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Plant lifecycle starts from seed germination, which is regulated by various environmental
cues and endogenous hormones. Light promotes seed germination mainly by
phytochrome B (PHYB) during the initial phase of imbibition, which involves genome-
wide light-responsive transcription changes. Recent studies indicated an involvement
of multiple epigenetic factors in the control of seed germination. However, few
studies have been reported about the role of a histone methyltransferase in light-
mediated seed germination process. Here, we identified SUVH5, a histone H3 lysine
9 methyltransferase, as a positive regulator in light-mediated seed germination in
Arabidopsis. Loss of function of SUVH5 leads to decreased PHYB-dependent seed
germination. RNA-sequencing analysis displayed that SUVH5 regulates 24.6% of
light-responsive transcriptome in imbibed seeds, which mainly related to hormonal
signaling pathways and developmental processes. Furthermore, SUVH5 represses the
transcription of ABA biosynthesis and signal transduction-related genes, as well as a
family of DELAY OF GERMINATION (DOG) genes via dimethylation of histone H3 at
lysine 9 (H3K9me2) in imbibed seeds. Taken together, our findings revealed that SUVH5
is a novel positive regulator of light-mediated seed germination in Arabidopsis.

Keywords: histone methylation, SUVH5, histone methyltransferase, seed germination, Arabidopsis

INTRODUCTION

Plant life cycle initiates from seed germination, which is of both economic and ecologic importance
(Rajjou et al., 2012). Arabidopsis seeds consist of embryo, single cell endosperm and testa
from inside to outside (Finch-Savage and Leubner-Metzger, 2006). Arabidopsis seed germination
includes two-step process, which is testa rupture followed by endosperm rupture (Yamaguchi,
2008; Weitbrecht et al., 2011). It is well known that seed germination is regulated by endogenous
and exogenous factors, such as light, temperature, moisture, oxygen, nutrients, and multiple plant
hormones (Finch-Savage and Leubner-Metzger, 2006; De Wit et al., 2016; Shu et al., 2016).
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Light is a key environmental factor in the control of seed
germination. Plants perceive different parts of the light spectrum
by distinct sets of photoreceptors, such as phytochromes,
cryptochromes, phototropins, ZEITLUPE family, and UVR8
(Briggs and Christie, 2002; Chaves et al., 2011; Rizzini et al.,
2011; Wang and Wang, 2015). Phytochromes are red and far-
red light photoreceptors that play critical role in regulating
seed germination in various plants species (Borthwick et al.,
1952; Shinomura et al., 1994, 1996). Dark-imbibed lettuce
seeds (Lactuca sativa L.) irradiated with red light (R) will
induce germination, whereas subsequent exposure to far-red
light (FR) can reverse this process (Borthwick et al., 1952). The
light signaling mechanism relies on conformational conversion
between inactive state (Pr) and active state (Pfr), which are
photo-convertible isoforms of phytochromes (De Wit et al.,
2016). In Arabidopsis, there are five phytochromes, designated
phytochrome A (PHYA) to phytochrome E (PHYE) (Jiao et al.,
2007). PHYB plays a fundamental role in the promotion of
seed germination during the initiate phase of seed imbibition
(Shinomura et al., 1994; Seo et al., 2008).

It’s well known that plant hormone abscisic acid (ABA)
plays a predominate role in the repression of seed germination
(Seo et al., 2008; Shu et al., 2016). Endogenous ABA levels
are regulated by a balance of between its biosynthesis and
catabolism. The major ABA biosynthesis pathway is regulated
by multiple factors, including the rate limiting enzymes 9-cis-
epoxycarotenoid dioxygenases (NCEDs), zeaxanthin epoxidase
(ZEP) ABA1, cytosolic short-chain dehydrogenase (SDR) ABA2,
molybdenumcofactor sulfurase ABA3, as well as aldehyde
oxidase AAO3 (Seo and Koshiba, 2002). Seeds of triple mutant
nced5 nced6 nced9 germinate faster than the wild-type (Frey
et al., 2012), whereas transgenic plants constitutively expressing
NCED6 increase ABA levels and prevent seed germination
(Martinez-Andujar et al., 2011). The core ABA signaling network
is composed of PYR/PYL/RCAR receptors, PP2C phosphatases,
SnRK2 kinases, bZIP-type transcription factors known as ABA-
responsive element (ABRE) binding factors (Raghavendra et al.,
2010; Antoni et al., 2011; Hauser et al., 2011). ABI3 (ABA
insensitive 3) and ABI5, two key transcription factors in
ABA signal transduction, have been reported to play crucial
roles in maintaining seed dormancy, and repressing seed
germination (Koornneef et al., 2002; Piskurewicz et al., 2008;
Kanai et al., 2010). Moreover, seed dormancy can prevent
germination when environmental conditions are suitable for
germination. DELAY OF GERMINATION 1 (DOG1) is a master
regulator in control of seed dormancy, which belongs to a
plant-specific gene family with other four additional members
(Bentsink et al., 2006). Loss of function of DOG1 in Arabidopsis
results in abolished seed dormancy and fast germination
even under unfavorable conditions (Nakabayashi et al., 2012;
Graeber et al., 2014).

