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Anthocyanins are distributed ubiquitously to terrestrial plants and chalcone isomerase
(CHI) catalyzes the stereospecific isomerization of chalcones – a committed step in the
anthocyanin biosynthesis pathway. In this study, one gene encoding CHI was isolated
from Ophiorrhiza japonica and designated as OjCHI. Multiple sequence alignments and
phylogenetic analysis revealed that OjCHI had the conserved CHI active site residues
and was classified into type I CHI group. In order to better understand the mechanisms
of anthocyanin synthesis in O. japonica, integrative analysis between metabolites and
OjCHI expression was conducted. The results showed OjCHI expression matched the
accumulation patterns of anthocyanins not only in different tissues but also during the
flower developmental stages, suggesting the potential roles of OjCHI in the biosynthesis
of anthocyanin. Then biochemical analysis indicated that recombinant OjCHI protein
exhibited a typical type I CHI activity which catalyzed the production of naringenin from
naringenin chalcone. Moreover, expressing OjCHI in Arabidopsis tt5 mutant restored the
anthocyanins and flavonols phenotype of hypocotyl, cotyledon and seed coat, indicating
its function as a chalcone isomerase in vivo. In summary, our findings reveal the in vitro as
well as in vivo functions of OjCHI and provide a resource to understand the mechanism
of anthocyanin biosynthesis in O. japonica.

Keywords: Ophiorrhiza japonica, anthocyanin, chalcone isomerase, transcriptional activity, characterization

INTRODUCTION

Anthocyanins, a kind of natural pigment, are widespread in plants and predominantly found in
flowers, fruits, vegetables, cereals as well as teas (Pervaiz et al., 2017). Among many pigments
in nature, anthocyanins assume a critical role because they can confer abundant colors (orange,
pink, red, blue, and purple) to different organs of plants such as root, stem, leaf, flower, fruit, and
tubers (Grotewold, 2006). Apart from color features, recently, anthocyanins have attracted more
interest due to their beneficial effects on human health and plant physiological processes (Kong
et al., 2003; Ferreyra et al., 2012). Researches with animals and clinical studies have demonstrated
that anthocyanins have an effect in reducing the risk of coronary diseases, stroke and cancer
(Thibado et al., 2018). Meanwhile, they also have the biological function for attracting pollinators
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and the potential to protect plants from getting infected
by pathogenic microorganisms (Bradshaw and Schemske,
2003; Konczak and Zhang, 2004). Overall, anthocyanins are
interesting secondary plant metabolites as they can be used
as plant/food colorants, warning signals, antifeedants, health-
promoting agent and so on.

The biosynthesis of anthocyanins is branched from the
phenylpropanoid pathway through the catalysis of various
enzymes which are of considerable potential in biotechnological
applications (Park et al., 2018). Of these enzymes, chalcone
isomerase (CHI, also regarded as chalcone flavonone isomerase)
is the second key enzyme in anthocyanin biosynthetic pathway
that catalyzes the stereospecific and intramolecular isomerization
of naringenin chalcone into its corresponding (2S)-flavanones
(Figure 1). Although, such an isomerization reaction can conduct
spontaneously, the turnover rate is increased 107 fold when
CHI participated (Cheng et al., 2018). CHIs in plants can be
divided into four types (type I to type IV) depending on their
phylogenetic relationships (Ralston et al., 2005). Type I and
type II proteins are known as the bona fide catalysts with
representative CHI enzymatic activity. Type I CHIs are found in
most vascular plants and responsible for the formation of general
flavonoids (Jez et al., 2000, 2002); while comparing to Type I
CHIs, type II CHIs have broader substrate acceptability, besides
utilizing naringenin chalcone as substrate, they additionally
convert isoliquiritigenin to isoflavonoid which appear to be the
specific metabolites in legume (Dixon et al., 1988; Ralston et al.,
2005). Unlike type I and type II CHI proteins, both type III
and type IV CHIs do not exhibit chalcone cyclization activity
and are therefore termed as CHI-like proteins (CHIL). Type III
CHIs, widely distributed in land plants and green algae, have been
demonstrated to be fatty acid-binding proteins that influence the
synthesis and storage of fatty acid in plants (Ngaki et al., 2012).
However, the function of type IV CHIs which completely lose the

