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To adapt to constantly changing environmental conditions, plants have evolved 
sophisticated tolerance mechanisms to integrate various stress signals and to coordinate 
plant growth and development. It is well known that inter-organellar communications play 
important roles in maintaining cellular homeostasis in response to environmental stresses. 
The endoplasmic reticulum (ER), extending throughout the cytoplasm of eukaryotic cells, 
is a central organelle involved in lipid metabolism, Ca2+ homeostasis, and synthesis and 
folding of secretory and transmembrane proteins crucial to perceive and transduce 
environmental signals. The ER communicates with the nucleus via the highly conserved 
unfolded protein response pathway to mitigate ER stress. Importantly, recent studies have 
revealed that the dynamic ER network physically interacts with other intracellular organelles 
and endomembrane compartments, such as the Golgi complex, mitochondria, chloroplast, 
peroxisome, vacuole, and the plasma membrane, through multiple membrane contact 
sites between closely apposed organelles. In this review, we will discuss the signaling 
and metabolite exchanges between the ER and other organelles during abiotic stress 
responses in plants as well as the ER-organelle membrane contact sites and their 
associated tethering complexes.

Keywords: membrane contact sites, endoplasmic reticulum, unfolded protein response, lipid exchange and 
transport, calcium homeostasis, reactive oxygen species

INTRODUCTION

Plants growing under natural habitats have to deal with various environmental stresses during 
their growth and development. Abiotic stresses such as extreme cold and hot temperatures, 
drought, salinity, and nutrient deficiency can greatly affect plant growth and crop productivity. 
Plants have evolved various sophisticated strategies to respond to different environmental stimuli 
at different levels from alternations in gene expression to changes in morphology (Nakashima 
et  al., 2009; Su et  al., 2013). The sensing and transduction of the environmental signals in 
stressed plants were intensively studied in the past several decades, revealing potential strategies 
to improve plant stress tolerance and agricultural productivity. It is generally believed that 
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plant cells sense external environmental stimuli by various 
sensors, which are localized on the plasma membrane (PM), 
in the cytosol, or inside organelles. These environmental sensors 
activate intracellular signaling cascades that involve Ca2+, lipids, 
reactive oxygen species (ROS), and phytohormones (Osakabe 
et  al., 2013; Zhu, 2016), ultimately inducing changes in gene 
expression, protein production, and metabolic pathways to 
enhance plant stress tolerance. Therefore, coordinated signaling 
between various intracellular compartments with distinct 
biochemical processes plays an important role in maintaining 
cellular homeostasis for the plant stress tolerance.

The endoplasmic reticulum (ER) is a central network of 
interconnected tubules and flattened cisternae that extend 
throughout the entire cytoplasm of the eukaryotic cells (Figure 1). 
The ER network occupies a large volume of the cytoplasm, with 
its membrane accounting for ~50% of total cellular membranes, 
and functions in protein processing and folding, lipid biosynthesis, 
and Ca2+ storage (Stefano and Brandizzi, 2018). In eukaryote 
cells, about one-third of newly synthesized proteins enter the 
ER where they are glycosylated, folded, and/or assembled into 
protein complexes. The ER houses several stringent quality control 
mechanisms that export only correctly folded and properly 
assembled proteins to continue their secretory journeys (Hetz 
et  al., 2015). However, protein folding in the ER is an error-
prone process that could easily be  disturbed by various abiotic 
and biotic stresses, leading to accumulation of mis/unfolded 

proteins in the ER and causing ER stress (Angelos et  al., 2017). 
Currently, the unfolded protein response (UPR) is widely considered 
as a significant intracellular signaling pathway that links the ER 
proteostasis with gene regulation in the nucleus to alleviate the 
ER stress. Given its characteristic dynamic architecture and its 
essential roles in producing proteins and lipids for other organelles 
and maintaining Ca2+ homeostasis, the ER makes numerous 
physical contacts with other organelles and endomembrane 
compartments (Figure 1; Stefano and Brandizzi, 2018; Wu et  al., 
2018). Recent studies have identified many so-called ER-membrane 
contact sites (MCSs) that facilitate exchanges of important 
metabolites and signaling molecules between the ER and various 
organelles (Prinz, 2014; Wang and Dehesh, 2018; Wu et al., 2018). 
In this review, we will discuss recent results on the inter-organellar 
communications between the ER and other organelles during 
plant abiotic stress responses as well as the ER-organelle physical 
contacts and their associated tethering complexes.

THE ENDOPLASMIC RETICULUM-
NUCLEUS INTERACTION VIA 
UNFOLDED PROTEIN RESPONSE

In addition to the physical ER-nuclear envelop connection (Figure 
1), the ER-nucleus interaction is mediated by a highly conserved 
signaling mechanism known as UPR, which is activated by 
accumulation of misfolded proteins in the ER. Because protein 
folding is an error-prone process that can easily be  disturbed 
by various environmental stresses, UPR is closely connected to 
the plant stress tolerance (Liu and Howell, 2016). In plants, the 
UPR pathway is principally mediated by two major branches 
that are conserved in mammalian cells (Howell, 2013). One arm 
is mediated by two homologous ER membrane-anchored bZIP-
family transcription factors, bZIP17 and bZIP28 that are activated 
by regulated intradomain proteolysis (Liu et  al., 2007a). bZIP17 
was originally identified as a transcription factor activated by 
salt stress (Liu et  al., 2007b), while bZIP28 was discovered to 
be  activated by heat stress (Gao et  al., 2008). Both bZIP17 and 
bZIP28 are type II transmembrane proteins with a single 
transmembrane domain (TMD) and a DNA-binding/transcriptional 
activation bZIP domain facing the cytosol, and a C-terminal 
domain inside the ER lumen (Sun et  al., 2013). In response to 
ER stress, bZIP17 and bZIP28 dissociate from the major ER 
luminal chaperone, binding immunoglobulin proteins (BiPs), and 
traffic from the ER to the Golgi where the two bZIP proteins 
are proteolytically processed by the Golgi-resident site-1 and 
site-2 proteases (S1P and S2P), thus releasing their N-terminal 
cytosolic domains that move into the nucleus (Andersson et  al., 
2007; Liu et  al., 2007b; Gao et  al., 2008; Srivastava et  al., 2012; 
Iwata et al., 2017). The nuclear-localized bZIP17/28 proteins bind 
to their target promoters to increase expression of genes encoding 
ER chaperones, folding catalysts, and components of the 
ER-associated degradation (ERAD) machinery, which work together 
to restore the ER homeostasis (Liu and Howell, 2010). Interestingly, 
high light intensity increases ER stress sensitivity of plants via 
a competitive inhibitory interaction of bZIP28 with LONG 
HYPOCOTYL5 (HY5), a bZIP protein that positively regulates 