Previous studies displayed that multiple epigenetic factors,
including chromatin-remodeling factors, histone deacetylases,
histone demethylases and histone methyltransferases, play
diverse roles in the regulation of seed germination and dormancy
(Dean Rider et al., 2003; Perruc et al., 2007; Saez et al.,
2008; Cho et al., 2012; Luo et al., 2012; Zheng et al., 2012;

Zhou et al., 2013; Lee et al., 2014; Liu et al., 2014; Zhao
et al., 2015; Gu et al., 2017). The chromatin-remodeling factor
PICKLE selectively regulates a number of genes to repress
embryonic identity during germination (Dean Rider et al., 2003;
Perruc et al., 2007). SWI3B, an Arabidopsis homolog of the yeast
SWI3 subunit of SWI/SNF chromatin-remodeling complexes,
plays a negative role in ABA-repressed seed germination (Saez
et al., 2008). Loss of function of histone deacetylases HDA6
and HD2C result in increased sensitivity to ABA and NaCl
stresses during germination (Luo et al., 2012). Moreover, a
recent study demonstrated histone deacetylase HDA15 interacts
with Phytochrome Interacting Factor 1 (PIF1), a key negative
transcription factor in light signaling pathway, in repressing
light-mediated seed germination. HDA15 and PIF1 co-repress
the genes associate with multiple hormonal signaling pathways
and cellular processes by decreasing the histone H3 acetylation
levels in the dark conditions (Gu et al., 2017). Furthermore, two
histone arginine demethylases, JMJ20 and JMJ22, were found
to be positive regulators in PHYB-dependent seed germination
(Cho et al., 2012). JMJ20/JMJ22 increase gibberellic acid (GA)
levels via removal of histone arginine methylations of GA
biosynthesis genes, GA3ox1/GA3ox2, and ultimately promote
seed germination (Cho et al., 2012). Whereas, another two
histone demethylases (LDL1/LDL2) have been reported that
function redundantly in repressing seed dormancy (Zhao et al.,
2015). Furthermore, histone methyltransferase KYP/SUVH4 also
controlled Arabidopsis primary seed dormancy, while another
methyltransferase EFS inhibited seed germination (Zheng et al.,
2012; Lee et al., 2014). However, few studies have been reported
the function of a histone methyltransferase in light-mediated seed
germination process.

SUVH5, a histone H3 lysine 9 methyltransferase, belonging
to the SUV(R) group of SET domain proteins, has been
reported to maintain transposon elements and inverted repeats
silencing via histone H3K9 dimethylation (Ebbs and Bender,
2006; Rajakumara et al., 2011; Yu et al., 2017). In the present
study, we identified SUVH5 as a novel component of light-
mediated transcriptional regulatory network in seed germination.
SUVH5 represses the expression of key seed germination-related
genes, such as ABA biosynthesis and signal transduction-related
genes, as well as a group of DOG genes by H3K9 dimethylation
in imbibed seeds.

MATERIALS AND METHODS

Plant Materials
All Arabidopsis plants used in this study are in Col-0 background.
The suvh5-2 (SALK_074957) and suvh4/5/6 mutant was a kind
gift from Professor Judith Bender at the University of Brown.
suvh5-2 allele was backcrossed to Col-0 for three times. suvh4
mutant kyp-6 (SALK_041474) was obtained from the Arabidopsis
Information Resource Center1. The seeds used for germination
comparison were harvested in the same batch of plants grown
at 22◦C under long days (16 h WL/8 h dark). Following seeds

1http://www.arabidopsis.org/
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harvesting, seeds were kept in an incubator at 22◦C for about
1 month to break dormancy prior to germination assays.

Germination Assays
The PHYB-dependent seed germination assays were performed
as described previously (Oh et al., 2007). Briefly, seeds
were surface-sterilized and plated on half-strength Murashige-
Skoog (Sigma-Aldrich) agar plates containing 0.3% sucrose
and 1% phytoagar (pH 5.7). The plates were placed in an
illuminated incubator with white light (80 µmol·m−2

·s−1)
at 22◦C. 1 h after imbibition and sterilization, seeds were
irradiated with far-red light (3.82 µmol·m−2

·s−1) for 5 min
(indicated as FR or dark conditions), or exposure to far-red
light (3.82 µmol·m−2

·s−1) for 5 min following irradiation
with red light (13.12 µmol·m−2

·s−1) for 5 min (referred as
R or light conditions). The seeds were kept in the dark to
calculate the germination rates at the indicated time. At least
60 seeds were used for each experimental point, and seeds
harvested from three independent batches were performed for
statistical analysis.