FIGURE 1 | The biosynthesis pathways of anthocyanin pigments in most
plants. The proposed pathway in Ophiorrhiza japonica is marked with dotted
lines.

bona fide CHI activity remains not well known, though recent
studies have showed that this type CHI-fold proteins might serve
as the enhancer of flower coloration and flavonoid production in
diverse plant species (Morita et al., 2014). In fact, all CHIs have
a similar backbone conformation, and type III CHIs are thought
to be the common ancestor of bona fide CHIs (Jez et al., 2000;
Ngaki et al., 2012).

To date, genes encoding CHI have been cloned and identified
from many plants, including D. caryophyllus (Forkmann and
Dangelmayr, 1980), P. hybrida (Van et al., 1988), P. vulgaris
(Blyden et al., 1991), V. vinifera (Sparvoli et al., 1994),
P. lobata (Terai et al., 1996), M. sativa (Jez et al., 2000),
L. japonicus (Shimada et al., 2003), O. sativa (Druka et al.,
2003), G. max (Ralston et al., 2005), S. medusa (Li et al., 2006),
G. biloba (Cheng et al., 2011), I. batatas (Guo et al., 2015),
P. lactiflora (Wu et al., 2017), and C. nobile (Wang et al.,
2018). Furthermore, their regulatory roles in the biosynthesis
of anthocyanins have also been functionally characterized. For
example, overexpressing a peony CHI gene successfully increased
flavonols and flavones content, and reduced the anthocyanin
content as well as flower color intensity of transgenic tobacco
(Zhou et al., 2014). Similarly, heterologous expression of onion
CHI in DR-expressing tomatoes generated transgenic fruits with
400- and 260-fold increases levels of anthocyanins in the peel
and flesh (Wansang and Jiarui, 2016). These findings reveal the
regulatory effects of CHI genes on anthocyanins and suggest
that it is possible to obtain desirable agronomic traits through
manipulating this enzyme.

Ophiorrhiza japonica is a perennial herbal plant belonging
to Rubiaceae. This herb is a precious Chinese medicinal plant,
which can produce flavonoid, camptothecin and other medicinal
ingredients. It has a wide distribution in China and is commonly
used in the treatment of ulcers, poisonous wounds, leprosy,
rheumatism and so on. Recently, anthocyanin biosynthesis and
its related genes have been well studied in various plants (Petroni
and Tonelli, 2011). However, the accumulation and biosynthesis
of anthocyanin in O. japonica is still unknown. In the present
study, we perform the first comprehensive study on the molecular
characterization of CHI and anthocyanin analyses in O. japonica.
Firstly, the chemically characterization of anthocyanins as well
as their content in different tissues were measured. Then the
OjCHI expression and its functional characterization in relation
to anthocyanin biosynthesis were well investigated. Overall, we
identify one chalcone isomerase-fold protein, which is critical
for anthocyanin production. And the results presented in this
work not only further our understanding of the molecular
mechanism of the anthocyanin biosynthesis in O. japonica,
but also open up the possibility of synthesizing high-value
plant anthocyanins and their derivatives using biochemical and
biotechnological methods.

MATERIALS AND METHODS

Plant Materials
Ophiorrhiza japonica materials used in this paper were collected
on the mountain in Shibing, Guizhou Province. Flowers of
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O. japonica at different developmental stages as well as roots,
stems, leaves, scapes, and calyxes were obtained in October,
2017, then all collected tissues were flash frozen by liquid
nitrogen and kept at −80◦C for later analyses. CHI mutants
(tt5, SALK_034145) obtained from the Arabidopsis Biological
Resource Center were in the Columbia ecotype background and
grown under the conditions as described before (Sun et al., 2016).
For Anthocyanin and RT-PCR analysis, 7-day-old Arabidopsis
seedlings cultured on anthocyanin gene induction media (half-
strength MS medium supplemented 3% sucrose) were harvested
and stored at −80◦C.