FIGURE 1 | Interactions of the ER network with other organelles in plant 
cells. The dynamic ER network physically interacts with other subcellular 
compartments, such as the Golgi (cis- and trans-), mitochondria (Mit), 
chloroplasts (Chl), peroxisomes (PEX), vacuole (Vac), nucleus (Nuc), and the 
plasma membrane (PM) through MCSs. The pointed extensions of a 
peroxisome and a chloroplast represent peroxule and stromules, respectively. 
Question marks indicate MCSs that have not yet characterized. MCS-
enriched proteins are directly involved in physical tethering; mediate organelle 
biogenesis; and regulate exchanges of lipids, Ca2+, ROS, and other important 
metabolites and signaling molecules.
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light signaling but suppresses the UPR pathway (Nawkar et  al., 
2017). The other arm of the plant UPR pathway involves the 
unconventional splicing of the mRNA of another bZIP transcription 
factor, bZIP60, which is catalyzed by the ER membrane-anchored 
inositol-requiring enzyme 1 (IRE1) (Deng et al., 2011; Nagashima 
et al., 2011). IRE1 is the most conserved ER stress sensor among 
yeast, plants, and animals and is a dual-functional protein with 
both protein serine/threonine kinase and endoribonuclease (RNase) 
activities. Arabidopsis has two IRE1 homologs, IRE1a and IRE1b 
(Koizumi et  al., 2001). Under the ER stress, IRE1a and IRE1b 
can form homodimers or heterodimers to trigger their RNase 
activities, which splice the bZIP60 mRNA (Howell, 2013). The 
frame-shift splicing of the bZIP60 mRNA causes production of 
the active form of bZIP60 (bZIP60s, s for spliced) that lacks a 
transmembrane domain and can thus move into the nucleus to 
bind promoters of its target genes (Deng et  al., 2011; Nagashima 
et  al., 2011; Iwata and Koizumi, 2012). In addition to its bZIP60 
mRNA splicing role, the Arabidopsis IRE1s also participate in 
selective degradation of certain mRNAs of secretory pathway 
proteins and inhibitory proteins of the ER stress-induced autophagy, 
a process known as regulated IRE1-dependent decay of mRNAs 
(RIDD) (Mishiba et  al., 2013; Bao et  al., 2018). In plants, the 
ER stress responses are closely related to abiotic stress tolerance. 
Arabidopsis mutants defective in bZIP17, bZIP28, and/or bZIP60 
show increased sensitivity to various environmental stresses whereas 
overexpression of the active forms of the three bZIP proteins 
enhances the plant stress tolerance (Fujita et  al., 2007; Liu et  al., 
2007b; Kataoka et  al., 2017; Ruberti et  al., 2018). A recent study 
also implicated bZIP17 and a component of the Arabidopsis 
ERAD machinery in salt acclimation memory that enables plants 
to tolerate severe salt stress (Tian et  al., 2018).

THE ENDOPLASMIC RETICULUM-GOLGI 
RELATIONSHIP

The ER and the Golgi apparatus are the first two membrane 
compartments in the protein secretory pathway. Unlike the 
mammalian cells in which the ER and the Golgi apparatus are 
separated by the ER-Golgi intermediate compartment (ERGIC, 
also known as the vesicular-tubular cluster or VTC), the ER 
and the Golgi complex are often physically attached in plant 
cells at ER exit sites (ERES) (Figure 1; Sparkes et  al., 2009), 
although recent studies suggested the presence of an ERGIC-like 
compartment termed as GECCO for Golgi entry core compartment 
in plant cells (Ito et  al., 2012, 2018). The ER-Golgi interaction 
involves the coat protein complex II (COPII)-mediated cargo 
export from the ER and the COPI-mediated retrieval of ER-resident 
proteins from the Golgi. Due to the existence of high stringent 
quality control mechanisms, only the correctly folded and properly 
assembled proteins can be exported from the ER into the Golgi, 
whereas those incompletely-/misfolded and improperly assembled 
proteins are retained in the ER for chaperone-assisted refolding 
or removal by ERAD that involves cytosolic proteasomes (Brandizzi 
and Barlowe, 2013; Liu and Li, 2014). In the Golgi complex 
that includes the trans-Golgi network (TGN), the ER-derived 
protein cargos undergo N-glycan maturation and are sorted 

by vesicle-dependent/independent trafficking pathways to specific 
destinations to carry out their cellular functions. Live cell 
imaging revealed that the plant Golgi apparatus is a highly 
dynamic organelle with dispersed stacks of cisternae that are 
often physically attached to the ER tubules (Figure 1; Sparkes 
et  al., 2009). Additionally, the shape and architecture of the 
Golgi complex are flexible enough to adapt to the functional 
status of different plant cells (Dupree and Sherrier, 1998). These 
functional and physical connections between the ER and the 
Golgi complex not only ensure normal cellular activities but 
are also essential for the survival of plant cells during 
stress conditions.

