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Strigolactones (SLs) and their derivatives are plant hormones that have recently been 
identified as regulators of primary lateral root (LR) development. However, whether SLs 
mediate secondary LR production in rice (Oryza sativa L.), and how SLs and auxin interact 
in this process, remain unclear. In this study, the SL-deficient (dwarf10) and SL-insensitive 
(dwarf3) rice mutants and lines overexpressing OsPIN2 (OE) were used to investigate 
secondary LR development. The effects of exogenous GR24 (a synthetic SL analogue), 
1-naphthylacetic acid (NAA; an exogenous auxin), 1-naphthylphthalamic acid (NPA; a 
polar auxin transport inhibitor), and abamine (a synthetic SL inhibitor) on rice secondary 
LR development were investigated. Rice d mutants with impaired SL biosynthesis and 
signaling exhibited increased secondary LR production compared with wild-type (WT) 
plants. Application of GR24 decreased the numbers of secondary LRs in dwarf10 (d10) 
plants but not in dwarf3 (d3), plants. These results indicate that SLs negatively regulate 
rice secondary LR production. Higher expression of DR5::GUS and more secondary LR 
primordia were found in the d mutants than in the WT plants. Exogenous NAA application 
increased expression of DR5::GUS in the WT, but had no effect on secondary LR formation. 
No secondary LRs were recorded in the OE lines, although DR5::GUS levels were higher 
than in the WT plants. However, on application of NPA, the numbers of secondary LRs were 
reduced in d10 and d3 mutants. Application of NAA increased the number of secondary 
LRs in the d mutants. GR24 eliminated the effect of NAA on secondary LR development 
in the d10, but not in the d3, mutants. These results demonstrate the importance of auxin 
in secondary LR formation, and that this process is inhibited by SLs via the D3 response 
pathway, but the interaction between auxin and SLs is complex.
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INTRODUCTION
Plants have successfully colonized the terrestrial environment via the evolution of multicellular 
organs that absorb the nutrients and water required for their growth and development (Pires and 
Dolan, 2012). The root system is the main organ by which plants obtain nutrients and water from 
soil (Péret et al., 2009; Sun et al., 2018a, 2018b; Huang et al., 2019). Therefore, diversity and plasticity 
in root architecture may contribute to the survival strategies of plants.
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Root systems consist of embryonic roots derived from the 
embryo and post-embryonic roots derived from existing roots 
or non-root tissues (Atkinson et al., 2014). Post-embryonic 
roots arising from existing roots are lateral roots (LRs), and 
roots arising from non-root tissues are adventitious roots (ARs) 
(Atkinson et al., 2014). LRs develop from founder cells in the 
pericycle, the outermost layer of the vascular cylinder (stele) of 
a root (De Smet et al., 2006). In contrast to the taproot system, 
the majority of monocot roots form a fibrous root system that is 
characterized by the formation of many seminal roots (SRs) and 
ARs. In monocots, the LRs develop from ARs and SRs (Osmont 
et al., 2007; Bellini et al., 2014).

Several lines of study have suggested that LR formation is 
regulated by genetic factors (Lavenus et al., 2015; Murphy et al., 
2016; Fernández-Marcos et al., 2017). In addition to genetic 
factors, LR growth and development are also regulated by plant 
hormones, such as auxin. Previous studies have shown that auxin 
plays a key role in LR formation and growth in plants (Guseman 
et al., 2015; Xuan et al., 2016; Tang et al., 2017). Auxin is 
synthesized mainly in aboveground tissue, such as shoot apices, 
by YUCCA family genes (Zhao, 2012) and redistributed by auxin-
influx carriers, such as AUX1/LAX family proteins, and auxin-
efflux carriers, including ABCB/PGP and PIN family proteins in 
several plant species (Friml, 2003; Blakeslee et al., 2005; Wang 
et al., 2009; Zazimalova et al., 2010; Péret et al., 2012). The polar 
transport of auxin is very important for LR development in plants 
(Swarup et al., 2005; De Smet et al., 2007; Inahashia et al., 2018). 
For example, the roots of the aux1 mutant bend constitutively 
in one direction, forming root coils with LRs distributed 
predominantly on the convex side of the curve, which differs 
markedly from the wavy pattern seen in the roots of Arabidopsis 
(Swarup et al., 2005; De Smet et al., 2007). The mutants of pin2, 
pin3, and pin7 have an altered branching pattern, with closely 
grouped lateral root primordia (LRP)/LRs or fewer LRP/LRs, in 
Arabidopsis (Laskowski et al., 2008). Moreover, AtPIN3 is part 
of an auxin reflux pathway that is transiently established during 
the early phases of LR formation (Marhavy et al., 2013). OsPIN2-
altered auxin flow in the root tip region is responsible for LR 
growth and formation patterns in rice (Inahashia et al., 2018).

