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Phytohormones regulate a large variety of physiological processes in plants. In addition, 
salicylic acid (SA), jasmonic acid (JA), and ethylene (ET) are responsible for primary defense 
responses against abiotic and biotic stresses, while plant growth regulators, such as 
auxins, brassinosteroids (BRs), cytokinins (CKs), abscisic acid (ABA), and gibberellins 
(GAs), also contribute to plant immunity. To successfully colonize plants, filamentous 
pathogens like fungi and oomycetes have evolved diverse strategies to interfere with 
phytohormone pathways with the help of secreted effectors. These include proteins, 
toxins, polysaccharides as well as phytohormones or phytohormone mimics. Such 
pathogen effectors manipulate phytohormone pathways by directly altering hormone 
levels, by interfering with phytohormone biosynthesis, or by altering or blocking important 
components of phytohormone signaling pathways. In this review, we outline the various 
strategies used by filamentous phytopathogens to manipulate phytohormone pathways 
to cause disease.
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INTRODUCTION

Filamentous plant pathogens, like fungi and oomycetes, cause severe crop yield losses annually 
(Fisher et al., 2012). To protect themselves against pathogens, plants have evolved a multilayered 
defense network (Jones and Dangl, 2006). This immune system is activated when membrane 
localized pattern recognition receptors (PRRs) recognize microbe-associated molecular patterns 
(MAMPs) or host-derived damage-associated molecular patterns (DAMPs), leading to pattern 
triggered immunity (PTI) (Couto and Zipfel, 2016). The activation of PTI results in an array 
of cellular responses, including the generation of extracellular reactive oxygen species (ROS), 
cytosolic ion-flux changes, calcium-dependent or mitogen-activated protein kinase cascade 
activation, reinforcement of physical barriers, and the production of numerous defense-related 
molecules (Macho and Zipfel, 2014; Couto and Zipfel, 2016). In these complex immune 
responses, phytohormones play pivotal regulatory roles. Classical defense phytohormones are 
salicylic acid (SA), jasmonic acid (JA), and ethylene (ET). More recently, growth-related 
phytohormones, such as auxins, cytokinins (CKs), brassinosteroids (BRs), abscisic acid (ABA), 
and gibberellins (GAs) are also shown to modulate plant immune defenses (Pieterse et al., 2009, 2012; 
Tsuda and Katagiri, 2010; Berens et  al., 2017).
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Filamentous plant pathogens which can successfully colonize 
plants secrete an arsenal of effector proteins to interfere with 
plant defenses and facilitate pathogen colonization (Jones and 
Dangl, 2006; Dangl et  al., 2013; Lo Presti et  al., 2015). These 
effectors are categorized into two groups: apoplastic effectors 
that reside and function in the apoplast and cytoplasmic effectors 
that are taken up by plant cells to target various intracellular 
processes (Kamoun, 2006). In oomycetes, many of the cytoplasmic 
effectors are so called RxLR and Crinkler (CRN) effectors 
possessing an N-terminal RxLR motif or LxLFLAK motif, 
respectively, which are implicated in effector uptake (Jiang 
et  al., 2008; Schornack et  al., 2010; McGowan and Fitzpatrick, 
2017). Fungal effectors which are taken up by host cells lack 
such a consensus motif. Given the importance of phytohormone 
pathways in plant immunity, it is no surprise that filamentous 
plant pathogens have evolved protein or toxin effectors targeting 
hormonal pathways. In addition, filamentous plant pathogens 
can also produce phytohormones and derivatives as host mimicry 
to manipulate or hijack host hormone homeostasis (Chanclud 
and Morel, 2016). In this communication, we  review recent 
findings illustrating how this is achieved and discuss how such 
molecules enhance parasite fitness.

EFFECTORS TARGETING THE 
SALICYLIC ACID PATHWAY

The phytohormone SA is a phenolic compound involved in 
various plant processes including growth, flowering, 
thermogenesis, senescence, and responses against abiotic and 
biotic stress (Raskin, 1992; Vlot et  al., 2009; Dempsey et  al., 
2011). SA has been extensively studied for its role in  local 
and systemic acquired resistance (LAR and SAR) against 
biotrophic and hemibiotrophic pathogens (Malamy et al., 1990; 
Metraux et  al., 1990; Raskin, 1992; Klessig and Malamy, 1994; 
Glazebrook, 2005; Vlot et  al., 2009; Dempsey et  al., 2011).

SA is synthesized from chorismate, the end product of the 
shikimate pathway, via two distinct biosynthetic pathways. The 
phenylalanine ammonia lyase (PAL) pathway starts with 
the Claisen rearrangement of chorismate to prephenate catalyzed 
by chorismate mutase, followed by the formation of phenylalanine. 
Subsequently, PAL catalyzes the conversion of phenylalanine 
to cinnamate, which can be  converted to SA in a series of 
enzymatic steps (Klessig and Malamy, 1994; Metraux, 2002; 
Dempsey et  al., 2011). In the isochorismate (IC) pathway, 
chorismate is converted to SA in the chloroplast via two 
reactions catalyzed by isochorismate synthase (ICS) and 
isochorismate pyruvate lyase (IPL), respectively (Figure 1A; 
Wildermuth et al., 2001; Strawn et al., 2007; Garcion et al., 2008; 
Dempsey et  al., 2011).