RNA Isolation and qRT-PCR (Quantitative
RT-PCR) Analysis
After FR or R treatment, the seeds were incubated in the
dark at 22◦C for the indicated time. The imbibed seeds were
ground to powder in liquid nitrogen and total RNA was
extracted with TRIZOL Reagent (Invitrogen) according to the
manufacture’s protocol. After DNase I treatment, the first strand
cDNA was synthesized using 2 µg total RNA according to
the manufacturer’s instruction of TransScript One-Step gDNA
Removal and cDNA Synthesis Super Mix Kit (TransGen, Beijing).
Quantitative RT-PCR was performed by using SYBR Green
Mix (Bio-Rad) in an ABI7500 Real-Time PCR System (Applied
Biosystems). Three biological replicates were performed, and
three technical repeats were carried out for each biological
replicate. PP2A was used as an internal control (Czechowski et al.,
2005). The primer pairs for quantitative RT-PCR are listed in
Supplementary Table S4.

RNA-Seq (mRNA Deep Sequencing)
Analysis
For whole genomic transcriptome analysis, the seeds after
R light treatment were incubated in the dark at 22◦C for
24 h prior to RNA extraction. Total RNA was extracted as
described above and an mRNA-seq library was prepared by
using an mRNA Seq Kit (Illumina). RNA-seq were performed
by Genepioneer Biotechnologies (Nanjing, China) with triplicate
biological samples. High-quality clean reads were obtained by
removing the adaptor sequences, ambiguous reads (“N” > 10%),
and low-quality reads (i.e., more than 50% of bases in a
read had a quality value Q ≤ 5). Then the clean reads were
mapped to Arabidopsis genome TAIR10 using HISAT2 software
with default parameters (Pertea et al., 2016). Cuffdiff2 was
applied to detect differentially expressed genes (DEGs). Genes

2http://cole-trapnell-lab.github.io/cufflinks/

with more than 1.5-fold changes with statistically significance
(adjusted P-value < 0.05) were selected. GO (gene ontology)
analyses of DEGs were performed with Metascape software3

with a cutoff of P < 0.05 and a minimum overlap of 3. The
regulated trends of DEGs were visualized by use of heat-map
made by HemI (version 1.0.1) (Deng et al., 2014). Hierarchical
clustering analysis was done with the average linkage method
using the HemI software. These raw sequencing data sets
were deposited in NCBI-SRA database (BioProject accession
number: PRJNA489162).

ChIP-qPCR (Chromatin
Immunoprecipitation and qPCR) Assays
Equal amount of Col-0 and suvh5-2 mutant seeds were
treated with R light pulse and subsequently incubated in dark
at 22◦C for 24 h before ChIP-qPCR analyses. ChIP-qPCR
assays were performed as previously described (Gendrel et al.,
2005). After fixation with formaldehyde, the chromatin was
extracted and then sheared to an average length of 500 bp by
sonication. The chromatin was immunoprecipitated with anti-
di-methylated histone H3K9 (catalog no. 39753; Active Motif).
After cross-linking reversed, the amount of each precipitated
DNA fragment was detected by quantitative PCR using specific
primers listed in Supplementary Table S4. The amounts of
DNA after ChIP were quantified and normalized to TA3, the
relative enrichment refers to the H3K9me2 enrichment vs.
the histone H3 occupancy. Three biological replicates were
performed, and three technical repeats were carried out for each
biological replicate.

Endogenous ABA Measurements
After R treatment, the seeds were incubated in the dark at 22◦C
for 24 h. Samples were harvested and extracted for ABA as
described previously (Wu et al., 2007). Finely powdered sample
(30 mg, fresh weight) was extracted with 3 mL ethyl acetate
by vortexing for 30 s followed by ultrasonic extraction in ice-
cold water for 20 min. Before ultrasonic extraction, 1 ng [2H6]
ABA was added to the mixture as an internal standard. After
centrifuging at 10000 × g for 5 min at 4◦C, 2.9 mL supernatants
were collected, and then dried under a stream of nitrogen. The
residue was re-dissolved in 100 µL methanol. The supernatants
were filtered through a 0.22 µm membrane, and subjected
to an ultra–performance liquid chromatography/quadrupole
time–of–flight mass spectrometry (UPLC–QTOF–MS) (Acquity
UPLC I-Class/ Xevo R©G2-XS QTOF, Waters Corporation, MA,
United States). Each sample (5 µL) was injected onto a Waters
ACQUITY UPLC HSS T3 C18 column (2.1 mm × 100 mm,
1.8 µm). Solvent A was Milli-Q water with 0.1% (v/v) formic
acid. Solvent B was acetonitrile with 0.1% (v/v) formic acid.
The solvent gradient was started at 20% B, then linearly
increased to 35% within 10 min, later increased to 95% B in
0.1 min and kept for 3 min. In that moment, it suddenly
dropped to 20% in 0.1 min and maintain for 3 min. The
flow rate was 0.4 mL/min. The column temperature was
30◦C. The electrospray ionization operated on negative mode.

