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Salt stress causes retarded plant growth and reduced crop yield. A complicated
regulation network to response to salt stress has been evolved in plants under
high salinity conditions. Ethylene is one of the most important phytohormones,
playing a major role in salt stress response. An increasing number of studies have
demonstrated that ethylene modulates salt tolerance through reactive oxygen species
(ROS) homeostasis. Ascorbic acid (AsA) is a non-enzymatic antioxidant, contributing
to ROS-scavenging and salt tolerance. Here, we mainly focus on the advances in
understanding the modulation of ethylene and AsA on ROS-scavenging under salinity
stress. We also review the regulators involved in the ethylene signaling pathway and
AsA biosynthesis that respond to salt stress. Moreover, the AsA pool is affected by
many environmental conditions, and the potential role of ethylene in AsA production is
also extensively discussed. Novel insights into the roles and mechanisms of ethylene
in AsA-mediated ROS homeostasis will provide critical information for improving crop
salt tolerance.
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INTRODUCTION

According to the report from the Food and Agricultural Organization of the United Nations, there
will be challenges related to the productivity of crops to supply more food for an additional 2.3
billion people by 2050. Crop yield is greatly affected by various abiotic stresses like drought, high
salinity, cold, and heat (Zhu, 2016). For instance, high salinity stress disturbs plant physiological
processes through osmotic stress and ionic toxicity, causing reductions in both crop growth and
yield (Yang and Guo, 2018a,b). For better utilization of salt-affected lands, it is of great help to
develop crops with improved salt tolerance through molecular-assistant breeding to reveal the
underlying mechanisms involved in plant response to salt stress.

Salt stress responses generally correlate with the regulations of phytohormones, including
abscisic acid (ABA), jasmonic acid, gibberellin, and ethylene (Julkowska and Testerink, 2015).
Although there exists opposite modulation between monocot and dicot plants (Peng et al., 2014;
Yang et al., 2015), increasing investigations have revealed that ethylene-conferred salt tolerance is
mediated by deterring reactive oxygen species (ROS) homeostasis (Jiang et al., 2013; Li et al., 2014;
Peng et al., 2014; Yang and Guo, 2018b). Under salt stress, ROS, including hydrogen peroxide,
superoxide anions and hydroxyl radicals, accumulate and damage cellular structure (Ahanger
et al., 2017). ROS plays a dual role in response to stresses as toxic by products and major signal
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(Qi et al., 2018), and the excess ROS could be scavenged through
enzymatic and non-enzymatic antioxidant defense systems (You
and Chan, 2015). Accumulating investigations have revealed that
ascorbic acid (AsA) is an essential compound of non-enzymatic
antioxidant in plants, functioning in plant growth, hormone
signaling, and stress response (Bulley and Laing, 2016; Mellidou
and Kanellis, 2017; Vidal-Meireles et al., 2017). AsA plays
especially critical roles in the fine control of ROS homeostasis
to improve salt tolerance (Smirnoff, 2000; Shalata and Neumann,
2001; Zhang et al., 2012; Wang J. et al., 2013), implying that AsA
has an essential modulation in salt response. Considering there
are some reviews about ethylene-modulated salt response (Zhang
M. et al., 2016), this mini review will focus on the advances in
understanding the modulation of ethylene on AsA biosynthesis
and ROS-scavenging under salinity stress.

The Regulation of Ethylene on ROS
Homeostasis Is Tightly Associated With
the Plant Response to Salt Stress
Gaseous phytohormone ethylene plays an important role in
mediating numerous specific growth and development processes
(Wang et al., 2018), especially in response to various stress
conditions (Wang F. et al., 2013; Dubois et al., 2018). The
biosynthesis and signaling pathway of ethylene have been well
established (Guo and Ecker, 2004). After recognition of ethylene
by endoplasmic reticulum membrane-associated receptors, the
interaction of ethylene receptors with CONSTITUTIVE TRIPLE
RESPONSE1 (CTR1) will be released, and the phosphorylation of
CTR1 on ETHYLENE INSENSITIVE 2 (EIN2) will be liberated.
Then, the C-terminal of EIN2 is generated by an unknown
mechanism and is transported to cytoplasmic processing-body
(P-body) to repress translation of EIN3 BINDING F-BOX1/2
(EBF1/2), which mediates the proteasomal degradation of EIN3
and EIN3-LIKE 1 (EIL1), resulting in the stability of EIN3/EIL1
proteins and promotion of ethylene response (Li et al., 2015).
APETALA2/ETHYLENE RESPONSE FACTORS (AP2/ERFs)
are one of the most important transcription factor families,
regulating multiple developmental and stress response processes
(Phukan et al., 2017), most of which are downstream targets of
ethylene signaling (Liu et al., 2016).