To interfere with SA-mediated defenses, a direct and efficient 
way is to prevent the formation of SA. This strategy has been 
exploited by several filamentous plant pathogens. The  
biotrophic fungus Ustilago maydis, which is the causative agent 
of corn smut disease, secretes an active chorismate mutase 
Cmu1 converting chorismate to prephenate (Figure 1A; 
Djamei et al., 2011). Plants infected with cmu1 deletion mutants 

displayed significantly higher SA levels, and such mutants were 
less virulent than wild type strains (Djamei et al., 2011). Cmu1 
is a cytoplasmic effector and it is postulated that translocated 
Cmu1 increases cytosolic chorismate mutase activity and diverts 
the flow of chorismate into the phenylpropanoid pathway, thus 
hindering SA biosynthesis and immunity against this biotrophic 
pathogen (Figure 1A; Djamei et al., 2011). Secreted chorismate 
mutases are not only found in several other smut fungi but 
also in the necrotrophic fungus Sclerotinia sclerotiorum. This 
could suggest that lowering SA levels might be  a common 
strategy to suppress host defenses (Djamei et al., 2011; Kabbage 
et  al., 2013; Derbyshire et  al., 2017). However, Cmu1 was 
recently also found to interact with the maize kiwellin 
ZmKWL1  in the apoplast (Han et  al., 2019). ZmKWL1 was 
shown to be  a defense-related protein, which significantly 
inhibited the chorismate mutase activity of Cmu1 (Han et  al., 
2019). The interaction of Cmu1 with ZmKWL1 suggests that 
Cmu1 has an additional role in the apoplast besides its metabolic 
reprogramming activity. For the secreted chorismate mutase 
of S. sclerotiorum, it still needs to be  investigated whether this 
protein affects SA metabolism or inhibits apoplastic defense 
responses. An alternative way to lower SA levels is employed 
by the oomycete pathogen Phytophthora sojae and the fungus 
Verticillium dahliae, which secrete isochorismatases PsIsc1 and 
VdIsc1, respectively, via an unconventional route (Liu et  al., 
2014). PsIsc1 was shown to function inside plant cells (Figure 1A; 
Liu et  al., 2014). Isochorismatases convert isochorismate to 
2,3-dihydro-2,3-dihydroxybenzoate (DDHB) and pyruvate, 
making isochorismate unavailable for SA biosynthesis. Silencing 
of PsIsc1 in P. sojae or inactivation of VdIsc1 in V. dahliae 
increased SA levels in infected plant tissue and led to the 
induction of the SA marker gene pathogenesis-related protein 1 
(PR-1) (Liu et al., 2014). Interestingly, some fungi also produce 
salicylate hydroxylases that degrade SA to catechol in the fungal 
cytosol, which could potentially contribute to lowering SA 
levels in infected tissue. However, so far, salicylate hydroxylases 
are not yet implicated in virulence.

SA biosynthesis is tightly regulated by a complex 
transcriptional network (Vlot et al., 2009; Dempsey et al., 2011). 
Two closely related transcription factors calmodulin-binding 
protein 60  g (CBP60g) and SAR deficient1 (SARD1) positively 
regulate the SA-induced defense response through binding to 
promoter region of the SA biosynthetic gene ICS1 (Figure 1A; 
Wang et  al., 2009, 2011a; Sun et  al., 2015, 2018). cbp60g/sard1 
double mutants of Arabidopsis thaliana were more susceptible 
to V. dahliae infection, illustrating that CBP60g and SARD1 
promote immunity against V. dahliae (Qin et  al., 2018). The 
nuclear effector VdSCP41 of V. dahliae was recently shown to 
target A. thaliana CBP60g and SARD1 (Figure 1A; Qin et  al., 
2018). Biochemical assays revealed that VdSCP41 bound to 
the transcription activation domain in the C-terminus of CBP60g, 
compromising its transcription activity required for the induction 
of ICS1 (Figure 1A; Qin et al., 2018). The deletion of VdSCP41 
in V. dahliae reduced virulence, whereas A. thaliana plants 
expressing VdSCP41 exhibited compromised PTI-triggered 
expression of ICS1 and showed increased disease symptoms 
after infection with V. dahliae (Qin et  al., 2018).

https://www.frontiersin.org/journals/plant-science
www.frontiersin.org
https://www.frontiersin.org/journals/plant-science#articles


Han and Kahmann Effectors Targeting Phytohormone Pathways

Frontiers in Plant Science | www.frontiersin.org 3 June 2019 | Volume 10 | Article 822

Nonexpressor of PR genes1 (NPR1) is the master regulator 
of SA-mediated plant immune responses (Cao et  al., 1994, 
1997; Shah et  al., 1997; Dong, 2004; Wang et  al., 2006). In 
uninfected plants, NPR1 oligomers reside in the cytosol in 
an inactive state. SA production in response to pathogen 
attack leads to NPR1 phosphorylation and subsequent 
monomerization, allowing its translocation into the nucleus 
to activate PR gene expression (Figure 1A; Kinkema et  al., 
2000; Mou et  al., 2003; Lee et  al., 2015). NPR1 regulates 
the expression of PR genes through interaction with several 
TGA transcription factors (Figure 1A; Despres et  al., 2000; 
Dong, 2004; Kesarwani et  al., 2007; Fu and Dong, 2013). 
Due to its essential role in plant immunity, NPR1 presents 

an interesting effector target to subvert SA-mediated defenses 
(Lorang et  al., 2012; Kazan and Lyons, 2014).