Measurement of Anthocyanin and
Flavonol Extracted From O. japonica
The composition and contents of anthocyanin and flavonol
were determined by high-performance liquid chromatography
(HPLC). For extraction, 0.1 g flour of each sample was
homogenized in 1 ml extraction solvent (H2O:MeOH:HCl; v/v/v,
75/24/1) for 12 h in darkness at 4◦C. Then the extracts attained
were centrifuged at 12,000 rpm for 10 min, and the supernatant
was passed through a 0.22 µm reinforced nylon membrane
filter before subjecting to HPLC identification. The Shimadzu
HPLC system with API 2000 mass spectrometer was used for
qualitative analysis according to the protocol as described by
Sun et al. (2015). Anthocyanin and flavonol contents were
calculated based on the external standard curve calibration
of cyanidin 3-O-glucoside and quercetin-3-O-glucoside

standards (Sigma-Aldrich, St. Louis, MO, United States)
(Fanali et al., 2011). Each sample used for HPLC measurements
was determined with three biological replicates.

Cloning of OjCHI and Phylogenetic
Analysis
Based on the transcriptome data of different tissues of O. japonica
measured before, a total of five sequences of the CHI gene
from O. japonica were identified through blastn alignment
with reference genes of proximal species and Arabidopsis CHI
protein sequence. Then comparative analysis was conducted by
using the following database: national center for biotechnology
information (NCBI) and the results indicated that the sequence
of unigene (OjCHI) (Unigene35425_All) showed the highest
similarity to CHI genes from other plants. Therefore, the
specific primers (OjCHIF1 and OjCHIR1) were designed from
sequence information of OjCHI gene. To isolate the total
RNA, flowers of O. japonica at stage 4 were ground into
powder and extracted by RNA pure Plant Kit (CWBIO,
China). Then the cDNA was synthesized from 1.0 µg total
RNA using EasyScript One-Step gDNA Removal and cDNA
Synthesis SuperMix (TransGen, China). Subsequently, for
obtaining the full-length sequence of OjCHI, its complete open
reading frame (ORF) generated by RT-PCR was cloned into
pMD18-T vector and sequenced by Sangon Biotech (Shanghai,
China). All the primers used in this work are listed in
Supplementary Table S1.

FIGURE 2 | Sequence alignment of OjCHI with AtCHI (Arabidopsis thaliana, P41088) and MsCHI (Medicago sativa, P28012). Residues for binding (2S)-naringenin
are shown with green boxes, and those for hydrogen bond network in active site are shown with blue triangles. The red star identifies residues postulated to
determine substrate preference for naringenin chalcone and isoliquiritigenin.
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Quantitative RT-PCR Analysis
Total RNA isolation and cDNA synthesis were performed as
described above. qRT-PCR primers specific for OjCHI and actin
were designed by using IDT1 and listed in Supplementary
Table S1. Quantitative RT-PCR analyses were carried out on
ABI 7500 System using TransStart R© Green qPCR SuperMix
(TRANSGEN, China). Each PCR reaction in 20 µl volume
included 10 µl 2× TransStart R© Green qPCR SuperMix, 0.8 µl
forward and reverse primers, 1 µl template cDNA and 9.2 µl
Nuclease-free water. To confirm purity of the PCR products,
melting curve analysis and sequencing was employed. The
2−11CT method was used for OjCHI expression analysis through
normalizing to the actin gene from O. japonica (Livak and
Schmittgen, 2001). Three independent biological replicates were
conducted for each experiment sample.

Expression and Purification of
Recombinant OjCHI
The open reading frame of OjCHI was amplified using the
primers (OjCHIF3 and OjCHIR3) in Supplementary Table S1
and subcloned into the pET-32a expression vector. After
verification by sequencing, the recombinant construct as well as
the empty vector were transformed into Escherichia coli strain
BL21, respectively. The overnight bacterial cultures obtained
from a single transgenic colony were diluted into LB medium
and grown to OD600 = 0.6, at which point 0.35 mM isopropyl
β-d-thiogalactoside was added to induce recombinant protein
expression at 30◦C for 10 h. Then the cells were harvested
through centrifugation at 6,000 rpm for 10 min and disrupted
by sonication on ice. The His6-tagged recombinant proteins were
purified using Ni-NTA pre-packed column (TransGen, China)
following the manufacturer’s recommendations and its purity was
finally tested by SDS-PAGE.