Ethylene has long been known for modulating salt stress
response (Cao et al., 2007). For instance, blocked ethylene
signaling confers reduced salt tolerance to Arabidopsis (Achard
et al., 2006; Peng et al., 2014). ein3 eil1 double mutants and other
ethylene signaling-related mutants showed enhanced sensitivity
to salt stress. In contrast to this modulation, ethylene displays
a negative role in rice (Yang et al., 2015). OsEIL1 and OsEIL2
RNAi transgenic plants displayed increased salt tolerance. The
regulation of ethylene biosynthesis also plays different roles
in salt tolerance between Arabidopsis and rice (Jiang et al.,
2013; Li et al., 2014). Ethylene Overproducer 1 (ETO1) plays a
positive role in salt response through promoting ROS generation,
followed with Na+/K+ homeostasis modulation in Arabidopsis.
However, SALT INTOLERANCE 1 (SIT1) negatively regulates
salt response due to activation on MITOGEN-ACTIVATED
PROTEIN KINASE 3/6 (MPK3/6) in rice, which promotes

ethylene and ROS overproduction (Table 1). Thus, the different
mechanisms of ethylene-directed salt response between monocot
and dicot plants remain in need of research. Subsequent advances
indicate that ROS homeostasis is essential for ethylene regulation
of plant growth and stress response (Steffens, 2014; Zhong et al.,
2014; Yang et al., 2017). ROS is a double-edged sword during salt
stress response. On the one hand, ROS act as important signal
molecules to activate downstream metabolic pathways. Previous
studies demonstrate that ROS burst via RESPIRATORY BURST
OXIDASE HOMOLOG D (RbohD) and RbohF is essential
for the Na+/K+ homeostasis in Arabidopsis (Ma et al., 2012),
and ethylene-induced ROS production through transcriptional
regulation on AtRbohF confers enhanced salt tolerance to
the ethylene overproduced mutant eto1 (Jiang et al., 2013).
On the other hand, ethylene signaling component EIN3/EIL1
activates ROS-scavenging gene expression to deter excess ROS
accumulation and to increase salt tolerance (Peng et al., 2014).
Similarly, the effects of ethylene signaling downstream factors on
ROS are inconsistent during different stages of various stresses.
For example, ERF74 promotes ROS burst in the early stages of
various stresses through the regulation of gene expression of
RbohD, followed with induction of ROS-scavenging-related genes
(Yao et al., 2017). However, ethylene inducible factor TERF1
improves stress tolerance through reduced ROS content (Zhang
H. et al., 2016). Therefore, fine-tuning of ethylene biosynthesis
and signaling on ROS homeostasis are critical for salt tolerance.

Additionally, our previous studies verified several downstream
regulators of ethylene signaling in salt response and ROS
homeostasis. For example, ETHYLENE AND SALT INDUCIBLE
ERF GENE 1 (ESE1), a direct target gene of EIN3, positively
regulates salt tolerance and coordinates with EIN3 to activate
downstream salt-related gene expression in Arabidopsis (Zhang
et al., 2011); and JERF3, an ethylene-induced gene, enhances salt
tolerance via direct modulation on the gene expressions
of SUPEROXIDE DISMUTASE (SOD) and CARBONIC
ANHYDRASE (CA) in tomato to eliminate ROS, which
also confers drought and osmotic stress tolerance to transgenic
rice with heterologous expression of JERF3 (Wu et al., 2008;
Zhang et al., 2010; Table 1). Thus, identification of more
ethylene signaling downstream regulators participating in ROS
homeostasis under salt stress is necessary for elucidating the
regulation of ethylene on ROS and salt response.

The Scavenging Role of AsA on ROS
Homeostasis Contributes to Salt
Tolerance
AsA, also known as vitamin C, is a low molecular weight
antioxidant, functioning as a component of non-enzymatic
scavenging of ROS in plant growth and stress tolerance (Smirnoff,
2000; Conklin, 2004; Akram et al., 2017). It has been reported
that AsA improves salt tolerance in various species, including
rice, potato, tomato, and citrus (Shalata and Neumann, 2001;
Hemavathi et al., 2010; Kostopoulou et al., 2015; Qin et al.,
2016). The L-galactose pathway is the main pathway of AsA
biosynthesis in plants, and most of the genes in this pathway
have been identified (Bulley and Laing, 2016). Investigations
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TABLE 1 | Genes involved in ethylene- and AsA-mediated ROS homeostasis in response to salt stress.