A yeast two-hybrid screen with a library from wheat infected 
by the yellow stripe rust Puccinia striiformis f. sp. tritici identified 
a conserved rust protein PNPi (for Puccinia NPR1 interactor) 
as an NPR1 interaction partner (Figure 1A; Wang et al., 2016). 
PNPi compromised the interaction between NPR1 and TGA2.2 in 
a yeast three-hybrid assay (Figure 1A; Wang et  al., 2016). 
Overexpression of PNPi in barley reduced the expression of 
several PR genes normally induced upon biotic stress, suggesting 
that PNPi might reduce PR gene expression via blocking the 
binding of NPR1 to TGA transcription factors also in vivo 
(Wang et al., 2016). The necrotrophic fungus Cochliobolus victoriae 
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FIGURE 1 | Schematic overview of effectors of filamentous phytopathogens targeting phytohormone pathways. (A) SA (salicylic acid) pathway; (B) JA (jasmonic 
acid) pathway; (C) ET (ethylene) pathway; (D) auxin pathway; and (E) BR (brassinosteroid) pathway. Infection structures of filamentous pathogens penetrating a 
plant cell are lined with salmon color. This structure or specialized feeding structures (not indicated) are the sites for secretion of pathogen effectors. The plant 
plasma membrane is shown in green, the plant cytosol is shown in light green, the chloroplast is outlined with dark green, and the plant nucleus is shown in gray. In 
(A), the apoplastic space between pathogen and plant plasma membrane is enlarged. Pathogen effectors residing either in the apoplast or in the plant cytosol are 
indicated by pink ovals. Plant components targeted by effectors are depicted as rounded green rectangles. Solid lines represent characterized reactions or direct 
interactions and dashed lines represent indirect interactions. Arrows indicate activation and bar headed lines indicate inhibition. Question marks indicate that the 
underlying mechanism is not yet clear.
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causes Victoria blight on oat and A. thaliana by secreting the 
cyclic peptide toxin effector victorin (Lorang et al., 2004, 2007). 
Victorin sensitivity in A. thaliana requires both the locus 
orchestrating victorin effects1 (LOV1) belonging to the 
nucleotide-binding leucine rich repeat (NLR) protein family 
and the defense-associated thioredoxin TRX-h5 (Lorang et  al., 
2007; Sweat and Wolpert, 2007). TRX-h5 is upregulated in 
response to pathogen challenge and catalyzes the critical 
conformational change of NPR1 from the oligomeric to 
monomeric state (Figure 1A; Laloi et  al., 2004; Tada et  al., 
2008). In A. thaliana plants lacking LOV1, victorin binds to 
the active site of TRX-h5 and inhibits its activity, thus blocking 
monomerization of NPR1 and subsequent SA-mediated defense 
responses (Figure 1A; Lorang et  al., 2012). When LOV1 is 
present, it acts as the guard of TRX-h5. The binding of victorin 
to TRX-h5 activates LOV1 and leads to hypersensitive response 
(HR)-like cell death, which favors the necrotrophic lifestyle of 
C. victoriae (Lorang et al., 2012). This illustrates that C. victoriae 
hijacks the guard function of LOV1 to evoke cell death and 
facilitate necrotrophic development.

PR-1 gene expression has been extensively employed as an 
SA marker due to its strong induction during SA-mediated 
plant immune responses (Lotan et  al., 1989; Van Loon and 
Van Strien, 1999; Dong, 2004). PR-1 proteins are delivered to 
the apoplastic space and their successful secretion is prerequisite 
for their functions (Carr et  al., 1987; Wang et  al., 2005). PR-1 
overexpression as well as in vitro studies using spore germination 
or infection structure differentiation as readouts indicated that 
PR-1 proteins might show antimicrobial activity (Alexander 
et  al., 1993; Niderman et  al., 1995; Rauscher et  al., 1999; 
Sarowar et  al., 2005; Kiba et  al., 2007). However, very high 
concentrations were needed to observe such an activity, putting 
into question the biological relevance of such observations 
(Breen et  al., 2017). Recently, PR-1 was shown to bind sterols 
and inhibit the growth of Phytophthora brassicae, whereas no 
effect was seen on growth of the fungal species Aspergillus 
niger and Botrytis cinerea with the same treatment (Gamir 
et  al., 2017). The inhibition of P. brassicae by purified PR-1 
protein P14c from tomato could be alleviated when cholesterol 
was added, suggesting a link between sterol-binding activity 
and growth inhibition (Gamir et  al., 2017). These authors 
speculate that the selective growth inhibition of the oomycete 
by P14c may result from the sterol auxotrophy of P. brassicae, 
i.e. P. brassicae relies on environmental sterols, and P14c may 
deplete this supply by binding sterols. The RxLR effector RxLR24 
from P. brassicae binds several A. thaliana RABA GTPases 
that are required for vesicle-mediated secretion of proteins 
(Figure 1A; Tomczynska et al., 2018). This inhibited the secretion 
of PR-1 proteins and presumably other defense proteins, in 
line with the need to reduce PR-1 levels in the apoplast for 
disease development of this hemibiotrophic oomycete. A similar 
situation exists in the potato blight oomycete Phytophthora 
infestans. This hemibiotroph secretes the RxLR effector AVR1 
which interacts with and stabilizes Sec5, a subunit of exocyst 
complex (Figure 1A; Du et  al., 2015). Since the secretion of 
PR-1 requires Sec5, the authors speculate that a stabilized 
exocyst by AVR1 may block focal secretion of PR-1 and other 

defense compounds (Figure 1A; Du et  al., 2015, 2018). While 
the suppression of PR-1 levels by oomycete pathogen effectors 
is in line with their sterol auxotrophy and the sterol-binding 
activity of PR-1, it is presently not evident why the necrotrophic 
fungus S. sclerotiorum, a sterol prototroph, should secrete the 
cerato-platanin-like SsCP1 effector that directly interacts with 
A. thaliana PR-1 in the apoplast (Figure 1A; Yang et al., 2018b). 
ScCP1 also promotes virulence, induces necrosis-like cell death 
at high concentrations, and activates the SA pathway (Yang 
et  al., 2018b). In addition, the necrotrophic wheat pathogen 
Parastagonospora nodorum secretes two effectors ToxA and 
Tox3 which target certain PR-1 isoforms including PR-1-5 
(Figure 1A; Lu et al., 2014; Breen et al., 2016). PR-1-5 enhanced 
the necrosis inducing ability of purified ToxA on wheat leaves 
harboring the toxin sensitivity gene Tsn1 (Lu et  al., 2014). In 
later studies, CAP-derived peptides (CAPE) were detected in 
some PR-1 proteins (Chen et  al., 2014; Breen et  al., 2017). 
CAPE1 peptides can be  proteolytically liberated from PR-1b 
after wounding, classifying them as DAMPs (Chen et al., 2014). 
Infiltration with CAPE1 peptides enhanced wheat cell death 
caused by Tox3  in a wheat line carrying Snn3 (Breen et  al., 
2016). It is therefore likely that the positive biological function 
of PR-1 proteins toward filamentous pathogens might 
be connected to the liberation of defense signaling CAPE peptides.