Besides auxin, newly identified phytohormones named 
strigolactones (SLs) are involved in the growth and formation 
of LRs in several plant species (Kapulnik et al., 2011; Ruyter-
Spira et al., 2011; Mayzlish-Gati et al., 2012; Rasmussen et al., 
2012; Sun et al., 2014; De Cuyper et al., 2015). Compared with 
WT plants, a SL-synthesis mutant (more axillary growth4) and 
a SL-signaling mutant (more axillary growth2) were found to 
have greater LR densities in Arabidopsis (Kapulnik et al., 2011; 
Kohlen et al., 2011; Ruyter-Spira et al., 2011). However, LR 
density did not differ between WT plants and d mutants in rice 
(Sun et al., 2014). In Arabidopsis and rice, application of GR24 
(a SL analogue) decreased the LR density in WT plants and 
SL-synthesis mutants (more axillary growth4/d10), but not in 
SL-signaling mutants (more axillary growth2/d3) (Ruyter-Spira 
et al., 2011; Sun et al., 2014).

The interactions between SLs and auxin in the regulation 
of LR growth are closely linked (Ruyter-Spira et al., 2011; 

Sun et al., 2014). In Arabidopsis and rice, higher auxin levels in 
roots were recorded in SL-synthesis mutants than in WT plants. 
Application of GR24 to the roots of WT and SL-synthesis 
mutants inhibited LR formation by reducing auxin transport 
(Ruyter-Spira et  al., 2011). PIN proteins are the major auxin 
efflux carriers in plants (Friml, 2003; Wisniewska et al., 2006). 
Application of GR24 decreased PIN1, PIN3, and PIN7 protein 
levels in the primary root tips of Arabidopsis. However, PIN 
levels were not affected when similar levels of GR24 were 
applied in the presence of exogenous auxin (Ruyter-Spira et al., 
2011). The expression of most PIN family genes in roots was 
downregulated by application of GR24 in rice (Sun et al., 2014). 
These results indicate that SLs inhibit LR formation, perhaps by 
reducing the levels of PIN proteins.

Rice is an ideal model for the study of plant root growth 
because of its small genome and the availability of its complete 
genome sequence and well-characterized mutants (Feng et al., 
2002; Sasaki et al., 2002). Relative to primary LR development, 
the formation of secondary LRs in rice has not been characterized 
in detail. We found that secondary LR formation was induced 
in d mutants and that exogenous GR24 inhibited secondary LR 
formation in d10 plants, but not in d3 plants. NPA treatment 
reduced the number of secondary LRs in the d mutants. However, 
application of NAA increased the number of secondary LRs in the 
d mutants, but not in WT plants. The effect of NAA on secondary 
LR development was eliminated by supplying GR24 to the d10 
plants, but this was not the case in the d3 plants. These results 
demonstrate that auxin induced rice secondary LR formation in 
the absence of SLs.

MATeRIALS AND MeThODS

Plant Materials
The d3-1 and d10-1 mutants (Shiokari ecotype) (Sun et al., 2014), 
and lines overexpressing OsPIN2 (OE1 and OE2) (Nipponbare 
ecotype), were used in this study.