Recent studies have shown that several Arabidopsis mutants 
deficient in the ER-Golgi/Golgi-ER vesicle trafficking exhibit 
the ER stress and are hypersensitive to abscisic acid (ABA) 
and salt stress (Zhao et al., 2013, 2018; Pastor-Cantizano et al., 
2018), suggesting that the bidirectional vesicle transport between 
the ER and Golgi is crucial for maintaining cellular homeostasis 
and adaptation to environment stresses. In addition to vesicular 
trafficking, accumulating evidence indicates the existence of 
non-vesicular transport connecting the ER and Golgi. Three-
dimensional electron microscopy and Forster resonance energy 
transfer-based fluorescence lifetime imaging microscopy revealed 
the physical contacts between the ER subdomains and trans-
Golgi/TGN in mammalian cells (Ladinsky et al., 1999; Venditti 
et  al., 2019b). No ER-trans-Golgi/TGN (referred hereinafter 
as ER-TG) contact has been observed so far in plant cells, 
but laser trap was used to reveal the ER-cis-Golgi interaction 
in plant cells, which occurs at ERES where the mobile Golgi 
stacks are associated with COPII components (Figure 1; Dasilva 
et  al., 2004; Hawes et  al., 2008; Sparkes et  al., 2009). AtCASP, 
a homolog of a yeast/mammalian transmembrane Golgi protein 
known as CCAAT-displacement protein alternatively spliced 
product (CASP) was recently identified as a component of a 
novel tethering complex that connects ERES with the cis-Golgi 
to form the so-called “mobile secretory unit” (Osterrieder 
et  al., 2017). The cis-Golgi-localized AtCASP could interact 
with ERES-enriched proteins to mediate the ER-cis-Golgi 
tethering that likely increases the efficiency of COPII vesicle-
mediated cargo transport via the so-called “hug-and-kiss” 
mechanism (Kurokawa et  al., 2014). Identification of potential 
AtCASP-binding proteins that are enriched at ERES could 
discover additional components of the ER-cis-Golgi tethering 
complex that might help to resolve the controversy on the 
mechanism of the ER-Golgi transport (Robinson et  al., 2015) 
and explain the “sticky” nature of the plant cis-Golgi cisterna 
(Sparkes et  al., 2009).

Mammalian cells lack the ER-cis-Golgi physical contact but 
contain multiple ER-TG contact sites that are implicated in 
the non-vesicle-mediated lipid exchange (Figure 1; Mesmin 
et  al., 2019; Venditti et  al., 2019b). Several lipid transfer  
proteins (LTPs) localized at the ER-TG interface were identified, 
such as CERT (ceramide-transfer protein), FAPP2 (four-phosphate 
adaptor protein 2), and OSBP (oxysterol-binding protein), which 
mediate the vesicle-independent ER-TG transport  of ceramide, 
glucosylceramide, and cholesterol (coupled with counter-transport 
of phosphatidylinositol-4-phosphate), respectively (Mesmin et al., 
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2019; Venditti et al., 2019a). All three LTPs share similar protein 
domains important for the ER-TG bridging, including a 
TGN-binding N-terminal pleckstrin homology (PH) domain, 
a central FFAT (diphenylalanine in an acidic tract) motif 
exhibiting specific binding to the ER-localized vesicle-associated 
membrane protein-associated proteins (VAPs), and the C-terminal 
oxysteroid-binding domain. Almost nothing is known about 
the ER-TG contact in plant cells, but the Arabidopsis genome 
encodes multiple homologs of CERT/FAPP2/OSBP (Umate, 
2011) that lack the FFAT motif and a total of 12 VAP homologs 
known as plant VAP homologs (PVAs) (Sutter et  al., 2006). 
One of the Arabidopsis OSBP-related proteins (ORPs), ORP3a, 
is localized to the ER via its interaction with an ER-localized 
PVA, PVA12 through a WFDE (tryptophan-phenylalanine-
aspartate–glutamate) motif located on the surface of ORP3a 
(Saravanan et  al., 2009). It remains to be  investigated whether 
or not plant cells have the ER-TG physical contacts, and if so, 
whether some of the Arabidopsis homologs of CERT/FAPP2/
OSBP interact with ER-localized PVAs to mediate the ER-TG 
tethering and the ER-TG lipid/sterol exchanges.

THE ENDOPLASMIC  
RETICULUM-MITOCHONDRIA 
CONNECTION

Mitochondrion is an intracellular double-membrane organelle 
found in all eukaryotic cells. It not only provides cellular energy 
and metabolic intermediates but also participates in many other 
cellular processes, such as ROS signaling, Ca2+ buffering, cell 
differentiation, and apoptosis (Labbé et al., 2014). Under changing 
environmental conditions, plants have to adjust their metabolism 
to balance their energy production and consumption through 
mitochondria. Recently, a growing body of evidence suggests 
that mitochondria and the ER cooperate in several biosynthetic 
pathways and exchange signaling molecules during stress 
conditions (Mueller and Reski, 2015; Wang and Dehesh, 2018). 
It is well known that environmental stresses, such as heat, 
drought, salinity, and high light intensity, increase production 
and accumulation of ROS in mitochondria, which not only 
serves an important intracellular signal (at low concentrations) 
to regulate various cellular pathways but also causes oxidative 
damage (at high concentrations) to the cellular components 
(Suzuki et  al., 2012; Das and Roychoudhury, 2014). ROS can 
also be  generated in the ER lumen, which has a higher redox 
potential (~100  mV) than that of other cellular compartments 
(Birk et  al., 2013). The oxidative protein folding process  
in the ER is mediated by protein disulfide isomerases (PDIs) 
and a flavin adenine dinucleotide-binding protein, ER 
oxidoreductase 1 (Ero1), which produces H2O2 as a result of 
electron flow from target proteins via the PDI-Ero1 couple to 
O2 (Tu and Weissman, 2002; Santos et  al., 2009; Higa and 
Chevet, 2012). Due to the H2O2 permeability of the ER membrane 
(Ramming et  al., 2014), the ER-induced oxidative stress can 
influence the production of mitochondrial ROS likely mediated 
by the ER-mitochondria physical contacts (Bhandary et  al., 
2012; Murphy, 2013; Zeeshan et  al., 2016). On the other hand, 

the mitochondrial ROS can induce expression of the ER UPR 
target genes (Ozgur et  al., 2015).