Enzymatic Activity Assay
Chalcone isomerase activity for production of naringenin from
naringenin chalcone was performed in a total volume of 50 µL
containing 50 mM potassium phosphate (pH 7.5), 50 µM
substrate and 10 µg purified recombinant OjCHI protein. Soluble
protein extract from induced BL21 containing empty pET-32a
vector was used as a control. After incubating at 30◦C for
5 min, the reaction mixtures were terminated and extracted twice
with 100 µL ethyl acetate, and centrifuged at 12,000 rpm for
10 min. Subsequently, the supernatant was subjected to high-
performance liquid chromatography analysis using a Shimadzu
HPLC system. The mobile phases were composed of 50%
methanol, 48% water, and 2% acetic acid at a flow rate of 0.8 ml
per minute. The enzymatic products were detected at 304 nm
with a column temperature of 40◦C.

Plant Transformation and Metabolite
Analysis of Transgenic Seedlings
The cDNA of OjCHI was amplified by PCR with primers
OjCHIF4 and OjCHIR4 (Supplementary Table S1), and cloned

1https://sg.idtdna.com/primerquest/Home/Index

into the binary vector pBI121. The resulting construct containing
OjCHI was introduced into A. tumefaciens strain GV3101
through freeze-thaw method, after that, the standard flower dip
protocol was used for Arabidopsis tt5 mutant transformation
(Clough and Bent, 1998). T2 generation seeds and their
seedlings grown on anthocyanin gene induction media were
selected for phenotypic investigations and metabolite analysis.
To confirm OjCHI expression, RT-PCR analysis was performed

FIGURE 3 | Phylogenetic analyses of the deduced amino acids of OjCHI and
CHIs from different plant species. GenBank accession numbers are as
follows: AtCHI (Arabidopsis thaliana, P41088), MsCHI (Medicago sativa,
P28012), PsCHI (Paeonia suffruticosa, ADK55061), ZmCHI (Zea mays,
CAA80441), VvCHI (Vitis vinifera, P51117), CsCHI (Citrus sinensis,
BAA36552), GmCHI2 (Glycine max, AY595415), LjCHI2 (Lotus japonicus,
Q8H0G1), GmCHI1B1 (Glycine max, AY595414), LjCHI (Lotus japonicus,
AJ548840), PvCHI (Phaseolus vulgaris, P14298), GmCHI1A (Glycine max,
AY595413), PlCHI (Pueraria lobata, Q43056), PpCHILa (Physcomitrella
patens, XP_001773128), PpCHILb (Physcomitrella patens, XP_001769093),
VvCHIL (Vitis vinifera, XP_002280158), AtCHIL (Arabidopsis thaliana,
NP_568154), GmCHI4 (Glycine max, AY595417), OsCHIL (Oryza sativa,
NP_001065587), ZmCHIL (Zea mays, NP_001151452), GmCHI3 (Glycine
max, AY595416), PhCHIA (Petunia hybrida, AAF60296), PhCHIB (Petunia
hybrida, CAA32730.1), AcCHI (Allium cepa, AY700850), ChCHI (Gossypium
hirsutum, ABM64798), DcCHI (Dianthus caryophyllus, Q43754), AtCHI3
(Arabidopsis thaliana, AY084729), FaCHI (Fragaria ananassa, Q4AE11), PtCHI
(Populus trichocarpa, XP_002315258), PcCHI (Pyrus communis, A5HBK6),
and LeCHI3 (Lycopersicon esculentum, AY348871).
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with Arabidopsis actin-1 gene as internal reference (Penninckx
et al., 1996). Qualitative and quantitative analysis of anthocyanins
and flavonols in transgenic Arabidopsis was conducted using the
methods described above.