Plant growth
Rice seedlings were grown at day/night temperatures of 30/18°C 
under natural light in a greenhouse. Seven-day-old seedlings of 
uniform size and vigour were transplanted into holes in lids placed 
over the tops of pots (four holes per lid and three seedlings per 
hole). Nutrient solutions ranging from one-quarter strength to full 
strength were applied for 1 week, followed by application of full-
strength nutrient solution for 2 weeks. The chemical composition 
of the International Rice Research Institute (IRRI) nutrient 
solution is (mM): 1.25 (NH4)2SO4, 0.3 KH2PO4, 0.35 K2SO4, 1.0 
CaCl2, 1.0 MgSO4·7H2O, 0.5 Na2SiO3; and (µM) 9.0 MnCl2, 0.39 
(NH4)6Mo7O24, 20.0 H3BO3, 0.77 ZnSO4, and 0.32 CuSO4 (pH 5.5).

The treatments applied were as follows: 10 nM 
1-naphthylacetic acid (NAA), 2.5 µM GR24 (a SL analogue), 
100 µM abamine (a SL-synthesis inhibitor) (Sun et al., 2014; 
Sun et al., 2015; Sun et al., 2016), and localized application 
of NPA (a polar auxin transport inhibitor). The latter was by 
dispensing diluted agar containing 20 µM NPA directly from a 
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pipette across the shoot base (Chen et al., 2012). All experiments 
included three independent biological replicates.

Measurement of Secondary Lateral  
Root and Primordia Numbers
As reported previously, SRs were significantly longer than 
ARs under our experimental conditions. Our preliminary 
experiment showed similar primary LR and secondary LR 
responses in SRs and ARs (Sun et al., 2014). Therefore, SRs 
were chosen as representative organs to study the mechanism of 
secondary LR formation. Primary LR density and the numbers 
of secondary LRs/primordia SR were analyzed in detail. SR 
length was measured with a ruler and LRs/secondary LRs 
were counted by eye. Primary LR density was calculated as LR 
number divided by SR length. All experiments included three 
independent biological replicates.

In this study, the stages of secondary LR development followed 
Malamy and Benfey (1997), with stages I–XII grouped here as 
unemerged primordia. The primordia of the secondary LRs were 
classified as unemerged and emerged. An emerged LRP longer 
than 0.5 mm (visible to the naked eye) was considered a LR, and 
was referred to as being activated (Song et al., 2013). To visualize 
the development of secondary LRs, we exploited pDR5::GUS 
transgenic rice plants. After the roots were stained in GUS buffer 
solution, the secondary LR primordia were easy to count. The 
experiments included three independent biological replicates.

pDR5::gUS Construct
To examine the distribution of indole-3-acetic acid (IAA) in 
rice plants, the pDR5::GUS construct was transformed into the 
WT plants a, d mutants, and lines overexpressing OsPIN2 using 
Agrobacterium tumefaciens (strain EHA105) (Sun et al., 2014). The 
samples used for IAA analysis were also used for histochemical 
GUS staining. The stained tissues were photographed using 
an Olympus SZX2-ILLK stereomicroscope with a color CCD 
camera (Olympus).

GUS activity was examined according to Jia et al. (2011). 
Samples were homogenized in GUS extraction buffer (50 mM 
NaPO4 (pH 7.0), 10 mM 2-mercaptoethanol, 10 mM Na2-
EDTA, 0.1% sodium dodecyl sulfate, 0.1% Triton X-100). After 
centrifugation, 20 µl of the supernatant was mixed with 180 µl 
of an assay buffer containing 1 mM 4-methylumbelliferyl-β--
glucuronide. After incubation at 37°C for 1 h, the reaction was 
stopped by adding 1,800 µl 0.2 M Na2CO3. Fluorometer values 
were compared with those of a 4-methylumbelliferone dilution 
series. Protein content was determined with a Bio-Rad protein 
assay kit (Bio-Rad Laboratories, Shanghai, China) using bovine 
serum albumin as the standard. All experiments included three 
independent biological replicates.