During SA-triggered defense responses papain-like cysteine 
proteases (PLCPs) are secreted to the apoplastic space and 
play prominent roles in plant immunity against biotrophic and 
hemibiotrophic filamentous pathogens (Shabab et al., 2008; van 
der Linde et  al., 2012; Misas-Villamil et  al., 2016). It was 
shown that treatment of tomato with the SA analog 
benzothiadiazole (BTH) specifically induced the transcription 
of two PLCPs, PIP1, and RCR3 (Shabab et  al., 2008). PIP1 
and RCR3 are both inhibited by apoplastic effectors from 
evolutionarily unrelated pathogens, namely AVR2 from the 
tomato leaf mold fungus Cladosporium fulvum and extracellular 
cystatin-like protease inhibitor 2b (EPIC2B) from the oomycete 
P. infestans (Figure 1A; Tian et  al., 2007; Shabab et  al., 2008; 
Song et  al., 2009). In addition, RCR3 is also inhibited by 
EPIC1 from P. infestans (Figure 1A; Song et  al., 2009). While 
cystatin-like protease inhibitors like EPIC2B inhibit PLCPs via 
a conserved QxVxG motif, a distinct inhibition mechanism is 
speculated for AVR2 lacking an QxVxG motif (Shabab et al., 2008; 
Kaschani et  al., 2010; Kaschani and Van der Hoorn, 2011).

Maize PLCPs, such as CP1, CP2, and XCP2, are also activated 
upon SA treatment as part of the SA-mediated defense response 
(van der Linde et  al., 2012). Recently, an immune signaling 
peptide, Zea mays immune signaling peptide 1 (Zip1), was 
shown to be released from its propeptide precursor by SA-induced 
PLCPs and demonstrated to activate downstream SA defense 
signaling (Ziemann et  al., 2018). The maize cystatin CC9 
strongly induced upon infection by U. maydis was shown to 
inhibit apoplastic PLCP activity and this promoted U. maydis 
colonization (van der Linde et al., 2012). The virulence-promoting 
apoplastic effector Pit2 of U. maydis inhibits maize PLCPs via 
a novel 14 amino acid long motif (PID14) initially defined 
by mutational analyses and synthetic peptides (Figure 1A; 
Doehlemann et  al., 2011; Mueller et  al., 2013). Recent analyses 
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demonstrated that Pit2 is processed by maize PLCPs, and as 
a result, a released inhibitory portion inside the PID14 domain 
remains bound to the PLCP and blocks its activity (Misas 
Villamil et al., 2019). The U. maydis Pit2 effector thus functions 
as a substrate mimicking molecule. The PID14 core motif is 
present in proteins of several plant associated fungi and bacteria, 
indicating the existence of a conserved microbial inhibitor 
motif of proteases (Misas Villamil et  al., 2019).

In systems not allowing reverse genetics, effectors are often 
expressed constitutively in plants and effects on SA signaling 
are then inferred by treating such plants with SA and observing 
changes in PR-1 expression. With such an approach, the effector 
HaRxL44 from the oomycete Hyaloperonospora arabidopsidis 
(Hpa) was shown to suppress PR-1 expression after SA treatment 
(Caillaud et al., 2013). HaRxL44 is a nuclear effector interacting 
with and promoting the proteasomal degradation of the Mediator 
subunit MED19a likely by acting as an adaptor protein for 
E3 ligases (Figure 1A; Caillaud et al., 2013). After SA treatment, 
PR-1 expression was elevated in Arabidopsis plants overexpressing 
MED19a and med19a mutants showed reduced PR-1 transcript 
levels. In transgenic Arabidopsis plants overexpressing HaRxL44, 
PR-1 expression was strongly reduced (Caillaud et  al., 2013). 
Suppression of PR-1 expression by Hpa occurred specifically 
in cells containing haustoria, sites of delivery of RxLR effectors 
(Caillaud et  al., 2013; Whisson et  al., 2016). This indicates 
that Hpa colonization requires HaRxL44-induced destabilization 
of MED19a to decrease SA-mediated defense responses. Another 
Hpa effector, HaRxL106, was also recently shown to dampen 
SA-mediated defenses. HaRxL106-expressing lines displayed 
significantly reduced PR-1 expression compared to wild type 
plants after SA treatment (Wirthmueller et  al., 2018). PR-1 
expression in Arabidopsis plants overexpressing NPR1 was 
suppressed by HaRxL106, even though neither protein levels 
nor subcellular localization of NPR1 were affected. Intriguingly, 
HaRxL106 interacted with radical-induced cell death 1 (RCD1), 
a nuclear protein shown to activate SA-mediated PR-1 gene 
expression (Figure 1A; Wirthmueller et  al., 2018). In addition, 
RCD1 interacted with MUT9-like kinases (MLKs), which 
phosphorylate photoreceptor cryptochrome 2 (CRY2), 
phytochrome interacting factor 3 (PIF3) and histone H3 Thr3 
(H3T3ph) (Wang et  al., 2015; Liu et  al., 2017; Ni et  al., 2017). 
The authors speculate that HaRxL106 might act downstream 
of NPR1 and influence the transcriptional activity of the RCD1/
MLK complex to prevent the activation of SA signaling 
(Wirthmueller et  al., 2018). Three additional RxLR effector 
proteins HaRxL62, HaRxL96 and PsAvh163 from Hpa and 
P. sojae, respectively, were also able to suppress SA mediate 
defenses (Figure 1A; Anderson et  al., 2012; Asai et  al., 2014). 
Transgenic Arabidopsis plants expressing these effectors 
individually showed elevated susceptibility to Hpa compared 
to wild type plants. In addition, when challenged with SA, 
the transgenic plants exhibited reduced PR-1 expression, 
suggesting that these effectors compromise SA-triggered immunity 
(Anderson et  al., 2012; Asai et  al., 2014). In most of these 
cases, it remains open at which level PR-1 gene expression is 
affected, and further investigations are needed to elucidate the 
molecular targets of these effectors.