Genes Plant species Treated material Concentrations
of NaCl

Treatment
time

Treatment method Regulation on salt
stress

ROS
metabolism

ETO1, RBOHF Arabidopsis 4-week-old
soil-grown plants

350 mM 7 days Watering with NaCl
solutions

Positive Generation

EIN3/EIL1, SIED1,
POD

Arabidopsis 5-d-old seedlings
on MS medium

200 mM 3 days Transferring to MS
medium with NaCl

Positive Scavenging

ESE1 Arabidopsis 5-d-old seedlings
on MS medium

100 mM 7 days Transferring to MS
medium with NaCl

Positive –

JERF3, SOD Tobacco 5-d-old seedlings
on MS medium

150 mM − Transferring to MS
medium with NaCl

Positive Scavenging

ERF98, VTC1 Arabidopsis 5-d-old seedlings
on MS medium

180 mM 5–7 days Transferring to MS
medium with NaCl

Positive Scavenging

CSN5B Arabidopsis Germinated seeds
on MS medium

100 mM 10 days Transferring to MS
medium with NaCl

Negative Generation

SIZF3 Tomato 5-week-old
soil-grown plants

50–125 mM 21 days Watering with NaCl
solutions

Positive Scavenging

OsEIL1/OsEIL2 Rice 8/9-d-old seedlings
in hydroponic
culture solution

200 mM 5 days Transferring to
NaCl-containing culture
solution

Negative –

SIT1, MPK3/6 Rice 10-d-old seedlings
in hydroponic
culture solution

200–250 mM 4 days Transferring to
NaCl-containing culture
solution

Negative Generation

also have elucidated the regulation via the L-galactose pathway
of AsA biosynthesis, including the modulations on the AsA
biosynthesis enzyme activities and stabilities at transcriptional
and translational levels (Laing et al., 2015). One of these
regulators is calmodulins-like 10, which interacts with AsA
biosynthesis enzyme phosphomannomutase (PMM) to modulate
enzyme activities and AsA pool (Cho et al., 2016), which
suggested the role of calcium (Ca2+) in AsA biosynthesis.
It has been known that Ca2+ signaling is triggered by ROS
accumulation (Rentel and Knight, 2004) and Ca2+ wave is
induced under salt stress (Choi et al., 2014; Liu et al.,
2018). A chloroplast protein, QUASIMODO1 (QUA1), functions
upstream of a thylakoid-localized Ca2+ sensor, CAS, to mediate
Ca2+ signaling under salt stress (Zheng et al., 2017). Additionally,
AsA could trigger increase of cytosolic Ca2+ in Arabidopsis
as a signaling molecule (Makavitskaya et al., 2018), suggesting
the association between Ca2+ sensor and AsA-mediated ROS
scavenging during salt responses, and feedback regulation of
Ca2+ signaling and ROS homeostasis.

The regulation factors of AsA biosynthesis also play a
role in salt response. Our previous investigations have found
that ethylene-induced factor AtERF98 enhances salt tolerance
due to transcriptional activation on gene expressions of AsA
biosynthesis enzymes, especially direct binding to the promoter
of a key enzyme of AsA biosynthesis encoding gene VTC1
(Zhang et al., 2012). Meanwhile, we also identified the post-
transcriptional modulation of COP9 SIGNALOSOME SUBUNIT
5B (CSN5B) on VTC1 in Arabidopsis (Wang J. et al., 2013; Li
et al., 2016), elucidating a mechanism of light/dark effects on
AsA contents. Loss-of-function mutant csn5b, with more AsA
content and less ROS pool, displays increased salt tolerance,
suggesting the positive regulation of AsA on salt response. Recent
studies showed that salt induced zinc-finger protein SIZF3,

which interferes with the interaction between CSN5B and VTC1,
simultaneously promotes AsA accumulation and enhances salt
tolerance (Li et al., 2018; Table 1). Thus, increasing AsA content
is a potential approach for improving plant salt tolerance.

The Integration of Ethylene in AsA
Production Finetunes ROS Homeostasis
Under Salt Stress
As discussed above, both ethylene and AsA could enhance salt
tolerance via regulation of ROS homeostasis. Previous reports
have indicated that ethylene in many cases maintains a low
level of ROS contents under salt stress through the enzymatic
pathway (Wu et al., 2008; Peng et al., 2014; Zhang W. et al.,
2016). Moreover, the non-enzymatic pathway of scavenging
ROS also participates in ethylene-mediated salt response, such
as AtERF98, suggesting that the modulation of ethylene on
ROS elimination is alternatively dependent on non-enzymatic
antioxidant (Zhang et al., 2012).