RESULTS

Characterization of CHI Gene From
O. japonica
The ORF of CHI from O. japonica was successfully isolated
and designated as OjCHI, which encodes a polypeptide of
233 amino acids long, with a calculated isoelectric point of
4.95 and a predicted molecular mass of 25.018 kDa. Sequence
alignment revealed that the deduced polypeptide sequences of
OjCHI was aligned well with the established type I and type II
CHIs of Arabidopsis and Medicago sativa. The overall identities
of OjCHI to Arabidopsis and Medicago sativa are 56.91 and
51.07%, respectively, at the amino acid level. Furthermore, OjCHI
also shares many conserved residues with AtCHI and MsCHI.
For example, the active site residues proved in MsCHI for
binding (2S)-naringenin are conserved in OjCHI. Importantly,

the residues proposed to determine substrate preference in type
I CHIs (AtCHI1: Ser211 and Ile212; OjCHI1:Ser193 and Ile194)
are also presented in OjCHI (Figure 2). These results suggest
that OjCHI is the member of CHI family. Phylogenetic analysis
was then conducted based on CHIs from different plant species
using the neighbor-joining method. As shown in Figure 3, the
established tree consisted of four branches, and OjCHI was
classified into type I CHI family, which includes AtCHI/tt5
catalyzing the stereospecific cyclization of naringenin chalcones.

Anthocyanins Analysis
To understand the dynamic change trends of anthocyanin
in O. japonica, anthocyanin in different tissues (flowers,
roots, stems, leaves, scapes, calyxes) and flowers at different
developmental stages were identified and quantified (Figure 4A).
Based on HPLC results, a total of four kinds of anthocyanin (A1–
A4) were detected in O. japonica, and these anthocyanins were
then identified as cyanidin 3-galactoside, peonidin derivatives,
cyanidin 3-rutinoside, and petunidin derivatives according to the
MS analysis (Figures 4B,C). Later, quantitative analysis showed
that the contents of cyanidin 3-rutinoside (A3) were the most
abundant anthocyanin all the times (accounting for 60.9–100%

FIGURE 4 | Anthocyanin component analyses in O. japonica. (A) The phenotypes of different samples. Fl, flowers; Ro, roots; St, stems; Le, leaves; Sc, scapes; Ca,
calyxes. One to four, represent the flowers of different developmental stages. (B) High performance liquid chromatography (HPLC) profiles of anthocyanins in
calyxes. (C) The anthocyanin profiles in acidic MeOH-H2O extracts of the O. japonica.
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of the total anthocyanin), and its highest accumulation level
was found in calyxes and stage 1 (Supplementary Figure S1).
However, among the basic anthocyanins, pelargonidin glycosides
were not detected.

The Relationship Between OjCHI
Expression and Accumulation of
Anthocyanins in O. japonica
The transcription levels of OjCHI and the amount of total
anthocyanins accumulation were investigated in different tissues
and flowers at four developmental stages. Transcripts of OjCHI
were detected in all tested tissues, but its expression was tissue
specific. As shown in Figure 5A, OjCHI expressed dramatically
higher in calyxes than in other tissues and exhibited almost
equal expression in roots and leaves. Furthermore, the mRNA
levels of OjCHI were flower development-dependent, gradually
declined during flower development and showed maximum
expressions at stage 1 (Figure 5B). In a similar way, the total
contents of anthocyanins displayed more consistency to the
OjCHI expression not only in different tissues but also during
the whole flower developmental stages. As seen in Figure 5C,
anthocyanins were also detected abundantly in calyxes, and
during the flower development, its levels continued to decrease
gradually from stage 1 to a minimum at stage 4 (Figure 5D).

Taken together, these results suggest that the expression of OjCHI
appears to be one of the key factors determining anthocyanin
accumulation pattern in O. japonica.

Functional Analysis of Recombinant
OjCHI in vitro
To examine if OjCHI has isomerase activity under in vitro
conditions, its coding sequence was cloned into pET-32a, an
expression vector with a His-tag, yielding pET32a-OjCHI. Based
on induction by IPTG at low temperature, the recombinant
OjCHI was expressed as a major soluble protein. Subsequently,
OjCHI protein was purified by Nickel-NTA agarose and the size
was in agreement with predication (Figure 6A). OjCHI catalytic
activities was then assayed with naringenin chalcone as substrate,
5 min later, all the naringenin chalcone was catalyzed to a product
with a similar retention time to naringenin (5-hydroxychalcone)
as observed by HPLC (Figures 6B,C). In contrast, the control
reaction, in which the protein from E. coli carrying the pET-32a
vector was also incubated with naringenin chalcone, but showed
residual substrate and less quantity of spontaneous product,
implying a low level non-enzymatic conversion to naringenin
(Figure 6D). Thus, these experimental data indicate that OjCHI
is capable of metabolizing naringenin chalcone to naringenin and
shows a typical type I CHI-cyclization activity.