The ER-mitochondria contact is also essential to build the 
membrane system of mitochondria that import most lipids from 
other organelles (Li-Beisson et  al., 2017). The ER-mitochondria 
tethering allows lipid exchanges between two apposed membranes 
and/or permits access of the membrane-localized enzymes to 
lipid substrates on the tethered membrane (Michaud et al., 2017). 
In yeast, the ER-mitochondria encounter structure (ERMES) is 
the most well-defined ER-mitochondria tethering complex that 
facilitates the ER-mitochondria phospholipid exchanges (Figure 
1; Michel and Kornmann, 2012; Lang et  al., 2015). The yeast 
ER-mitochondria tethering also involves another complex known 
as the ER membrane complex (EMC)-translocase of outer 
membrane 5 kDa subunit (TOM5) complex (Lahiri et al., 2014). 
In mammalian cells, the ER-mitochondria interface, known as 
mitochondria-associated ER membrane (MAM), has more 
complicated protein complexes involved in physical tethering, 
Ca2+ regulation, lipid exchanges, mitochondrial fission, autophagy, 
and apoptosis (Lee and Min, 2018). In plants, despite visual 
evidence for the ER-mitochondria physical interaction that likely 
plays a role in mitochondrial fission and the ER-mitochondria 
coordinated biosynthesis and exchanges of phospholipids (Figure 
1; Mueller and Reski, 2015; Michaud et  al., 2017), no homologs 
of the yeast ERMES were found in plants that also lack homologs 
of a majority of known mammalian MAM proteins (Duncan 
et  al., 2013; Michaud et  al., 2017). The Arabidopsis genome 
does encode homologs of three of the six components (EMC1, 
2, 3, 5, 6, and TOM5) of the EMC-TOM5 complex (Michaud 
et al., 2016) and homologs of mitofusin1 (MFN1), a mitochondrial 
fusion GTPase that interacts with its ER-localized homolog MFN2 
to mediate the ER-mitochondria tethering (Detmer and Chan, 
2007; de Brito and Scorrano, 2008). However, the two Arabidopsis 
MFN1/2 homologs, DRP3A/3B and FZL, are not involved in 
mitochondrial fusion (Arimura, 2018), and there is no report 
on the involvement of the three homologs of the yeast EMC-TOM5 
complex in the ER-mitochondria tethering in plant cells. A recent 
study identified a Physcomitrella patens protein, MELL1 
(mitochondria-ER-localized LEA-related LysM domain protein 
1) that regulates the numbers of the ER-mitochondria contact 
sites and could thus be a component of the plant ER-mitochondria 
tethering complex (Mueller and Reski, 2015). It will be interesting 
to determine whether MELL1 is conserved in higher plants and 
if so, whether the MELL1 homologs are a component of the 
yet to be  identified ERMES/MAM in higher plants and required 
for the phospholipid biosynthesis/exchange of the ER and 
mitochondria. The lipid exchanges between the ER and 
mitochondria also involve lipid trafficking between the inner 
membrane (IM) and outer membrane (OM) of the mitochondria. 
A recent study implicated a mitochondrial transmembrane 
lipoprotein (MTL) complex containing the TOM complex and 
IM-localized AtMIC60, an Arabidopsis homolog of the yeast 
MIC60 that is a component of the well-studied mitochondria 
contact site and cristae organizing system (MICOS) (Pfanner 
et  al., 2014), in the IM-OM lipid trafficking (Michaud et  al., 
2016). It is thus possible that the TOM complex, through its 
interaction with IM-localized AtMIC60 capable of extracting 
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membrane lipid and the ER-localized homologs of the yeast 
EMC-TOM5 complex, functions as a crucial component of a 
plant ER-mitochondria tethering complex to mediate lipid 
exchanges or coordinate lipid biosynthesis.

The ER-mitochondria physical contact is also essential for the 
Ca2+ cross talk between the two organelles, which is often influenced 
by ROS. In plants, a variety of environmental stimuli trigger Ca2+ 
transients, such as the influx of Ca2+ into the mitochondrial matrix, 
to regulate gene expression and metabolism (Carraretto et  al., 
2016). However, the ER is generally considered the main intracellular 
Ca2+ store. The Ca2+ channels located at the ER-mitochondria 
contact sites, such as the mitochondrial outer membrane-localized 
VDAC (voltage-dependent anion-selective channel) and the ER 
membrane-anchored inositol triphosphate-dependent calcium 
channel IP3R, are believed to mediate the transport of Ca2+ between 
the ER and mitochondria in response to ER stress in mammalian 
cells (Lee and Min, 2018). The mammalian ER-localized Ca2+-
release channel ryanodine receptor is activated by Ero1-generated 
H2O2 (Anelli et  al., 2012). It remains to be  determined if the 
ER ROS also regulates the ER Ca2+ release in plant cells that 
lack the homologs of the mammalian ER Ca2+ efflux channels 
IP3R and ryanodine receptor (Stael et  al., 2012).

Two recent studies revealed another interesting mechanism 
by which the ER interacts with the mitochondria in plant 
cells. The mitochondrial retrograde regulation (MRR), which 
transmits the stress-induced mitochondrial signal into the 
nucleus to increase production of certain mitochondrial proteins 
for sustaining or restoring the mitochondrial functions during 
stressful conditions (Dojcinovic et  al., 2005), was shown to 
involve two ER-anchored NAC transcription factors, ANAC013 
and ANAC017 (De Clercq et al., 2013; Ng et al., 2013). ANAC013 
knockdown lines and an ANAC017 knockout mutant were 
hypersensitive to stress than their wild-type controls. It was 
hypothesized that the mitochondrial stress somehow activates 
yet unknown proteases that proteolytically activate the two 
ER-anchored ANAC proteins that can subsequently translocate 
into the nucleus (Wang et  al., 2018c). It will be  interesting 
to test if the proteolytic activation of the two NAC-type 
transcription factors occurs at ERMES/MAM in plant cells. 
Proteomic experiments with stressed Arabidopsis plants expressing 
non-cleavable variants of ANAC013/017 might lead to 
identification of potential components of the Arabidopsis ERMES/
MAM. It is also interesting to note that the two ANACs were 
recently implicated in coordinating mitochondrial and chloroplast 
functions via their physical interactions with a nuclear protein 
Radical-induced Cell Death1 (RCD1) that was known to 
be  regulated by ROS (Shapiguzov et  al., 2019).