Collectively, these studies demonstrate that filamentous 
pathogens produce a cocktail of effectors not only to directly 
disrupt SA homeostasis but also to target more selectively 
diverse components like NPR1, PLCPs, and PR-1  in the SA 
signaling pathway. The deployment of effectors for SA pathway 
interference in fungi and oomycetes indicates convergent 
evolution to target this important hormone pathway.

EFFECTORS TARGETING THE 
JASMONIC ACID PATHWAY

The JA pathway has long been thought to allow plants to 
cope with various environmental stresses including attack by 
necrotrophic pathogens and herbivores (Thomma et  al., 1998, 
1999; Glazebrook, 2005). More recently, it has also been shown 
that JA-mediated defenses contribute to resistance against some 
biotrophic or hemibiotrophic pathogens (Thaler et  al., 2004; 
Riemann et al., 2013; Lemarie et al., 2015). In rice, JA-mediated 
defenses conferred immunity against the hemibiotrophic rice 
blast fungus Magnaporthe oryzae (Riemann et  al., 2013). To 
overcome JA-mediated defenses, M. oryzae secretes the 
hydroxylated JA molecule 12OH-JA during the initial biotrophic 
stage (Patkar et  al., 2015). The conversion of JA to 12OH-JA 
is catalyzed by a secreted fungal monooxygenase Abm (Figure 1B; 
Miersch et  al., 2008; Patkar et  al., 2015). It is likely that 
M. oryzae employs Abm to convert both fungal and host-
derived JA to 12OH-JA to avoid triggering host JA-mediated 
immunity (Patkar et  al., 2015). Indeed, an abm mutant of 
M. oryzae failed to produce blast symptoms on rice and 
accumulated large amounts of methyl JA (MeJA) in infected 
tissue, which provoked strong host defense responses (Patkar 
et  al., 2015). This shows that 12OH-JA acts as a metabolite 
effector blocking JA-triggered defense responses.

By contrast, the hemibiotrophic ascomycete fungus Fusarium 
oxysporum causing root wilt is reported to produce JAs (Cole 
et  al., 2014). JA is precursor of JA-isoleucine (JA-Ile), the 
ligand of the F-box protein coronatine insensitive 1-jasmonate 
ZIM-domain (COI1-JAZ) co-receptor complex (Yan et  al., 
2009). A. thaliana coi1 plants that are defective in JA signaling 
exhibited higher resistance against F. oxysporum than wild-
type plants, indicating that F. oxysporum requires COI1-mediated 
JA signaling to promote virulence (Thatcher et  al., 2009). 
Surprisingly, plant endogenous JA biosynthesis appeared 
dispensable for COI1-mediated JA signaling during F. oxysporum 
colonization (Thatcher et  al., 2009; Cole et  al., 2014), making 
it likely that JA molecules produced by F. oxysporum are 
used in place of plant JA to activate JA signaling (Cole et  al., 
2014). In addition, it has also been demonstrated that the 
virulence-promoting secreted in xylem (SIX) effector 
Fo5176-SIX4 activates JA signaling (Figure 1B; Thatcher et al., 
2012). Whether this is direct and at which stage this occurs 
remain to be  determined. The necrotrophic grapevine  
pathogen Lasiodiplodia mediterranea also activates JA signaling 
by producing the JA ester lasiojasmonate A (LasA) (Figure 1B; 
Chini et  al., 2018). LasA can be  converted to JA-Ile, a  
strong activator of JA signaling and inducer of cell death. 
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LasA is thus proposed to act as a metabolite effector in late 
stages of infection to activate JA-mediated cell death and 
facilitate necrotrophy (Chini et  al., 2018).

EFFECTORS TARGETING THE 
ETHYLENE PATHWAY

The gaseous phytohormone ET is well known for its role in 
fruit ripening and plant senescence (Burg and Burg, 1965; Grbić 
and Bleecker, 1995; Bleecker and Kende, 2000). ET-insensitive 
A. thaliana and soybean plants are more susceptible to some 
pathogens and activation of ET signaling confers plant resistance 
upon pathogen attack, suggesting that ET signaling also plays 
a role in plant defense (Hoffman et al., 1999; Thomma et al., 1999; 
Berrocal-Lobo et  al., 2002; Yang et  al., 2017b).

The precursor for ET biosynthesis is 1-aminocyclopropane-
1-carboxylic acid (ACC), which is derived from 
S-adenosylmethionine (S-AdoMet) in a reaction catalyzed by 
ACC synthase (ACS) (Figure 1C; Wang et  al., 2002). ET 
production is directly correlated with ACS activity (Christians 
et  al., 2009; Skottke et  al., 2011; Li et  al., 2012; Helliwell et  al., 
2016). The polymorphic RxLR effector PsAvh238 of P. sojae 
is strongly upregulated during early infection and essential for 
virulence (Figure 1C; Wang et  al., 2011b; Yang et  al., 2017a). 
A recent study uncovered that PsAvh238 interacts with soybean 
Type2 ACSs (GmACSs). By destabilizing GmACSs, PsAvh238 
suppresses ET biosynthesis and this facilitates P. sojae infection 
(Figure 1C; Yang et  al., 2018a). Silencing of GmACSs as well 
as inhibition of ET signaling or synthesis with chemical 
antagonists increased virulence of P. sojae, whereas overexpression 
of GmACSs in Nicotiana benthamiana leaves enhanced resistance 
(Yang et  al., 2018a). A PsAvh238 mutant was unable to inhibit 
ET signaling and showed reduced virulence (Yang et al., 2018a), 
consistent with the notion that ET-mediated defenses have to 
be  downregulated in this hemibiotrophic pathosystem.