3http://metascape.org
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The MS conditions were capillary voltage: 1.5 kV; source
temperature: 100◦C; desolvation temperature: 300◦C; cone gas
flow: 50 L/h; and desolvation gas flow: 600 L/h. The quantitative
analysis of ABA was based on calibration curve, which was
constructed by plotting the concentration of ABA standard
against the peak area of [2H6] ABA. The ABA content was
determined three times for each sample. Three biological
replicates were performed.

RESULTS

SUVH5 Is a Positive Regulator of
PHYB-Dependent Seed Germination
To investigate whether histone methyltransferase SUVH5 plays
a role in light-regulated seed germination, we examined the
germination trait of a previously reported loss of function of
SUVH5 mutant suvh5-2 (Ebbs and Bender, 2006) by PHYB-
dependent germination protocol (Oh et al., 2004; Oh et al.,
2006). 1 h after white light (WL) irradiation and surface
sterilization, the seeds were exposed to 5 min far-red (FR)
light (PHYB inactive, referred as FR or dark conditions) or
followed by illumination with 5 min red light (PHYB activation,
indicated as R or light conditions), and subsequently kept in
the dark for 2 days (Figure 1A). Upon FR conditions, both
wild-type Col-0 and suvh5-2 seeds failed to germinate (the
germination rates were 0) (Figure 1B). Next, we examined
the germination rates of Col-0 and suvh5-2 after R treatment.
66.6% of the wild-type seeds germinated 48 h after treatment,
while suvh5-2 seeds displayed relatively lower germination rates
(46.6%) compared to the wild-type at the indicated time point
(Figure 1B). As a control, seeds were kept under continuous
white light (WL) and scored for germination (Figure 1B).
Moreover, we also tested dynamics of germination rates of
Col-0 and suvh5-2 on PHYB activated (R) conditions after a
long period. As shown in Supplementary Figure S1, except
at 84 h, there were no significant germination rates difference
in Col-0 and suvh5-2 48 h after treatment. The results
indicated that SUVH5 may mainly modulate the germination
kinetic in the initial phases and slightly affect the final
rate of germination.

Previous study displayed that the plant SUPPRESSOR OF
VARIEGATION 3-9 HOMOLOG (SUVH) family members,
SUVH4, SUVH5, and SUVH6 act redundantly in regulating
methylation of H3K9 and transposon silencing (Ebbs and Bender,
2006; Yu et al., 2017). We further examined the phenotype of the
suvh4 single mutant, kyp-6 and the suvh4/5/6 triple mutant (Ebbs
and Bender, 2006). Similar to suvh5-2, kyp-6 showed relatively
lower germination rates compared to Col-0, which indicated
that SUVH4 and SUVH5 may act redundantly in the control of
seed germination. Surprisingly, suvh4/5/6 triple mutant displayed
a similar germination phenotype with wild-type (Figure 1C),
which suggested that SUVH6 may act oppositely to SUVH4 and
SUVH5 in regulating light-mediated seed germination. Together,
these data indicated that SUVH5 may act as a positive regulator
of PHYB-dependent seed germination.

Expression Pattern of SUVH5 Is
Regulated by Light in Imbibed Seeds
We further examined the expression patterns of SUVH5 and its
close homologs, SUVH4 and SUVH6 under FR and R conditions
in germinating seeds. Seeds of Col-0 were treated with FR and
FR/R exposure separately, after imbibed for indicated time (3,
6, 12, and 24 h), the seeds were harvested for gene expression
analysis. SUVH4/5/6 demonstrated a similar expression profile
during light-mediated seed germination process (Figure 2).
Relatively higher expression levels of SUVH4/5/6 were detected
in dry seeds (0 h as indicated). 1 h after imbibition, the transcripts
of SUVH4/5/6 were significantly decreased. Except for a recover
of SUVH4 expression 12 and 24 h after R treatment, both FR and
R treatments decreased the expression of SUVH4/5/6 in imbibed
seeds compared to 0 h (Figure 2). Moreover, we also analyzed
the expression of SUVH4/5/6 in imbibed seeds under continuous
FR and R irradiation. Except for continuous R light promoted
SUVH4 expression and a recover of SUVH4/SUVH6 expression
12 h after continuous FR treatment, both continuous FR and R
impulse repressed the expression of SUVH4/5/6 in imbibed seeds
compared to 0 h (Supplementary Figure S2). Collectively, these
data suggested that the expression of SUVH4/5/6 was regulated
by light during the initial phase of seed germination.

