes two opposite effects:
stiffening and loosening. Both effects contribute to the ability to
overcome mechanical stress, while stiffening preferentially occurs
in desiccation sensitive plants and loosening is essential for cell
wall folding in resurrection plants. Maintaining the integrity of
cell walls during dehydration and rehydration in resurrection
plants involves many components ranging from changes in
polysaccharide composition to differential RNA expression. The
activation of pathways leading to more flexible components on the
one hand and adding more stability to the cell wall on the other
hand, suggests a tightly controlled folding process during
dehydration which finally keeps the plasmalemma and the
photosynthetic apparatus intact in resurrection plants.
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TABLE 1 | Dehydration-induced expression changes of cell wall enzymes which
were reported for resurrection species.

Species Cell wall enzymes Expression Reference

Craterostigma
plantagineum

Xyloglucan
endotransglucosylases,
pectin methylesterases
and pectin
acetylesterases

Downregulated
upon dehydration

(Rodriguez et al.,
2010)

Sporobolus
stapfianus

Endo-beta-mannanase,
beta- mannan
endohydrolase, beta-D-
glucan exohydrolase,
glucan endo-1,3-beta-
glucosidase, feruloyl
esterase, glycosyl-
transferases

very abundant in
late dehydration/
desiccation (RWC
≤ 30%)

(Yobi et al., 2017)

Sporobolus
stapfianus

Cell wall-associated
hydrolases

abundant in early
stage of
dehydration (80%
RWC)

(Yobi et al., 2017)

Sporobolus
stapfianus

Cellulose synthases,
lichenase, glucan endo-
1,3-beta-glucosidase,
anthocyanidin 5,3-O-
glucosyltransferase

Downregulated
upon dehydration

(Yobi et al., 2017)

Haberlea
rhodopensis

Xyloglucan
endotransglucosylases,
pectin esterases and
pectate lyases

Downregulated
upon dehydration

(Gechev et al.,
2013)

Haberlea
rhodopensis

Laccase Accumulated in
late dehydration/
desiccation

(Gechev et al.,
2013)
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