Conversely, the necrotrophic fungal pathogen Cochliobolus 
miyabeanus causing brown spot of rice requires ET signaling 
for pathogenesis (Van Bockhaven et al., 2015). While exogenous 
application of ethephon, which is quickly converted to ET 
in planta, promoted disease development, ET-insensitive rice 
plants were more resistant to C. miyabeanus (De Vleesschauwer 
et  al., 2010). Furthermore, C. miyabeanus was shown to 
produce ET, and the fungus-derived ET constituted the prevalent 
source of ET in infected tissues (Van Bockhaven et  al., 2015). 
Blocking fungal ET synthesis with specific chemical inhibitors 
significantly compromised C. miyabeanus colonization of rice 
leaves (Van Bockhaven et  al., 2015). This makes it likely that 
C. miyabeanus uses ET as a metabolite effector to promote 
virulence (Van Bockhaven et  al., 2015).

EFFECTORS TARGETING THE  
AUXIN PATHWAY

Auxins constitute a group of indolic molecules that have long 
been recognized for their multiple roles in plant growth, 

development, and pathogen-host interactions (Teale et  al., 
2006; Barbier et  al., 2017). A. thaliana mutants defective in 
auxin signaling were more susceptible to the necrotrophic 
fungi Plectosphaerella cucumerina and B. cinerea, and the 
application of the auxin transport inhibitor 2,3,5-triiodobenzoic 
acid (TIBA) rendered Arabidopsis more susceptible to 
P. cucumerina (Llorente et  al., 2008).

Several microorganisms induce plant galls/tumors with high 
auxin levels. These structures likely provide the environment 
for pathogen differentiation and/or pathogen dissemination 
(Yamada, 1993; Kazan and Manners, 2009). One such example 
where tumors were shown to contain high IAA (indole-3-acetic 
acid) auxin levels are those induced by U. maydis (Turian and 
Hamilton, 1960). U. maydis is able to produce IAA from 
tryptophan (Reineke et  al., 2008). Deleting two IAA 
dehydrogenases and a transaminase genes resulted in significantly 
reduced IAA production of U. maydis in axenic culture, but 
tumor formation was unaltered and IAA levels in in tumors 
were indistinguishable from those in wild type infections 
(Reineke et  al., 2008). This suggested that fungal IAA does 
neither act as effector for tumor induction nor for elevating 
IAA levels in tumor tissue (Reineke et  al., 2008).

The stem rust fungus Puccinia graminis f. sp. tritici (Pgt) 
produces a putative tryptophan 2-monooxygenase (Pgt-IaaM) 
that generates indole-3-acetamide (IAM), the precursor for IAA 
biosynthesis (Yin et  al., 2014). In Pgt-infected wheat leaves, 
the expression of Pgt-IaaM was strongly induced in haustorial 
cells, and higher IAA levels were observed. Silencing of Pgt-
IaaM during Pgt infection on wheat via host-induced gene 
silencing (HIGS) compromised the virulence of Pgt, whereas 
transgenic Arabidopsis plants constitutively expressing Pgt-IaaM 
displayed increased accumulation of IAA and susceptibility to 
biotic stress. This suggests that Pgt produced IAA acts as a 
virulence promoting effector in this pathosystem (Yin et al., 2014).

Directional auxin transport is controlled by an efflux carrier 
complex containing the PIN-formed (PIN) family proteins 
(Robert and Friml, 2009). The RxLR effector penetration-specific 
effector 1 (PSE1) of the oomycete Phytophthora parasitica 
infecting Arabidopsis is transiently upregulated during penetration 
of host roots (Evangelisti et  al., 2013). The overexpression of 
PSE1 in Arabidopsis reduced auxin accumulation and increased 
susceptibility to P. parasitica. In addition, PSE1 expressing 
Arabidopsis plants displayed significantly enhanced accumulation 
of auxin exporters PIN4 and PIN7 at the root apex (Figure 1D; 
Evangelisti et  al., 2013). It is therefore proposed that PSE1 
promotes infection by altering auxin physiology (Evangelisti 
et  al., 2013). How PSE1 achieves this mechanistically remains 
to be  determined.

EFFECTORS TARGETING THE 
BRASSINOSTEROID PATHWAY

Brassinosteroids (BRs) are a class of polyhydroxylated steroidal 
phytohormones that are implicated in a wide range of  
plant physiological and developmental processes as well as 
plant defense responses (Clouse, 2011; Wang et  al., 2012).  
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It was shown that activation of BR signaling increases the 
susceptibility of A. thaliana and rice to Hpa and Pythium 
graminicola, respectively (Belkhadir et al., 2012; De Vleesschauwer 
et  al., 2012). BR insensitive 1 (BRI1) is a leucine-rich repeat-
receptor-like kinase (LRR-RLK), which perceives and transduces 
BR signals (Wang et  al., 2001). BR signaling also involves the 
Kelch-repeat containing protein phosphatase BRI1 suppressor 
1 (BSU1) (Mora-García et al., 2004). In A. thaliana, BR signaling 
regulates the tradeoff between plant growth and defense via 
modulating the transcription factors brassinazole-resistant 1 
(BZR1) and homolog of brassinosteroid enhanced expression2 
interacting with ibh1 (HBI1), two negative regulators of plant 
defense responses (Lozano-Durán and Zipfel, 2015). The 
oomycete P. infestans secretes the RxLR effector AVR2 during 
its biotrophic stage of potato colonization (Figure 1E; Gilroy 
et  al., 2011). AVR2 interacts with the phosphatase BSU-like 
protein1 (BSL1), which is homologous to A. thaliana BSU1, 
suggesting a possible link between AVR2 and BR signaling 
(Saunders et  al., 2012). Indeed, overexpression of AVR2  in 
potato constitutively activated the expression of several BR 
responsive genes including StCHL1, a basic helix-loop-helix 
(bHLH) transcription factor homologous to HBI1 in A. thaliana 
(Figure 1E; Turnbull et  al., 2017). Transient overexpression of 
either AVR2 or StCHL1 facilitated disease development of 
P. infestans on N. benthamiana, whereas silencing of the CHL1 
ortholog of N. benthamiana compromised susceptibility to 
P. infestans (Turnbull et al., 2017). It is hypothesized that AVR2 
hijacks StCHL1 to activate BR signaling and suppress plant 
immunity (Turnbull et al., 2017). This highlights a new strategy 
to suppress plant immunity via exploiting the tradeoff between 
plant growth and immunity.