SUVH5 Regulates 24.6% of the
Light-Responsive Transcriptome in
Imbibed Seeds
To further study the function of SUVH5 in light-mediated seed
germination, we examined the SUVH5-regulated transcriptome
changes under R conditions by RNA-sequencing (RNA-seq)
assays. Seeds of Col-0 and suvh5-2 were treated under R
conditions and kept in the dark, 24 h after imbibition, the
seeds were harvested for RNA extraction, library construction,
and high-throughput sequencing. To get reliable RNA-seq
results, three independent biological replicated samples were
harvest for analysis. Genes with more than 1.5-fold changes
with statistical significance (adjusted P value < 0.05) were
selected. Compared with the wild-type, 982 genes were up-
regulated whereas only 101 genes were down-regulated in
suvh5-2 mutant, which suggested that SUVH5 may act mainly
as a transcription repressor in light-mediated seed germination
process (Supplementary Tables S1, S2).

Next, GO and functional clustering analysis of SUVH5-
regulated genes were performed by Metascape software. We
showed that the genes up-regulated in suvh5-2 are mainly
associated with the biological processes including response to
toxic substance, response to temperature stimulus, secondary
metabolic process, response to drug, response to abscisic
acid, lipid storage, toxin catabolic processes, and response to
karrikin (Figure 3A). In contrast, the genes down-regulated
in suvh5-2 are preferentially enriched in syncytium formation,
tissue development, response to light stimulus, xylem and
phloem pattern formation, phloem or xylem histogenesis, and
DNA metabolic process (Figure 3B). Collectively, these results
suggested that SUVH5 may integrate multiple internal and
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FIGURE 1 | Analysis of the germination rate of kyp-6, suvh5-2, and suvh4/5/6 mutant using PHYB-dependent seed germination assays. (A) Germination protocols
of PHYB inactivated (PHYB-off, FR) and activated (PHYB-on, R) assays. (B) Germination patterns of Col-0 and suvh5-2 under PHYB inactivated (FR), PHYB
activated (R), and continuous white light (WL) conditions. Profiles (top) and germination rates (bottom) of Col-0 and suvh5-2 on PHYB inactivated (FR), PHYB
activated (R), and continuous white light (WL) conditions. After FR or R treatment, the seeds were kept in the dark for 48 h. Seeds were kept under continuous white
light (WL) as a control. (C) Germination rates of Col-0, kyp-6, suvh5-2, and suvh4/5/6 on PHYB activated (R) conditions. Germination frequencies were recorded at
48h after treatment. Values are shown as means ± SD (n = 3) (t-test, ∗∗P < 0.01, difference from Col-0).

external factors to regulate many developmental processes,
including light-regulated seed germination.

Previous transcriptome analysis displayed that 2069 genes
are regulated by light in imbibed seeds in Arabidopsis (Col-
0 R vs. Col-0 FR) (Shi et al., 2013). Analysis in combination
with SUVH5 and light-regulated transcriptomes demonstrated
that the expression of about 24.6% (510) light-regulated genes
was altered in suvh5 mutant (Figure 4A and Supplementary
Table S3). Interestingly, most of these genes (97.6%, 498)
were down-regulated by light whereas up-regulated in suvh5-2
(Figure 4A). Consistently, heatmap displayed that suvh5-2 and
light modulated the transcriptome changes in an opposite
manner (Figure 4B). These data indicated that SUVH5 may
act as a key positive regulator of light-regulated transcriptome
in imbibed seeds.

Gene ontology analysis and functional clustering analysis
revealed that SUVH5 and light co-regulated genes are mainly
related to the processes including response to water, lipid
storage, seed development, response to abscisic acid, response
to gibberellin, response to light stimulus, seed maturation,

response to heat, response to light intensity, response to
chitin, and response to karrikin (Figure 4C). Collectively, these
findings suggested that SUVH5 and light co-regulated many
developmental processes by affecting the expression of the
light-responsive genes related to multiple hormonal signaling
pathways and development processes.