THE ENDOPLASMIC  
RETICULUM-PLASMA MEMBRANE 
CONTACT

The plasma membrane (PM), a lipid bilayer embedded with 
proteins, is an essential cellular component for the plant stress 
tolerance. It not only serves as a physical barrier to shield 

cellular contents from the extracellular environment and controls 
the flux of solutes and macromolecules but also contains a 
wide range of sensors and receptors that perceive and transmit 
all kinds of environmental signals. As discussed above, the 
ER not only produces, folds, and assembles the PM-localized 
channels/transporters and receptors/sensors but also delivers 
lipids to the PM and other intracellular compartments via 
vesicle-dependent and/or independent mechanisms.

The ER-PM contact sites (EPCSs) are evolutionarily conserved 
microdomains that are important for the ER-PM communications, 
such as lipid homeostasis, and Ca2+ influx (Figure 1; Saheki and 
De Camilli, 2017). The composition of EPCSs and their molecular 
functions have been well established in the yeast and mammalian 
cells in the last decade (Stefan, 2018). The yeast EPCSs consists 
of six proteins: three tricalbins, Increased sodium tolerance protein 
2 (Ist2), and the ER-resident protein Scs2/22 (Suppressor of 
choline sensitivity 2/22) (Manford et  al., 2012). The mammalian 
EPCSs contains three tricalbin homologs known as E-Syts for 
extended synaptotagmin (Giordano et al., 2013) and two Scs2/22 
homologs, VAP-A and VAP-B, but lacks an Ist2 homolog (Selitrennik 
and Lev, 2016). In plants, the EPCS complex is the best known 
protein tether of the plant ER MCSs and consists of VAP27, 
VAP-Related Suppressor of TMM (VST), an actin-binding protein 
NETWORKED 3C (NET3C), actin filaments, and microtubule 
networks (Figure  1; Wang et  al., 2014, 2016, 2017, 2018a; Ho 
et  al., 2016). In particular, a phospholipid-binding protein 
Synaptotagmin1 (SYT1), which is the plant homolog of tricalbin/E-
Syts, was found in the plant EPCS complex (Perez-Sancho et  al., 
2015) and subsequently used as a marker for the plant EPCS 
for microscopic studies (McFarlane et  al., 2017; Lee et  al., 2019). 
SYT1 has been previously described as an essential component 
for maintaining the PM integrity, especially under conditions of 
high risks of membrane disruption such as osmotic shock, freezing, 
and salt stresses (Schapire et al., 2008). Other studies have shown 
that SYT1 is required for tethering the ER to the PM and plays 
an essential role in regulating the ER remodeling and the stability 
of EPCSs (Siao et  al., 2016). A recent study revealed that the 
ER-anchored SYT1 directly binds the PM-localized 
phosphatidylinositol 4,5-bisphosphate [PI (4,5)P2] to establish 
EPCSs (Lee et  al., 2019), thus revealing a physiological function 
of the stressed-induced PM accumulation PI(4,5)P2 (Heilmann, 
2008). It is likely that the protein-lipid tether could be  disrupted 
or strengthened by additional SYT1/PI(4,5)P2-binding proteins.

EPCSs are now widely accepted as important sites for the 
non-vesicular lipid transport, which appears to be  the major 
transport route of certain lipid species (Lev, 2012). Plants 
exposed to abiotic stresses have to adapt their membrane lipid 
composition and fluidity to changing environmental conditions 
by adjusting the relative amounts of various lipids, such as 
phospholipids and galactolipids (Hou et  al., 2016). It is well 
known that lipids synthesized in the ER need to be  delivered 
to other membranes for assembly of biological membranes or 
for lipid-mediated signaling cascades. It is proposed that the 
lipid transfer proteins (LTPs) are localized at the EPCSs and 
function as dynamic tethers between the two membranes with 
their lipid transfer module regulating lipid exchange (Dickson 
et  al., 2016; Quon et  al., 2018). Mammalian VAPs are known 
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to interact with proteins involved in lipid transfer (Gatta et al., 
2015) while SYT1 contains a synaptotagmin-like mitochondria-
lipid-binding protein (SMP) domain that is implicated in lipid 
transfer in mammals (Schauder et  al., 2014). It is likely that 
the plant EPCSs are also involved in the ER-PM lipid transfer 
and thus play important role in plant stress tolerance by 
modulating the composition and fluidity of the PM. The EPCS 
is also important for the intracellular Ca2+ homeostasis in 
mammalian cells. The ER-PM contacts are critically implicated 
in generating the cytosolic Ca2+ signals, which is likely mediated 
by Ca2+ release from the ER in response to the PM-perceived 
environmental stimuli, and in replenishing the depleted ER 
Ca2+ store (Chung et  al., 2017). Given the importance of Ca2+ 
signaling in plant stress response (Ranty et  al., 2016), it would 
be  interesting to investigate the role of EPCSs in regulating 
the stress-triggered intracellular Ca2+ dynamics in plants.

In addition to the EPCS-mediated exchange of lipids and 
Ca2+, there are other mechanisms that connect the ER physiology 
to the PM function in plant stress response. A recent study 
implicated a PM-localized NAC transcription factor, ANAC062, 
in the ER-nucleus-mediated UPR pathway (Yang et  al., 2014). 
It is quite possible that the ER stress could increase the EPCS 
formation, altering the local membrane lipid composition to 
enhance the proteolytic processing of the PM-anchored ANAC062 
(Seo et  al., 2010). The cleaved ANAC062 can then move into 
the nucleus to regulate UPR-related genes, thus helping to 
mitigate the ER stress. Other studies found that the increased 
cytosolic Ca2+ caused by the stress-triggered Ca2+ release from 
the ER could activate the PM-localized NADPH oxidase, which 
was known to be  induced by UPR and is required to survive 
ER stress (Ozgur et  al., 2015, 2018; Angelos and Brandizzi, 
2018). It is quite tempting to speculate that the Ca2+-mediated 
activation of the PM-localized NADPH oxidase might require 
EPCSs. It is important to note that the plant NADPH oxidase 
is the most well-studied ROS enzymatic system and plays a 
key role in ROS signaling involved in plant growth, stress 
tolerance, and plant immunity (Marino et  al., 2012).