EFFECTORS TARGETING THE 
CYTOKININ PATHWAY

Cytokinins (CKs) are N6-substituted adenine derivatives playing 
important roles in plant development and stress responses 
(Kieber and Schaller, 2018). The CK biosynthetic pathway 
involves adenylate isopentenyltransferase (IPT), cytochrome 
P450 monooxygenase and LONELY GUY (LOG) enzymes (Takei 
et  al., 2001, 2004; Sakakibara, 2006; Kurakawa et  al., 2007). 
CKs can also originate from degradation of modified tRNAs 
in a reaction catalyzed by tRNA-IPT (Miyawaki et  al., 2006). 
CK biosynthetic genes are detected in many plant pathogens, 
suggesting that CKs might be produced by pathogens to promote 
disease (Chanclud and Morel, 2016; Sorensen et  al., 2018).

The ergot fungus Claviceps purpurea produces large amount 
of CKs in axenic culture and during early infection. The deletion 
of CptRNA-IPT abolished the production of cis-zeatin (cZ) and 
reduced virulence while mutants lacking either a bifunctional 
CpIPT-LOG or CpP450 were unaffected in virulence (Hinsch 
et al., 2015, 2016). However, double mutants lacking CpIPT-LOG 
and CptRNA-IPT were severely attenuated in virulence, illustrating 
that both fungal CK production pathways contribute to virulence 
in this pathosystem (Hinsch et al., 2016). U. maydis also produces 
cZ-type CKs in axenic culture and in infected plant tissues 

(Bruce et  al., 2011; Morrison et  al., 2015). U. maydis mutants 
lacking tRNA-IPT were deficient in cZ synthesis and showed 
reduced virulence in seedling infection in comparison to wild 
type strains (Morrison et  al., 2017). Similarly, the deletion of 
CKS1 encoding tRNA-IPT in M. oryzae also led to a significant 
reduction of rice blast symptoms and increased plant defense 
responses (Chanclud et  al., 2016). The virulence defect of the 
CKS1 mutant could be  restored when CK was exogenously 
applied, reinforcing the link between CK production and 
pathogenicity (Chanclud et  al., 2016). Recently, a new class of 
cytokinins called Fusarium cytokinins was shown to be produced 
by the cereal pathogen Fusarium pseudograminearum (Sorensen 
et  al., 2018). Fusarium cytokinins acts as cytokinin agonists 
and could activate a histidine kinase 3 cytokinin receptor in 
a heterologous bacterial system. The expression of the biosynthetic 
gene cluster for Fusarium cytokinins was induced during 
F. pseudograminearum infection of barley, but a role in virulence 
has not yet been demonstrated (Sorensen et  al., 2018).

It is thus likely that in these fungal pathosystems CKs 
function as effectors to suppress host immune responses 
during colonization.

EFFECTORS TARGETING THE 
GIBBERELLIN PATHWAY

Gibberellins (GAs) were initially identified from Fusarium 
fujikuroi, which is causative for “bakanae” disease of rice 
seedlings (Wulff et  al., 2010). Later, GAs were also found to 
be produced by plants and shown to play vital roles in regulating 
plant growth and development (Yamaguchi, 2008). GA 
biosynthetic genes of F. fujikuroi are strongly induced in rice 
roots colonized by F. fujikuroi. In comparison to the 
GA-producing wild type strain, GA-nonproducing mutants 
lacking the entire GA biosynthetic gene cluster showed 
comparable root penetration and apoplastic growth but were 
compromised in further invasion of rice tissue, suggesting that 
secreted GA is used as effector for “bakanae” disease development 
(Wiemann et  al., 2013). However, the GA biosynthetic gene 
cluster is restricted to Fusarium species but GA production 
is only found in F. fujikuroi (Wiemann et al., 2013). It remains 
unclear how GA contributes mechanistically to the virulence 
of F. fujikuroi. In the M. oryzae/rice pathosystem, it has been 
demonstrated that mutants lacking GA inactivating enzyme 
elongated uppermost internode (EUI) were more susceptible 
to infection by M. oryzae, whereas mutants in gibberellin 
20-oxidase (GA20OX3) involved in GA synthesis showed 
increased rice blast resistance. This indicates that the GA 
pathway also plays a positive role in this pathosystem 
(Yang et  al., 2008; Qin et  al., 2013).

EFFECTORS TARGETING THE ABSCISIC 
ACID PATHWAY

Abscisic acid (ABA) is a sesquiterpenoid synthesized via two 
distinct pathways involving the proteins ABA1, ABA4, NCED, 
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ABA2, and ABA3 (Endo et al., 2014). It is an essential hormone 
regulating plant developmental processes and adaptive responses 
to diverse abiotic and biotic stresses (Cutler et  al., 2010). ABA 
has a negative role on plant resistance against some biotrophic 
filamentous pathogens, such as Hpa, Fusarium graminearum, 
M. oryzae, and Golovinomyces cichoracearum (Fan et  al., 2009; 
Jiang et  al., 2010; Buhrow et  al., 2016; Xiao et  al., 2017). On 
the other hand, plants require the ABA pathway for resistance 
against several necrotrophic pathogens, including Pythium 
irregulare, P. cucumerina, C. miyabeanus, and Alternaria 
brassicicola (Ton and Mauch-Mani, 2004; Adie et  al., 2007; 
Fan et  al., 2009; De Vleesschauwer et  al., 2010). Fungi like 
M. oryzae, U. maydis, and B. cinerea are able to synthesize 
ABA (Siewers et  al., 2006; Bruce et  al., 2011; Spence et  al., 
2015). An aba4 mutant of M. oryzae lacking one of the 
biosynthetic genes for ABA biosynthesis and producing reduced 
ABA levels was severely affected in appressoria formation on 
a hydrophobic surface in comparison to the wild type strain. 
Exogenous ABA application largely restored this defect (Spence 
et  al., 2015). Furthermore, the aba4 mutant lost the ability to 
infect rice. However, the aba4 mutant also displayed a strong 
growth defect and morphological abnormalities which could 
not be  complemented by external ABA (Spence et  al., 2015). 
So far, it has not been possible to separate the endogenous 
function from a function of ABA as virulence-promoting effector 
in this system.