FIGURE 5 | Gene expression of OjCHI and anthocyanin accumulation in O. japonica. (A,B) Relative transcript levels of OjCHI in different tissues and flowers at
different developmental stages. (C,D) Quantitative analyses of total anthocyanins in different tissues and flowers at different developmental stages. Data represent
means ± SD of three biological replicates.
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FIGURE 6 | In vitro enzymatic assays of the recombinant OjCHI. The assays were conducted with naringenin chalcone as substrate. (A) Expression of OjCHI in
E. coli. (1) Maker (2) Total soluble protein from E. coli expressing pET-32a (+) vector (3) Total soluble protein from E. coli expressing OjCHI prior to induction with IPTG
(4) 10 h after induction (5) Purified OjCHI. (B) Naringenin chalcone standard. (C) HPLC profiles of the reaction products of OjCHI. (D) The control (empty pET-32a
vector).

Complementation of the tt5 Mutant With
OjCHI
To validate the OjCHI function during flavonoid biosynthesis,
the OjCHI gene was overexpressed in Arabidopsis tt5 mutant
under the control of CaMV 35S promoter. The tt5 mutant
failed to accumulate condensed tannins which confer a yellow
color on their testas, and the synthesis of anthocyanin pigments
in tt5 was also blocked in their cotyledon and hypocotyls
caused by the mutation in CHI. Altogether, ten independent
kanamycin-resistant transgenic lines were obtained. As in the
wild type, seeds from T2 transgenic plants expressing OjCHI
were brown, and the cotyledons as well as hypocotyls of the
seedlings showed restoration of purple coloration (Figure 7A).
Furthermore, to confirm the overexpression of OjCHI, RT-
PCR was performed, and the results revealed that the OjCHI
gene was successfully expressed (Figure 7B). Quantification
of anthocyanin and flavonol indicated that anthocyanin and
flavonol levels of transgenic seedlings were significantly higher
than those of tt5, which accounted for 89.3–92.1% and 73.9–
75.2% of the total anthocyanin and flavonol content in wild type,
respectively (Figures 7C,D).

Additionally, for examining the change of anthocyanin and
flavonol in transgenic seedlings in more detail, HPLC analysis
was conducted, and the structure of anthocyanin and flavonol

was further confirmed by LC-MS/MS (Supplementary Table S2).
As shown in Figure 8, tt5 mutant had an untraceable and
reduced peak area for the peaks of anthocyanin and flavonol
comparing with the wild type control. As expected, transgenic
seedlings expressing OjCHI displayed restoration of these peaks,
though the content of anthocyanin and flavonol was lower
than wild type Arabidopsis. Overall, the flavonoid analysis data
demonstrate that the OjCHI gene could encode a functional CHI,
which is fully functional for the biosynthesis of anthocyanin and
flavonol in vivo.

DISCUSSION

Anthocyanins, the main products of flavonoid pathway, are
ubiquitous in many plants, having a strong impact on their
pigmentation, taste and resistance. CHIs are known as the
key enzymes which exhibit vital regulatory function during
the anthocyanin biosynthesis (Grotewold, 2006; Zhou et al.,
2014). Given the importance of this enzyme, comprehensive
study of CHI involved in flavonoid biosynthesis has become
one of the hot spots in plant secondary metabolism research.
In present work, the full-length cDNA of O. japonica CHI
was successfully cloned, and its amino acid sequence displayed
high identity to CHI from other plants, indicating that OjCHI
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FIGURE 7 | Complementation of CHI function in Arabidopsis tt5 mutant. (A) Phenotype of wild type (WT), tt5 mutant and tt5 35S: OjCHI lines in their seedlings and
testas. (B) Expressional analyses of the OjCHI gene by RT-PCR in WT, tt5 mutant and tt5 35S: OjCHI lines. (C,D) Contents of anthocyanins and flavonols in
Arabidopsis seedlings. Data correspond to means of three biological replicates.