One unique type of the plant ER-PM contact occurs at 
plasmodesmata (PD), which consist of the cylindrically apposed 
PM and the tightly compressed ER (desmotubule) with unique 
lipid/protein compositions (Grison et  al., 2015; Leijon et  al., 
2018). The PD-PM and the desmotubule are connected by spoke-
like elements (Ding et  al., 1992; Nicolas et  al., 2017) whose 
molecular identities remain to be  defined, but recent studies 
suggested the PD association of AtSYT1 (Levy et  al., 2015) and 
VAP27 (Wang et  al., 2016). The space between the PD-PM and 
the desmotubule constitutes the actual channel (the cytoplasmic 
sleeve) that transports a wide range of molecular cargos across 
cell walls of neighboring cells (Tilsner et  al., 2016). Given the 
key role of PD in generating cytosolic and membrane continuity 
that are essential for growth and development, stress tolerance, 
and plant defense, the permeability of PD (also known as size 
exclusion limit), governed by the size of the cytoplasmic sleeve 
and distribution of spokes that creates nanochannels, is constantly 
regulated by various of developmental and environmental signals 
(Sun et  al., 2019). Although PD exhibits the essential features 
of MCS (Scorrano et  al., 2019), it remains to be  investigated if 

the ER-PM contacts in PD play any role in inter-organelle 
exchanges of lipids, Ca2+, and/or other signaling molecules.

THE ENDOPLASMIC  
RETICULUM-CHLOROPLAST JUNCTION

Chloroplasts conduct photosynthesis and produce energy for 
plant growth, development, and defense. In addition, chloroplasts 
are essential for synthesizing certain amino acids, lipids, and 
fatty acids. Like mitochondrion, chloroplast is also a 
semiautonomous organelle with its own genome and a majority 
of chloroplast proteins are encoded by the nuclear genome and 
imported from the cytosol. Accordingly, the plant cells execute 
anterograde and retrograde communications between the 
chloroplast and the nucleus to respond to changing environment 
(Watson et  al., 2018). Under stress conditions, ROS such as 
singlet oxygen and superoxide were generated from electron 
transport chain in the chloroplasts, which cause oxidative damage 
to the photosynthetic organelle. Consequently, the chloroplasts 
use ROS and several metabolites, such as 3′-phosphoadenosine 
5′-phosphate (PAP) (Chan et  al., 2016) and methylerythritol 
cyclodiphosphate (MEcPP) (Xiao et al., 2012), to relay the stress 
signal into the nucleus to reprogram gene expression for damage 
mitigation and stress acclimation (Woodson and Chory, 2012). 
The chloroplast-nucleus signaling might also involve chloroplast-
nucleus contact sites consisting of stromules, the stroma-filled 
tubular protrusions from the chloroplast outer membrane 
(Figure 1; Kohler and Hanson, 2000; Hanson and Hines, 2018), 
which facilitate translocations of chloroplast-sequestered 
transcription factors into the nucleus in response to various 
stresses (Caplan et  al., 2008; Sun et  al., 2011; Foyer et  al., 
2014). Stromules were also known to be  associated with the 
ER, Golgi apparatus, PM, mitochondria, and peroxisomes (Kwok 
and Hanson, 2004; Schattat et  al., 2011; Hanson and Hines, 
2018); however, the physiological significance of these associations 
remains to be  investigated in the coming years.

The ER and chloroplasts are the two major sites of lipid 
biosynthesis (van Meer et  al., 2008; Hurlock et  al., 2014) and 
the ER-chloroplast interaction is essential for lipid homeostasis 
in plant cells under normal growth condition and in response 
to various environmental stresses (Negi et  al., 2018; Lavell and 
Benning, 2019). The ER-chloroplast-mediated lipid biosynthesis 
involving de novo synthesis of fatty acids (FAs) in chloroplasts, 
the chloroplast-ER transport of FAs, the ER-catalyzed assembly 
and modification of glycerolipids that move back to chloroplasts 
for producing galactolipids (Benning and Ohta, 2005), the major 
chloroplast lipids (Dormann and Benning, 2002). Studies in 
recent years strongly suggest that the chloroplast-ER physical 
contact sites, better known as plastid-associated membranes 
[PLAMs, (Andersson et  al., 2007)], are directly involved in the 
lipid exchange (Tan et  al., 2011; Block and Jouhet, 2015). At 
least two groups of proteins were detected at the ER-chloroplast 
membrane contact sites (Tan et  al., 2011). The first group 
includes several members of the trigalactosyldiacylglycerol (TGD) 
protein family, which form a bacterial-type ABC transporter 
for transporting lipids from the ER to the thylakoid membrane 
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(Xu et  al., 2010; Wang et  al., 2012; Fan et  al., 2015). The 
second group includes lipid processing enzymes such as 
phosphatidylcholine (PC) synthase and CLIP1 lipase/acylhydrolase 
that directly act on lipids from the contacting ER-chloroplast 
membranes (Mehrshahi et al., 2013, 2014). In addition, a recent 
study indicated the presence of several lipid transfer proteins, 
including Azelaic Acid Induced 1 (AZI1), EArly Arabidopsis 
Aluminum Induced 1 (EARLI1), and Defective in Induced 
Resistance 1 (DIR1), at the ER-chloroplast contact site that 
facilitates the movement of a lipid-derived signal for systemic 
acquired resistance against pathogens (Cecchini et  al., 2015).