Strigolactone Measurement
After 3 weeks growth, root exudates (approximately 500 ml) 
of the rice plants were collected at 24-h intervals, as described 
previously (Yoneyama et al., 2012; Xie et al., 2013). Root 
exudates adsorbed on charcoal were eluted with acetone. After 

evaporation of the acetone in vacuo, the residue was dissolved 
in 50 ml water and extracted three times with 50 ml ethyl 
acetate. The ethyl acetate extracts were combined, washed with 
0.2 M K2HPO4 (pH 8.3), dried over anhydrous MgSO4, and 
concentrated in vacuo. These crude extracts were stored in 
sealed glass vials at 4°C until use.

The 2’-epi-5-deoxystrigol concentrations in the root exudates 
were determined by liquid chromatography–mass spectrometry/
mass spectrometry, as described previously (Xie et al., 2013). 
Data were acquired and analyzed using MassLynx software 
(ver. 4.1; Waters, Milford, MA). The experiments included three 
independent biological replicates.

Quantitative Reverse Transcription-
Polymerase Chain Reaction
Total RNA was isolated from the roots of 7-day-old rice plants. 
The RNA extraction, reverse transcription, and quantitative 
reverse transcription-polymerase chain reaction (qRT-PCR) 
methods were as described by Jia et al. (2011). The experiments 
included three independent biological replicates.

Data Analysis
Data from the experiments were pooled to calculate the means 
and standard errors (SEs) and subjected to one-way analysis 
of variance (ANOVA), followed by an LSD test at P < 0.05 to 
determine the statistical significance of differences between 
treatments. All statistical evaluations were conducted using SPSS 
(version 11.0) statistical software (SPSS Inc., Chicago, IL, USA).

ReSULTS

Tiller and Secondary Lateral Root 
Production Were Induced in the Rice 
dwarf3 and dwarf10 Mutants
As reported by Ishikawa et al. (2005), compared with wild-type 
(WT) plants, tiller numbers were increased in d10 (SL-synthesis 
mutant) and d3 (signaling mutant) plants (Figures 1A, C). 
Secondary LR formation was significantly induced in the d 
mutants relative to the WT plants (Figures 1B, D–F). These 
results imply that SLs induce branching of both shoots and roots.

exogenous Application of gR24 Inhibited 
Secondary Lateral Root Formation in the 
dwarf10 Plants, But Not in the dwarf3  
of Rice
As in a previous study, endogenous 2’-epi-5-deoxystrigol was 
detected in WT and d3 mutant plants, but not in d10 plants 
(Umehara et al., 2008). Primary LR density of SRs did not 
differ between the WT plants and the d mutants (Figure 2A). 
Application of GR24 decreased the primary LR density in the WT 
and d10 mutant plants, but not in the d3 plants (Figure 2B). These 
results are consistent with those reported by Sun et al. (2014). To 
determine whether SLs regulate the formation of secondary LRs in 
rice, GR24 was applied exogenously to WT plants and the two d 
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mutants (Figures 2A, B). Application of GR24 had no effect on the 
development of secondary LRs in the WT, but inhibited secondary 
LR formation in the d10 mutants to the same level of the WT plants. 
However, the numbers of secondary LRs in the d3 mutants were 
not affected by GR24 application (Figures 2C, D). Treatment with 
abamine had no effect on the development of secondary LRs in the 
d mutants, but induced secondary LR formation in the WT plants 
(Figure 2E). These results indicate that SLs inhibit secondary LR 
formation and the involvement of SL signaling (D3 gene) in the SL 
regulatory pathway for secondary LR formation.