is one of the members of CHI family. Structure-function
analysis of MsCHI revealed that several critical amino acid
residues that important for CHI catalytic action were conserved
in all plants (Jez et al., 2000). And the kinds of amino
acid residues at position 190 and 191 were proposed to be
important in determining substrate preference and classification
of CHI. Previous study revealed that amino acid residues at
position 190 and 191 of type II CHI were Thr and Met,
while type I CHI replaced them with Ser and Ile (Forkmann
and Dangelmayr, 1980; Jez et al., 2000). After aligning the
amino acid sequences of OjCHI with typical type I (AtCHI)
and type II (MsCHI) CHI, we found OjCHI had all conserved
amino acid residues and contained Ser and Ile at position 190
and 191, respectively (Figure 2). These results strongly suggest
that OjCHI might be a type I CHI which is essential for
anthocyanin and other flavonoid compounds biosynthesis in
plants. Meanwhile, phylogenetic analysis of OjCHI (Figure 3)
also further hints its function as type I CHI for anthocyanin
synthesis (Winkel-Shirley, 2001).

Consistent with the results from sequences comparison and
phylogenetic analysis, biochemical assays of OjCHI showed that
nearly all the substrate (naringenin chalcone) was catalyzed into
a product with its retention time identical to that of naringenin
(Figure 6). This reaction profile is similar to that of GbCHI in
Ginkgo biloba and confirms OjCHI indeed belong to the type
I CHI which is necessary for the production of anthocyanin
(Cheng et al., 2011). To best of our knowledge, the bona fide
CHIs are divided into two groups (type I and type II) on the
basis of their substrate specificity and catalytic activity, moreover,
the type II CHI proteins are regarded as “legume-specific” CHIs
(Ralston et al., 2005). But recently, research of Cheng et al.
corroborated that the type II CHI proteins also emerged in
liverwort as well as other ancient land plants species, and the type
I CHI proteins with Ser and Ile/Met at position 190 and 191 from
higher plants were likely evolved from the primitive bona fide
type II CHIs (Cheng et al., 2018). Therefore, it will be interesting
and necessary to perform more detailed analysis about CHIs
in O. japonica through using more advanced characterization
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FIGURE 8 | HPLC profiles of anthocyanins and flavonols in Arabidopsis seedlings. (A–D) Absorbance at 520 nm for analysis of anthocyanins. (E–H) Absorbance at
360 nm for analysis of flavonols. (A,E) HPLC chromatograms of the samples from seedlings of WT. (B,F) HPLC chromatograms of the samples from seedlings of tt5
mutant. (C,G) HPLC chromatograms of the samples from seedlings of tt5 35S: OjCHI 2. (D,H) HPLC chromatograms of the samples from seedlings of tt5 35S:
OjCHI 5.

techniques to deepen our understanding on the CHIs evolution
and flavonoid metabolism.

Anthocyanin qualitative analysis indicated that four kinds
of anthocyanins had been detected in O. japonica but
lacked pelargonidin derivatives – based on this, the proposed
anthocyanin pathway was listed in Figure 1. According to
previous reports, this interruption of anthocyanin pathway was
ascribed to the substrate specificities of dihydroflavonol 4-
reductase (DFR). Actually, studies of DFRs from Petunia hybrida
and Angelonia angustifolia found, due to the DFR substrate
specificities, both plants unable to synthesize pelargonidin-based
anthocyanins (Mol et al., 1998; Gosch et al., 2014). On the other
hand, it is likely that competitive advantage of FLS compared
with DFR in dihydrokaempferol (DHK) utilization may be
another cause for the deficiency of pelargonidin derivatives
(Gu et al., 2018).