Various abiotic stresses, such as high light exposure and 
wounding, can lead to accumulation of MEcPP in chloroplasts, 
which serves as a retrograde signaling metabolite that  
relays the chloroplast stress signal into the nucleus to alter 
gene expression (Xiao et  al., 2012). Intriguingly, the  
chloroplast-synthesized MEcPP signal could activate the 
transcription of IRE1 and bZIP60, two key components  
of the ER stress-triggered UPR pathway via a Ca2+- 
dependent transcription factor calmodulin-binding transcription 
activator3 (Walley et al., 2015; Benn et al., 2016). In addition, 
a loss-of-function mutation in an Arabidopsis gene encoding 
the chloroplast stearoyl-acyl carrier protein desaturase,  
which introduces double bonds into FAs, constitutively  
activates the expression of a known ER-UPR marker gene 
BIP3 (Iwata et  al., 2018). A loss-of-function mutation in the 
Arabidopsis SAL1 gene, which encodes a chloroplast/
mitochondria-localized bifunctional enzyme with both 
3′(2′),5′-bisphosphate nucleotidase (converting PAP to AMP) 
and inositol polyphosphate 1-phosphatase activities, attenuated 
ER stress response and exhibited hyposensitivity to ER stress 
inducers (Xi et  al., 2016). Together, these findings provide 
additional support for the involvement of the photosynthetic 
organelle in regulating the ER homeostasis.

THE ENDOPLASMIC  
RETICULUM-PEROXISOME 
COLLABORATION

Peroxisome is a semiautonomous single-membrane-bound 
organelle that participates in a wide range of biochemical processes, 
particularly the β-oxidation of fatty acids and metabolism of 
hydrogen peroxide (Smith and Aitchison, 2013). In plants, 
peroxisomes also perform other important functions such as 
the glycolate cycle and photorespiration, secondary metabolism, 
hormone (auxin and jasmonic acid) biosynthesis, metabolism 
of ROS and reactive nitrogen species (RNS) (Nyathi and Baker, 
2006; Hu et  al., 2012; Sandalio and Romero-Puertas, 2015). 
Notably, peroxisomes are highly dynamic organelles that alter 
their morphology, proliferation, and metabolic activities in response 
to environmental signals (Honsho et  al., 2016; Kao et  al., 2018). 
The membrane extensions of peroxisomes, termed as peroxules 
(Figure 1), are often observed when plants are exposed to 
exogenous H2O2 or high-intensity light (Sinclair et  al., 2009; 
Barton et  al., 2013; Jaipargas et  al., 2016). Salt stress, 

heavy  metals,  and herbicide application were known to increase 
the metabolic activity and proliferation rate of peroxisomes 
(Palma et  al., 1987; McCarthy et  al., 2001; Mitsuya et  al., 2010; 
McCarthy-Suárez et  al., 2011; Fahy et  al., 2017).

It has been well known that peroxisome dynamics such as 
elongation, fission, and degradation as well as metabolic changes 
require their constant collaborations and communications with 
other intracellular organelles (Hu et  al., 2012; Del Rio and 
Lopez-Huertas, 2016; Kao et  al., 2018). The ER-peroxisome 
connection has been known for many years as peroxisomes 
are formed by budding from specialized ER regions and/or 
by growth and fission of preexisting peroxisomes in yeast and 
mammalian cells (Hu et  al., 2012; Kao et  al., 2018). Although 
there is no clear evidence to support the ER budding model 
for the plant peroxisomes (Mullen and Trelease, 2006; Trelease 
and Lingard, 2006), the ER is at least involved in the plant 
peroxisome biogenesis by providing membranes, lipids, and 
certain peroxisome membrane proteins (PMPs) to preexisting 
or fission-created nascent peroxisomes (Hu et  al., 2012).

The plant peroxisomes were shown to be  closely associated 
with the ER by early microscopic observation (Huang et  al., 
1983) and could be  physically attached to the ER as suggested 
by live cell imaging of dynamic behaviors of peroxisomes (and 
peroxules) and the ER in Arabidopsis (Mathur, 2009; Sinclair 
et  al., 2009; Barton et  al., 2013). However, it remains unknown 
whether the observed ER-peroxisome contiguity in Arabidopsis 
is mediated by the peroxisome-ER physical tether that was first 
described in yeast. The yeast peroxisome-ER tethering complex 
consists of a peroxisome biogenic protein, peroxin 3 (PEX3), 
localized on the ER and peroxisome, and the peroxisome inheritance 
factor Inp1 that serves as a bridge to link the ER and peroxisome-
localized PEX3 (Knoblach and Rachubinski, 2013). The PEX3-
Inp1-PEX3 trimeric complex plays a key role in partitioning 
peroxisomes in dividing yeast cells and controlling the peroxisome 
population (Knoblach et al., 2013). The mammalian peroxisome-ER 
tether consists of the ER-localized VAPs and the PMPs with 
acyl-CoA binding domains (ACBDs) and is thought to regulate 
peroxisome proliferation and to facilitate the ER-peroxisome lipid 
exchange (Hua et  al., 2017; Costello et  al., 2017a,b). Despite 
microscopic observations of the ER-peroxule association (Sinclair 
et al., 2009; Barton et al., 2013), a plant peroxisome-ER tethering 
complex remains to be  discovered. The identification of a 
peroxisome-ER tether is expected to shed light on the functional 
collaboration between the two dynamic organelles, especially the 
mechanisms of peroxisome biogenesis/maintenance and their 
dynamic responses to various environmental stresses.

It was recently suggested that peroxisomes, ER, and 
mitochondria could form a “redox triangle” that uses tethering 
complexes to assemble a hypothetical “redoxosome” that transmits 
intercompartmental redox signals to regulate ROS metabolism 
in response to cellular signals and environmental cues (Yoboue 
et  al., 2018). A plant “redoxosome” should include protein 
tethering complexes of chloroplasts with the ER, mitochondria, 
and peroxisome. The chloroplast works together with 
mitochondria and peroxisomes in photorespiration involving 
inter-organellar metabolite exchanges while the chloroplast 
tubular extensions, stromules, are thought to interact with the 
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ER, mitochondria, and peroxisomes (Mathur et al., 2012; Hanson 
and Hines, 2018). Fluorescent microscopic studies and proteomic 
experiments with a plant genetic model system such as Arabidopsis 
could make a significant contribution to our understanding 
of such a “redoxosome” in plants. Dynamic physical associations 
of multiple organelles aided by organelle extensions and tethering 
complexes might be a common cellular mechanism that facilitates 
exchanges of ROS/RNS, Ca2+, lipids, and other metabolites/
signaling molecules to mount coordinated cellular responses 
to changing environment.