higher Auxin Levels in the Rice Roots  
Were Not the Only Reason for Secondary 
LR Formation
In a previous study, endogenous IAA levels were higher in the 
roots of d10 and d3 mutants relative to WT plants (Sun et al., 
2014). To assess whether higher auxin levels induce secondary LR 
formation in d mutants, the secondary LR primordia in the roots 
of rice plants were analyzed on application of exogenous NAA. A 
specific reporter was used that contains seven repeats of a highly 
active synthetic auxin response element, and changes in auxin 
levels in vivo were monitored via the expression of DR5::GUS 
(Ulmasov et al., 1997). Expression of DR5::GUS was subsequently 
examined in the WT plants and in the d10 and d3 mutants. GUS 
activity was higher in the roots of the d mutants than in the WT 
plants (Figures 3A, B), consistent with Sun et al. (2014). However, 

the numbers of secondary LR primordia were significantly higher 
in the d mutants, but not in the WT plants (Figures 3A, C). These 
results imply that higher auxin levels in roots increase secondary 
LR primordia production. Application of NAA to the WT plants 
increased expression of DR5::GUS in roots to levels similar to 
those in the roots of the d  mutants (Figure 3C). However, the 
higher DR5::GUS levels did not induce secondary LR primordia 
formation in the WT plants. These results suggest that higher 
auxin levels in the roots of d mutants were not the only reason for 
secondary LR primordia formation.

Overexpression of OsPIN2 Increased 
Auxin Levels in Roots But Did Not Induce 
Secondary Lateral Root Formation
Expression of OsPIN2 was analyzed in the WT plants and in 
the d mutants. Compared with the WT plants, levels of OsPIN2 
were up-regulated in the d mutants (Supplementary Figure 1). 
To determine further whether secondary LRs were induced by 
auxin, lines overexpressing OsPIN2 were used in this study. As 
reported by Chen et al. (2012), compared with the WT, plant 
height was significantly reduced in lines overexpressing OsPIN2 
(OE) (Figure 4A). The endogenous IAA content of roots is higher 
in OE lines than in WT plants (Chen et al., 2012). The secondary 
LR primordia in the roots of the OE lines were analyzed and 
expression of DR5::GUS in the rice plants was subsequently 
examined. GUS activity was higher in the roots of the OE lines 

FIgURe 1 | The morphology of tiller and roots in wild-type (WT, Shiokari), strigolactone-synthesis (d10), and strigolactone-signaling (d3) mutants. Seedlings were 
grown in a hydroponic media for 21 days. (A) The morphology of the rice plants. (B) The morphology of roots. (C) Tiller. (D–F) Secondary lateral root (LR). All 
experiments included three independent biological replicates.
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than in those of the WT plants (Figures 4F, G), consistent with 
Chen et al. (2012). However, no secondary LRs or LR primordia 
were found in the OE lines (Figures 4B-F and 5B). In addition, 
the primary LR density and numbers of secondary LRs did not 
differ between the WT and OE lines (Figures 5A, B). These 
results further imply that the higher auxin levels in the OE lines 
did not induce the development of secondary LRs.

Auxin Induced the Development of 
Secondary Lateral Roots in the Absence 
of Strigolactones
To analyze further the interaction between SLs and auxin in 
the regulation of secondary LR development, the numbers 
of secondary LRs in the WT plants and the d mutants were 
recorded on application of NAA, NPA, NPA+NAA, NAA+GR24, 
and NPA+NAA+GR24. In comparison with mock treatment, 
application of NPA significantly decreased both DR5::GUS levels 
in the primary LR region and primary LR density in the WT 
plants and in the d mutants (Figures 6A, B). The numbers of 
secondary LRs were reduced in the d10 and d3 mutants under 
NPA treatment relative to the mock condition (Figure 7B). The 
numbers of secondary LRs were increased in the d mutants, but 
not in the WT plants, on NAA supply (Figure 7C). Application 

of NAA restored the effect of NPA on the numbers of secondary 
LRs to levels similar to those induced by NAA treatment alone 
in the d mutants (Figure 7D), and supply of GR24 eliminated 
the effect of NAA on secondary LR development (Figure 
7E). Treatment of roots with GR24 under the NPA plus NAA 
condition further inhibited secondary LR formation in the d10 
plants, but not in the d3, mutants (Figure 7F). These results 
imply that auxin induces secondary LR formation in the absence 
of SLs.