Expression levels of CHIs have been investigated in various
plants, and their transcripts sometimes are congruent with
the accumulation of anthocyanins in target tissues (Shoeva
et al., 2014). However, the transcript expression studies of CHI
gene in O. japonica have not been reported yet. Therefore,

transcript analyses of OjCHI in different tissues were conducted.
As shown in Figure 5A, OjCHI was actively transcribed in
all organs examined, and showed relatively low expression
in the root, which is similar to that of CHI in herbaceous
peony (Zhao et al., 2012). Previously, it was reported that
expressions of leguminous CHI genes were always strong in
root, because they would act as signaling molecules to play
crucial roles during root-nodule development (Lambais and
Mehdy, 1993; Przysiecka et al., 2015). So, the opposite low
expression of OjCHI in root suggests that OjCHI is not a
leguminous CHI and probably responsible for the formation
of anthocyanin and proanthocyanidin. Correspondingly, we
did note OjCHI transcripts in different tissues were strongly
consistent with the accumulation of anthocyanin, which further
verified its function in anthocyanin biosynthesis (Figure 5C).
Furthermore, transcript profiles of OjCHI gene during flower
developmental stages were also performed (Figure 5B). At
different stages of flower development, it was found that OjCHI
showed higher expression in the earlier bud than the fully
opened flowers which matched the accumulation pattern of
anthocyanin (Figure 5D), consistently, this expression pattern
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was also observed in Gentiana triflora (Nakatsuka et al., 2005).
Transcript accumulation of CHIs in flowers has already been
reported in tulips, Chrysanthemum, as well as petunia, and
the studies demonstrate that different expression patterns of
CHIs are a determinant for petal color variations (Chen et al.,
2012; Yuan et al., 2013; Akhar et al., 2016). For instance, high
level expression of CHI gene conferred red petals in petunia,
while inhibiting its expression made tobacco petal coloration
turn to yellow (Nishihara et al., 2005; Akhar et al., 2016).
Thus, these results suggest that transcript expression of OjCHI
may regulate the accumulation of pigment during O. japonica
flower development.

Functionality of OjCHI was further investigated through
its over-expression in Arabidopsis tt5 mutant. The results
present in Figure 7 showed that OjCHI could recover the color
phenotypes of seed, cotyledons and hypocotyls of tt5 mutant
and rescue the deficiency of flavonoid accumulation, which
demonstrated the capacity of OjCHI in catalyzing the cyclization
of endogenous chalcone to produce flavonols, proanthocyanidins
and anthocyanins. Likewise, such in vivo activity of CHI gene
from alfalfa and Ipomoea batatas also obtained the same results,
suggesting that CHI proteins involved in flavonoid metabolism
are functionally exchangeable among distantly related plants
(Liu et al., 2002; Guo et al., 2015). Meanwhile, these findings
unambiguously indicate the value of Arabidopsis mutants as
a useful and convenient system for assaying the function of
uncharacterized genes from other plants. But unexpectedly, one
previous study reported that mutant maize CHI (having 3–5%
activity compared to wild-type CHI) could also complement
the phenotypes of tt5 mutant, and this raise the possibility
that CHI may have functions other than catalyzing naringenin
chalcone, perhaps serving as transporters and/or chaperons
during flavonoid biosynthesis, or functioning as a structural
scaffold for enzymes in flavonoid pathway (Dong et al., 2001;
Ralston et al., 2005).

CONCLUSION

In conclusion, in this study we have functionally identified
one CHI gene, OjCHI, which plays a significant role in
anthocyanin biosynthesis in O. japonica. Integrative expression
analysis indicated that OjCHI had tissue-specific expression
and its transcription pattern coincided with the change of

anthocyanin accumulation not only in different tissues but also
in developing flowers. In vitro enzyme assays of recombinant
OjCHI confirmed its predicted function in the biosynthesis
of anthocyanin. Moreover, the in vivo genetic analysis of
OjCHI in Arabidopsis tt5 mutant further proved its role
in proanthocyanidin and anthocyanin biosynthesis. Therefore,
the findings from this article will advance our understanding
of the molecular mechanisms of anthocyanin biosynthesis in
O. japonica, and also provide a basis for flavonoid manipulation
studies through using molecular approaches in the future.
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