SUVH5 Represses the Expression of
Genes Related to ABA/GA Signaling
Pathways and Regulates Endogenous
ABA Contents in Imbibed Seeds
It’s well known that ABA plays a predominant negative
role in the regulation of seed germination. Our RNA-seq
analysis demonstrated that the expression of a large subset of
ABA signaling-related genes, including ABA biosynthesis genes
(ABA1, ABA3, NCED6, and AAO3), ABA signal transduction
genes (ABI5, EEL, ABF4, HAI2, and PYL13) and ABA-responsive
genes (ABR, ABR1, EM1, USP, RAB18, and et al.) were up-
regulated in suvh5 mutant compared with wild-type upon R
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FIGURE 2 | Expression patterns of SUVH4/5/6 under R and FR conditions. Equal amount of Col-0 seeds were treated with FR or R light pulse and subsequently
incubated in dark for indicated times before extracting mRNA. 0 h indicates dry seeds. PP2A was used as an internal control. Values are shown as means ± SD
(n = 3) (t-test, ∗∗P < 0.01, difference from 0 h). (A) Expression patterns of SUVH4 under R and FR conditions. (B) Expression patterns of SUVH5 under R and FR
conditions. (C) Expression patterns of SUVH6 under R and FR conditions.
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FIGURE 3 | Chart of enriched ontology clusters of significantly expressed genes, which is repressed (A) or activated (B) by SUVH5 (P < 0.05).

conditions (Supplementary Table S1, S5). Further quantitative
RT-PCR (qRT-PCR) analysis displayed that relatively higher
expression levels of these genes were detected in imbibed suvh5-
2 seeds compared with wild-type (Figures 5A–C). Consistently,
we showed that the ABA content in suvh5-2 seeds was 6.5-fold
higher than that in wild-type (Figure 5F). GA is another critical
plant hormone in the regulation of seed germination, we further
analyzed the expression of genes relate to GA signaling and
metabolism processes. DELLA (GAI, RGA, RGL1, RGL2, and
RGL3) proteins are master negative components in GA signaling,
and RGL2 is the main repressor of seed germination (Nelson and
Steber, 2016). GA2ox is crucial catabolic enzyme of bioactive GAs
and negatively regulated GA metabolism (Liu and Hou, 2018).
Increased expression level of GAI, RGL2, RGL3, GA2ox2, and
GA2ox4 was examined in imbibed suvh5 seeds compared with
wild-type under R condition (Figure 5E), which suggested that

SUVH5 may also regulate GA signaling and GA catabolism in
the control of seed germination. Together, these data suggested
that SUVH5 may promote light-mediated seed germination by
modulating the balance of ABA and GA in imbibed seeds.

SUVH5 Represses the Expression of a
Family of DOG Genes in Imbibed Seeds
DELAY OF GERMINATION 1 is a master regulator of seed
dormancy and belongs to a plant-specific gene family with other
four DOG1-like genes, At4g18660, At4g18680, At4g18690, and
DOGL4 (Bentsink et al., 2006). RNA-seq analysis revealed that the
expression of some DOG1-like genes was up-regulated in suvh5-
2 mutant (Supplementary Table S1). We further examined the
transcripts of DOG1 and DOG1-like genes by qRT-PCR assays.
The levels of the expression of DOG1, At4g18660, At4g18680,
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FIGURE 4 | Genome-wide analysis of SUVH5-regulated transcriptome in light-mediated seed germination process. (A) Venn diagram shows the overlap of SUVH5-
and light-regulated genes. Among these co-regulated genes, 498 were up-regulated whereas 12 were down-regulated in suvh5. (B) Heatmap of light and SUVH5
co-regulated genes. The bar indicates the fold change (suvh5-2 R vs. Col-0 R and Col-0 R vs. Col-0 FR). (C) Chart of enriched ontology clusters of significantly
expressed genes co-regulated by SUVH5 and light (P < 0.05).

At4g18690, and DOGL4 were significantly up-regulated in
suvh5-2 compared with wild-type seeds under R conditions
(Figure 5D), which indicated that SUVH5 may increase seed
germination by repressing the expression of the DOG genes.

SUVH5 Represses ABA Signaling and
DOG Genes by Histone H3K9
Dimethylation
Previous studies suggested that SUVH5 modulates
transcriptional gene silencing through histone H3K9
methyltransferase activity (Ebbs and Bender, 2006; Rajakumara
et al., 2011; Yu et al., 2017), and the SRA domain of SUVH5
is required for the accumulation of the H3K9 dimethylation
(Rajakumara et al., 2011; Yu et al., 2017). We then analyzed
the levels of histone H3K9me2 of the ABA signaling and DOG
genes in wild-type and suvh5-2 upon R conditions by chromatin
immunoprecipitation in combination with quantitative PCR
(ChIP-qPCR) assays. Since previously genome-wide profiling
indicated that H3K9me2 modification occurred in target gene
promoters or in gene bodies (Zhou et al., 2010), then the
regions proximal to the transcriptional starting sites (P), and
the first exon regions (E) of these genes were selected for
analysis (Figure 6A).