DISCUSSION
Development of optimal root morphology, including formation of 
LRs, is crucial for absorbance of nutrients and water and successful 
growth of transplants. In addition to providing anchorage, LRs 
contribute to water-use efficiency and facilitate extraction of 
micro- and macronutrients from soil (Casimiro et al., 2001; Péret 
et al., 2009). Most studies of LRs in plants have focused on primary 
LRs; the mechanisms of secondary LR formation remain largely 
unexplored. This study provides evidence of the regulatory roles of 
auxin and SLs in rice secondary LR development.

The SL pathway is involved in primary LR growth 
and development. In tomato (Solanum lycocarpum) and 

FIgURe 2 | The primary lateral root (LR) density and secondary LR number in wild-type (WT, Shiokari), strigolactone-synthesis (d10), and strigolactone-signaling (d3) 
mutants. Seedlings were grown in a hydroponic media with or without GR24 and Abamine for 21 days. (A) Primary LR density. (B) The morphology of secondary 
LR number. (C–e) Secondary LR number. Data are means ± SE. *P < 0.05 comparing the WT and other rice plants. The red arrow indicates the secondary LR. All 
experiments included three independent biological replicates.
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Arabidopsis, the density of primary LRs was increased in 
SL mutants, implying that SLs inhibit LR formation (Koltai 
et al., 2010; Kapulnik et  al., 2011; Ruyter-Spira et al., 2011). 
Application of GR24 reduced primary LR formation by 
suppressing the outgrowth of primary LRs in Arabidopsis 
and pea (Kapulnik et al., 2011; Ruyter-Spira et al., 2011; 
Rasmussen et al., 2012). The density of primary LRs was 
affected by GR24 in WT seedlings and SL-synthesis mutants, 
but not in SL-signaling mutants, implying that the effect of 
SLs on primary LR density is mediated via the MAX2 gene 
(Kapulnik et al., 2011; Koltai, 2011; Ruyter-Spira et al., 2011). 
In contrast to findings in upland plants, primary LR density 
did not differ between WT plants and d mutants in rice (Arite 
et al., 2012; Sun et al., 2014). Application of GR24 reduced 
primary LR density, but the extent of the decrease did not 
change with increasing GR24 concentrations (Sun et al., 2014). 
The primary LR densities in the d mutants in the present 
study were similar to those reported by Sun et al. (2014). 
Correspondingly, the numbers of secondary LRs increased 
significantly in the d mutants relative to the WT plants. 
Application of GR24 reduced the numbers of secondary LRs 

in the d10 mutants, but not in the d3 mutants (Figures 2C, 
D). Treatment with abamine induced secondary LR formation 
in the WT plants (Figure 2E). These results indicate that 
SLs inhibit secondary LR formation and demonstrate the 
involvement of the D3 gene in the SL regulatory pathway for 
secondary LR formation.

Accumulating evidence indicates that auxin regulates LR 
formation in plants (Goh et al., 2012; Xuan et al., 2016). Polar 
auxin transport is essential for LR formation, and an auxin-
transport-independent pathway is involved in changes in LR 
formation in plants (Swarup et al., 2005; De Smet et al., 2007; 
Okumura et al., 2013; Inahashia et al., 2018). However, the 
mechanisms by which auxin regulates secondary LR formation 
are poorly understood. In this study, DR5::GUS levels were 
higher in the roots of the d mutants than in the WT plants 
(Figures 3A, B), consistent with a report by Sun et al. (2014). 
These results imply that the higher auxin levels in the roots of 
d mutants are not the reason for secondary LR formation. In 
addition, lines overexpressing PIN2 showed increased auxin 
transport from shoots to roots in rice (Chen et al., 2012). 
Similar to the d mutants, higher DR5::GUS levels were found 

FIgURe 3 | DR5::GUS activity and secondary lateral root (LR) primordia number in rice plants. Seedlings were grown in a hydroponic media with or without 
1-naphthylacetic acid for 21 days. (A, B) DR5::GUS activity in LR region. (C) Secondary LR primordia number. Bar = 1 mm. Data are means ± SE. *P < 0.05 
comparing the WT and other rice plants. The red arrow indicates the secondary LR primordia. All experiments included three independent biological replicates.
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FIgURe 4 | The morphology and DR5::GUS activity in wild-type (WT, Nipponbare) and overexpression of OsPIN2 lines (OE1/OE2). Seedlings were grown in a 
hydroponic media for 21 days. (A) The morphology of the rice plants. (B–e) The morphology of roots. (F, g) DR5::GUS activity in lateral root region. Bar = 1 mm. 
Data are means ± SE. *P < 0.05 comparing the WT and other rice plants. All experiments included three independent biological replicates.