THE ENDOPLASMIC  
RETICULUM-VACUOLE ASSOCIATION

Vacuoles are single-membrane-bound organelles that are filled 
with a wide range of inorganic ions and organic molecules 
(Figure 1). In plants, at least two types of vacuoles have been 
identified, including protein storage vacuoles (PSVs) and lytic 
vacuoles (LVs) (Paris et  al., 1996; Zhang et  al., 2014). PSVs 
usually serve as a warehouse for seed storage proteins that 
are synthesized in the ER during seed maturation, while LVs 
occur in the vegetative tissues and contain acidic contents and 
degradative enzymes with lysosome-like properties (Shimada 
et  al., 2018). It has been shown that the vacuoles play crucial 
roles in storage of nutrients and metabolites, detoxification, 
pH homeostasis, and stress tolerance (Muntz, 2007; Viotti, 
2014). Maintaining proper turgor pressure in vacuoles is required 
for morphological alterations of cells during plant development, 
and the rapid vacuolar uptake or unloading of various ions 
and metabolites allows plants to efficiently cope with 
environmental stresses. For instance, AtNHX1 is an Arabidopsis 
tonoplast-localized Na+/H+ antiporter that moves excessive Na+ 
from the cytosol into the vacuole, lowering the water potential 
of the vacuole and driving water flow into the cells to maintain 
plants’ growth under high salinity condition (Apse et al., 1999). 
It is well known that stomatal opening or closure is associated 
with vacuole morphology changes in guard cells, highlighting 
the important roles of vacuole in plant response to abiotic 
stresses, such as high temperature and drought (Gao et al., 2005; 
Tanaka et  al., 2007; Bak et  al., 2013).

Many vacuolar proteins and metabolites are synthesized and 
processed in the ER and transported to the vacuoles. One 
well-established pathway for vacuolar transport is the COPII-
mediated vesicle trafficking from the ER to the Golgi and the 
post-Golgi transport that involves the plant TGN and the 
pre-vacuolar compartment (PVC, also known as MVB for 
multi-vesicular body) (Xiang et  al., 2013; Brillada and Rojas-
Pierce, 2017). Recent studies indicated the presence of a direct 
Golgi-independent ER-vacuole trafficking route involving the 
machinery of autophagy (Viotti et  al., 2013; Michaeli et  al., 
2014), which degrades and recycles damaged/misfolded/
aggregated proteins and defective/excessive intracellular organelles 
(Wang et al., 2018b). More importantly, autophagy is an integral 
part of the ER stress-triggered UPR. Under the ER stress, ER 
components bud from the ER and form autophagosome with 

the aid of appropriate cargo receptors, and the autophagosome 
subsequently fuses with the lytic vacuole to release the ER 
cargos for degradation via the classical macroautophagy pathway 
(Liu et  al., 2012; Michaeli et  al., 2014; Yang et  al., 2016). A 
special process of autophagy, ER-phagy (Schuck et  al., 2014) 
or reticulophagy (Liu et  al., 2012), is activated to degrade 
damaged ER fragments when UPR fails to mitigate the ER 
stress. Further studies revealed that the ER stress-induced 
reticulophagy in Arabidopsis requires one of the ER-localized 
UPR sensor IRE1b but not bZIP60 (Liu et  al., 2012).

Given the presence of a direct ER-vacuole trafficking route 
for transporting metabolites, proteins, and membranes in plant 
cells, it is quite possible that plant cells have multiple ER-vacuole 
contact sites that serve important cellular functions, especially 
when responding to environmental stresses. In yeast, the 
ER-vacuole contact site (Figure 1) [known as nuclear ER-vacuole 
junctions or NVJs (Pan et  al., 2000)] has been well studied 
and is implicated in the biogenesis and transport of lipid 
droplets in response to metabolic stress (Hariri et  al., 2018). 
The yeast NVJ is established by interaction between one of 
the two ER membrane proteins, Nvj1 and Ltc1 (lipid transfer 
at contact site1), and an armadillo repeat protein Vac8 that 
requires palmitoylation for its localization to the vacuolar 
membrane (Pan et  al., 2000; Murley et  al., 2015). The yeast 
NVJ tether also contains Nvj2, one of the seven SPM domain-
containing proteins that are localized at MCSs, including three 
at ERMES and the remaining three (tricalbins) at EPCSs 
(Toulmay and Prinz, 2012). Despite essential roles of the vacuoles 
in plant growth, stress tolerance, and plant defense (Shimada 
et al., 2018), little is known about the plant ER-vacuole contact 
sites and their associated tethering complexes. Arabidopsis lacks 
a homolog of Nvj1 or Ltc1 but contains >100 armadillo repeat 
proteins (Sharma et  al., 2014) and five tricalbin homologs 
known as AtSYTA-E or AtSYT1–5 (Craxton, 2004). Live cell 
imaging of fluorescently tagged ER/tonoplast-localized proteins 
coupled with optical tweezers (Sparkes, 2018) could reveal 
potential ER-vacuole contact sites and their dynamic changes 
in response to environmental stresses. Given the widespread 
occurrence of SMP-containing proteins at multiple MCSs in 
yeast and mammalian cells (Toulmay and Prinz, 2012), 
identification of a plant ER-vacuole tethering complex might 
be facilitated by confocal microscopic examination of fluorescently 
tagged AtSYT1–5 followed by biochemical studies of an AtSYT 
localized at the ER-vacuole contact sites.

CONCLUSION

Accumulating evidence supports important roles of the 
ER-organelle interactions in plant stress tolerance, which involves 
exchanges of metabolites and signaling molecules at specialized 
MCSs with unique tethering complexes. Further studies that 
combine live cell imaging, proteomics, and plant genetics are 
needed to fully understand the composition and dynamic 
regulation of these MCSs in response to environmental changes 
and their additional physiological functions.
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