For the ABA biosynthesis genes, the levels of H3K9me2 were
significantly decreased at the promoter and first exon regions of
ABA1 and ABA3 as well as the promoter region of NCED6 in

imbibed suvh5 seeds compared with wild-type (Figure 6B). For
the ABA signal transduction-related genes, a significant decrease
of H3K9me2 level was detected at the promoter of ABI5 and the
exon regions of EEL and PYL13 in suvh5 mutant (Figure 6C).
Furthermore, relatively lower levels of H3K9me2 were detected at
the promoters of DOG1, At4g18660, At4g18680, and At4g18690,
as well as at the exons of At4g18660 and At4g18680 in suvh5
mutant compared with wild-type (Figure 6D). Together, these
data suggested that SUVH5 represses the expression of ABA
signaling and DOG genes by histone H3K9 dimethylation.

DISCUSSION

In this work, we present evidence indicating that SUVH5 is a
positive component of light-mediated seed germination process.
Loss of function of SUVH5 results in decreased germination
and leads to 24.6% of light-responsive transcriptome changes.
Moreover, SUVH5 represses the expression of ABA signaling and
DOG genes via dimethylation of histone H3 at lysine 9.

Abscisic acid is a critical plant hormone in regulating seed
germination and dormancy. Previous studies demonstrated that
loss of function of ABA biosynthesis mutant aba1 displayed
reduced seed dormancy and faster germination rate both in
Arabidopsis and tobacco (Koornneef, 1982; Grappin et al., 2000).
Mutation of aba3 impaired in ABA biosynthesis and resulted in
reduced seed dormancy (Léon-Kloosterziel et al., 1996). NCED6,
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FIGURE 5 | qRT-PCR analyses of the expression levels of ABA biosynthesis genes (A), ABA signaling transduction genes (B), ABA responsive genes (C), DOG
family genes (D), GA signaling transduction/deactivating genes (E), and analyses endogenous abscisic acid (ABA) contents (F) in imbibed Col-0 and suvh5-2 seeds
under R conditions. Equal amount of Col-0 and suvh5-2 mutant seeds were treated with R light pulse and subsequently incubated in dark for 24 h before extracting
mRNA and ABA. PP2A was used as an internal control of qRT-PCR analyses. Values are shown as means ± SD (n = 3) (t-test, ∗∗P < 0.01, difference from Col-0).

another key regulator of ABA biosynthesis, also functions in
the induction of seed dormancy (Lefebvre et al., 2006). In
present work, we showed that SUVH5 represses the expression
of these ABA biosynthesis genes by dimethylation of histone
H3K9, which indicated that SUVH5 may promote light-
mediated seed germination by decreasing ABA content in
imbibed seeds. Furthermore, bZIP-type transcription factor
ABI5 maintains seed dormancy by activating the expression
of genes including seed storage protein genes (Piskurewicz

et al., 2008; Kanai et al., 2010; Wang et al., 2011). EEL, a
transcription factor homologous to ABI5, is also able to bind
to the ABA-responsive elements (ABRE) of seed storage protein
genes during late embryogenesis (Bensmihen et al., 2005).
Repression of ABI5 and EEL transcripts by SUVH5 indicated
that SUVH5 may act to accelerate the launch of germination
in imbibed seeds. Moreover, PYR/PYL/RCAR proteins are
intracellular ABA receptors regulating ABA-dependent gene
expression. Recent works demonstrated that pyl duodecuple
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FIGURE 6 | ChIP-qPCR analyses of H3K9me2 levels of SUVH5-regulated genes. (A) Schematic diagram of the regions for ChIP analysis. P and E indicate proximal
promoter and first exon regions, respectively. ChIP-qPCR analyses of the histone H3K9me2 levels at the promoter and first exon regions of ABA biosynthesis genes
(B), ABA signaling transduction genes (C), and DOG family genes (D) in imbibed Col-0 and suvh5-2 seeds under R conditions. Equal amount of Col-0 and suvh5-2
mutant seeds were treated with R light pulse and subsequently incubated in dark for 24 h before ChIP-qPCR analyses. The amounts of DNA after ChIP were
quantified and normalized to TA3, the relative enrichment refers to the H3K9me2 enrichment vs. the histone H3 occupancy. Values are shown as means ± SD (n = 3)
(t-test, ∗P < 0.05, ∗∗P < 0.01, difference from Col-0).

mutant, pyr1pyl1/2/3/4/5/7/8/9/10/11/12 is extremely insensitive
to ABA effects on seed germination, whereas transgenic plants
overexpressing PYL13 show increased ABA sensitivity in seed
germination (Zhao et al., 2013; Fuchs et al., 2014). Repressing
of PYL13 expression by SUVH5 indicated that SUVH5 may
decrease ABA perception thus restrain ABA signal transduction
in imbibed seeds. In addition, a number of ABA-responsive genes,
such as ABR, ABR1, EM1, USP, and RAB18 were up-regulated
in suvh5 mutant, which confirmed a negative role of SUVH5
in ABA signal transduction in imbibed seeds. Together, these
findings revealed that SUVH5 may promote seed germination via
inhibiting both ABA biosynthesis and ABA signal transduction
pathways in imbibed seeds.