FIgURe 5 | Lateral root (LR) region in wild-type (WT, Nipponbare) and overexpression of OsPIN2 lines (OE1/OE2). Seedlings were grown in a hydroponic 
media for 21 days. (A) Primary LR density. (B) The morphology of LRs region. Data are means ± SE. All experiments included three independent 
biological replicates.
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in roots in the OE lines relative to the WT plants (Figures 
4F, G). However, no secondary LRs were induced in the OE 
lines (Figure 5B). These results further imply that higher 
auxin levels in roots may not be the reason for secondary LR 
formation in rice.

It has been suggested that SLs modulate auxin transport, 
thereby regulating primary LR growth (Ruyter-Spira et al., 
2011; Sun et al., 2014). Polar auxin transport is mediated 
primarily by PIN genes. In Arabidopsis, Ruyter-Spira et al. 
(2011) suggested that SLs modulate local auxin levels and that 
the net result of SL action is dependent on the auxin status of 
the plant. Application of GR24 inhibited primary LR formation 
by decreasing auxin transport in roots, with the involvement 
of PIN protein (Ruyter-Spira et al., 2011; Sun et al., 2014). 
Experiments examining [3H]IAA transport and DR5::GUS 
activity confirmed that application of GR24 markedly reduced 
auxin transport, indicating that PINs are involved in the auxin 
transport from the shoots to the roots that is downregulated 
by SLs in rice (Sun et al., 2014; Sun et  al.,  2018b). In this 
study, similar SL levels were recorded in WT plants and in 
lines overexpressing OsPIN2 (Supplementary Figure 2). 
Although higher auxin levels were found in OE lines than in 
WT plants (Chen et al., 2012; Figures 4F, G), no secondary 
LRs were induced in the OE lines (Figure  5). Application of 
NPA significantly decreased DR5::GUS levels in the primary 
LR region and the density of primary LRs in the WT plants 
and in the d mutants (Figures 6A, B). However, the numbers 
of secondary LRs were reduced in the d mutants under NPA 
treatment (Figures 7A, B). Treatment with NAA restored the 

FIgURe 6 | DR5::GUS activity and lateral root (LR) region in wild-type (WT, 
Shiokari) and d mutants. Seedlings were grown in a hydroponic media with or 
without NPA for 21 days. (A), DR5::GUS activity in LR region. (B) Primary LR 
density. Bar = 1 mm. Data are means ± SE. *P < 0.05 comparing the WT and 
other rice plants. All experiments included three independent biological replicates.

FIgURe 7 | The secondary lateral root (LR) number in wild-type (WT, Shiokari) and d mutants. Seedlings were grown in a hydroponic media in addition to NPA, 
NAA, NPA+NAA, NAA+GR24, and NPA+NAA+GR24 for 21 days. (A–F) Secondary lateral root number. Data are means ± SE. *P < 0.05 comparing the WT and 
other rice plants. All experiments included three independent biological replicates.
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effect of NPA on the numbers of secondary LRs in the d mutants 
(Figure 7C). These results imply that auxin is involved in the 
development of secondary LRs. The effect of NAA on secondary 
LR development was eliminated in the d10 mutants, but not in 
the d3 mutants, by application of GR24 (Figure 7E). And a 
model for these signaling pathways is shown in Supplementary 
Figure 3. These results further demonstrate that secondary LR 
formation is inhibited by SLs via the D3 response pathway, and 
the importance of auxin for secondary LR formation.
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