EFFECTORS TARGETING 
PHYTOHORMONE CROSSTALK

Hormonal signaling pathways are often interconnected, and 
this can lead to synergistic or antagonistic functions (Weiss 
and Ori, 2007; Choi et  al., 2010; Jiang et  al., 2010; Argueso 
et  al., 2012; Pieterse et  al., 2012; Naseem et  al., 2014, 2015; 
Berens et  al., 2017). Examples are the antagonism between 
SA and JA pathway (Kunkel and Brooks, 2002; Takahashi et al., 
2004; Spoel and Dong, 2008), and the synergism between JA 
and ET pathways (Xu et  al., 1994; Lorenzo et  al., 2003; Zhu 
et al., 2011) in defense signaling. Furthermore, growth-promoting 
hormones rely on crosstalk with defense-related hormones to 
balance growth-defense tradeoffs (Pieterse et  al., 2009; Huot 
et al., 2014; Berens et al., 2017). In this context, fungal-derived 
phytohormones can be effectors directly influencing the crosstalk 
with other hormones. Interference with phytohormone crosstalk 
can also involve polysaccharide: the necrotrophic fungus B. cinerea 
secretes the exopolysaccharide (EPS) β-(1,3)(1,6)-D-glucan to 
promote infection of tomato (Figure 1B; Stahmann et al., 1995; 
El Oirdi et  al., 2011). Tomato leaves pretreated with EPS were 
more susceptible to B. cinerea and showed enhanced SA 
accumulation but decreased expression of JA-marker genes PI I 
and PI II (El Oirdi et  al., 2011). The expression of NPR1 was 
also induced after B. cinerea infection and knockdown of NPR1 
led to significantly increased expression of these two JA-marker 
genes. This suggests that EPS functions as an effector which 
activates SA signaling and inhibit the JA signaling pathway 
via NPR1 (Figure 1B; El Oirdi et  al., 2011).

CONCLUSIONS AND OUTLOOK

Studies in recent years have uncovered that most filamentous 
plant pathogens use interference with hormonal pathways as 
an effective strategy to promote colonization. Nearly, all 
phytohormone pathways can be  targeted with beneficial 
consequences for the pathogens. The mechanisms how 
filamentous plant pathogens induce changes in phytohormone 
levels and/or signaling have become more complex by realizing 
that many filamentous phytopathogens can also produce 
phytohormones or derivatives for host phytohormone mimicry. 
The regulation of hormone production and deployment by 
fungal plant pathogens is only beginning to surface and indicates 
that phytohormones can be  used as effectors during plant 
colonization. It is currently unknown why phytohormone 
effectors have so far not been detected in oomycete pathogens, 
which are phylogenetically related to brown algae but distinct 
from fungal lineages.

Currently, we  do not understand why some pathogens use 
protein effectors to target hormone biosynthesis or signaling, 
while others shift hormonal balances by producing hormones 
or hormone mimics. It is at least conceivable that the use of 
microbial hormones as virulence factors may make it difficult 
for the plant to mount defense responses as these would also 
target the respective endogenous plant pathways. This could 
suggest that phytohormone effectors might be  rather new 
additions to the battle between phytopathogens and their hosts. 
A comprehensive study on the evolution of such microbial 
traits will be  needed to settle this point in future.

Given the large effector repertoire of filamentous pathogens, 
it is only a small number of effectors that target phytohormone 
pathways. Currently, it appears that the SA pathway is most 
extensively exploited by filamentous plant pathogens. We consider 
that this might be  due to the fact that simple and sensitive 
readouts such as cell death or PR-1 expression have been 
developed that provide an easy way to visualize even subtle 
effects. Presently, only a small number of effectors have been 
shown to target other phytohormone pathways and for 
strigolactone signaling so far no modulating pathogen effectors 
have been detected. To uncover pathogen effectors which affect 
these pathways, it might be helpful to develop biosensors using 
promoter-fluorescent protein fusions for the activity of these 
pathways and employ such biosensors in high-throughput 
effectoromic studies to uncover effectors up or downregulating 
these reporter genes. This would also allow to uncover effectors 
with redundant functions in phytohormone signaling. With 
the advent of CRISPR-Cas9 technologies in filamentous 
pathogens, it should then become feasible to relate such redundant 
effectors with virulence. The fast-growing progress in multi-
omics of filamentous plant pathogens and techniques for 
identifying protein interactions will further accelerate the 
discovery of filamentous pathogen effector targets and the 
underlying mechanism for manipulating phytohormone pathways.

Given the prominent involvement of phytohormones in 
defense, it is not surprising that engineering phytohormone 
pathways has potential for field applications. However, the 
opposing effects of phytohormones on disease caused by 
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filamentous pathogens with different life styles do not allow 
to follow a straightforward strategy. Therefore, rather than 
simply increasing or decreasing hormone levels, it may be safer 
to modify effector targets by plant genome editing approaches 
like TILLING or CRISPR-Cas9 so that they can evade effector 
interference. This might also allow to get around the problem 
that higher levels of certain growth-related hormones will 
kick-off a trade-off between growth and defense. In addition, 
for real field situations, it needs to be kept in mind that plants 
are associated with a complex microbiome. So far, we  largely 
lack studies that address the importance of phytohormone 
signaling pathways with respect to defense when plants growing 
in the field receive a cocktail of different signals. Evidence is 
accumulating that the innate immune system of plants as a 
whole serves both pathogen elimination and controlled 
accommodation of beneficial microbes (Hacquard et al., 2017). 

This will make it necessary to explore the role of phytohormones 
in plant-microbe interactions in the context of filamentous 
plant pathogens living in more complex natural environments.
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