Diverse epigenetic modifications, such as DNA methylation,
histone modification and chromatin-remodeling, have been
reported to play critical roles in regulating seed germination
(Dean Rider et al., 2003; Perruc et al., 2007; Saez et al.,
2008; Cho et al., 2012; Luo et al., 2012; Zhou et al., 2013;
Liu et al., 2014; Gu et al., 2017; Kawakatsu et al., 2017). Recent
work displayed that the expression of DOGL4, a paralogous
gene of DOG1, is regulated by DNA demethylase ROS1-
mediated DNA demethylation (Zhu et al., 2007, 2018). In
present work, we showed that the expression of DOGL4 is
also repressed by SUVH5-mediated histone H3K9 dimethylation.
Interestingly, structure-based studies indicated that a functional
SUVH5 SRA domain is required for both DNA methylation
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and accumulation of the H3K9me2 (Rajakumara et al., 2011).
These findings suggested that SUVH5 may repress the expression
of DOG genes through both histone H3K9 dimethylation and
DNA methylation manners. It will be meaningful to study
interplay of SUVH5 and ROS1 in the regulation of DOG genes
expression in light-mediated process. Moreover, it’s well known
that the epigetic factors usually act in multi-protein complexes
in regulating gene expression (Liu et al., 2014). Previous studies
demonstrated that RPD3-HDA1-type histone deacetylase HDA6
represses the expression of the ABA pathway genes by regulating
the levels of H3ac, H3K4me3 and H3K9me2 (Chen et al.,
2010; Chen and Wu, 2010; Luo et al., 2012). In present work,
we also showed that SUVH5 represses the expression of ABA
signaling-related genes via H3K9me2. A recent study reported
that SUVH4/5/6 and HDA6 act in a same protein complex (Yu
et al., 2017). These findings strongly suggested that SUVH5
may associate with HDA6 in the regulation of light-mediated
seed germination. Further analysis of SUVH5-containing protein
complexes will help to elucidate its role of in light-regulated seed
germination process.

In imbibed seeds, SUVH5 and SUVH6 displayed similar
expression patterns after R and FR irradiation, which indicated
that their transcripts might be regulated by the same upstream
light-responsive transcription regulators. However, the similar
gene expression profiles do not mean they play same roles in
light-mediated seed germination. Phenotypic analysis of suvh4,
suvht5 and suvh4/5/6 triple mutant suggested that SUVH6
may act oppositely to SUVH4 and SUVH5 and negatively
regulate light-mediated seed germination. SUVH proteins
generally functions as repressors of gene expression via histone
H3K9 dimethylation (Ebbs and Bender, 2006). A recent study
demonstrated that KPY/SUVH5/SUVH6 proteins have distinct
methylated DNA binding preference, which suggested that these
proteins may target different downstream genes (Li et al., 2018).
In present work, we showed that SUVH5 represses the expression
of ABA biosynthesis, ABA signal transduction as well as DOG
genes via histone H3K9 dimethylation. SUVH6 may repress
light-mediated seed germination by repressing the expression of
some other target genes, such as GA biosynthesis and GA signal
transduction related genes in imbibed seeds. Further genome-
wide analysis of the downstream genes of SUVH6 will help to
explore its role in light-mediated seed germination.

In summary, we identified histone methyltransferase SUVH5
as a positive regulator in light-mediated seed germination. Upon
R or strong light conditions, SUVH5 depresses the expression
of ABA signaling and DOG genes via dimethylation of H3K9,
resulting in reduced levels of ABA contents and increased
germination kinetic in imbibed seeds. Moreover, SUVH5 may
increase GA levels in imbibed seeds by repress the expression
of GA catabolic genes. Ultimately, the changed balance between
ABA and GA by SUVH5 leads to promotion of seed germination.
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∗∗P < 0.01, difference from Col-0).

FIGURE S2 | Expression patterns of SUVH4/5/6 under continuous R light and FR
light conditions. Equal amount of Col-0 seeds were treated with continuous FR or
R light pulse at 22◦C for indicated times before extracting mRNA. 0 h indicates dry
seeds. PP2A was used as an internal control. Values are shown as means ± SD
(n = 3). (A) Expression patterns of SUVH4 under continuous R and FR conditions.
(B) Expression patterns of SUVH5 under continuous R and FR conditions. (C)
Expression patterns of SUVH6 under continuous R and FR conditions.
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