There are many environmental factors affecting AsA
biosynthesis, such as light (Fukunaga et al., 2010), circadian
rhythm (Dowdle et al., 2007), and high temperature (Richardson,
2004). CSN5B, identified in our previous studies (Wang J. et al.,
2013), is a subunit of photomorphogenic COP9 signalosome
(Gusmaroli et al., 2004), which acts together with COP1,
COP10, and DET1 to repress photomorphogenesis (Yanagawa
et al., 2004). This research suggest that CSN5B-regulated AsA
biosynthesis is a part of photomorphogenesis. Intriguingly,
ethylene has functions in COP1 nucleocytoplasmic partitioning
(Yu et al., 2013, 2016), indicating a possible link between ethylene
and light-regulated AsA biosynthesis. It was reported that ABA-
INSENSITIVE 4 (ABI4) mediates AsA-regulated plant growth
(Kerchev et al., 2011) and ethylene production via transcriptional
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FIGURE 1 | The modulation of ethylene signaling and AsA biosynthesis regulators on ROS homeostasis in response to salt stress. Ethylene is accumulated and
plays dual roles in ROS homeostasis under salt stress. On one hand, ethylene promotes ROS production to active Na+ and K+ transport through upregulating
Rbohs gene expression. In the other hand, salt stress enhances EBF1/EBF2 degradation through EIN2C-dependant translational regulation to increase EIN3/EIL1
protein levels, activating gene expression of EIN3 direct binding targets (ESE1, SIED1, and POD) and ethylene response factors (JERF3 and ERF98) to regulate salt
tolerance via ROS scavenging. ERF98 positively regulates salt tolerance via transcriptional activation of AsA biosynthesis gene VTC1. Moreover, CSN5B, a subunit of
photomorphogenic COP9 signalosome, contributes to AsA biosynthesis and salt responses due to modulation on VTC1 degradation. SIZF3 also confers salt
tolerance through mediating the interaction between CSN5B and VTC1. This research indicates that ROS accumulation under salt stress could be eliminated
through enzymatic and non-enzymatic pathways, in both of which ethylene signaling is involved. However, the understanding of ethylene roles in AsA biosynthesis is
yet limited. ABI4 negatively regulates ethylene synthesis and AsA production, which supply a possible mechanism coordinating ABA and ethylene to regulate AsA
biosynthesis under salt stress. Ca2+ signaling could be induced by both ROS signaling and participates in AsA biosynthesis modulation through PMM. Arrows and
lines with bars indicate activation and inhibition, respectively. Dotted lines indicate indirect regulations.

repression of ACS in Arabidopsis (Dong et al., 2016). In this
regard, ethylene seems to have crosstalk with ABA to modulate
AsA production (Figure 1). However, the mechanisms for these
modulations are yet to be elucidated.

CONCLUSION AND PERSPECTIVES

Emerging evidence provides the understanding of the roles
of ethylene and AsA in salt tolerance through fine-tuning
ROS homeostasis. Ethylene biosynthesis could be induced
under salt stress, followed with ROS accumulation through
transcriptional activation of Rbohs gene expression, in which
ROS functions as a signal to regulate Na+/K+ homeostasis.
Excessive ROS is toxic to plants, and ethylene also performs a
scavenging role on ROS homeostasis under salt stress through
signaling pathways, including the stability of EBF1/EBF2 and
transcriptional regulation of EIN3/EIL1 on downstream direct or
indirect regulators such as ESE1, SIED1, POD, JERF3, and ERF98.

Ca2+ signaling, as a second messenger, could be induced by both
ROS and AsA-mediated ROS balance, and participates in AsA
biosynthesis modulation (Figure 1). The antagonistic effect of
ethylene on ROS synthesis and scavenging under salinity stress
is due to different functions of ROS at different developmental
stages and in different tissues (Jiang et al., 2013; Peng et al.,
2014). Additionally, non-enzymatic antioxidant AsA and the
modulators involved in AsA biosynthesis confer to salt tolerance
through reduced ROS accumulation (Figure 1; Wang J. et al.,
2013; Qin et al., 2016; Li et al., 2018). However, the individual
or crosstalk of ethylene and AsA regulation mechanisms on
salt responses remain in need of further research. For example,
although the components of the ethylene signaling pathway
are conserved in Arabidopsis and rice (Yin et al., 2017), the
underlying mechanisms of ethylene signaling in response to
salt stress are different. Similarly, the effect of ethylene on
plant growth is opposite in light and dark, such as hypocotyl
elongation (Yu and Huang, 2017). Moreover, emerging research
demonstrates that light plays a pivotal role in AsA synthesis
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(Fukunaga et al., 2010; Wang J. et al., 2013). These findings
suggest a complex network regulated by ethylene signaling
under different growth conditions. Further engagement is
needed to determine whether ethylene and light coordinate
AsA production to maintain ROS homeostasis during salt
response. Furthermore, it is widely recognized that ABA and
ethylene are simultaneously involved in stress responses (Kumar
et al., 2016). ABA signaling component ABI4 mediates AsA-
regulated plant growth (Kerchev et al., 2011) and inhibits
ethylene biosynthesis (Dong et al., 2016; Figure 1). Nevertheless,
the crosstalk between ethylene and ABA in the control
AsA pool is unclear. Proper redox homeostasis is necessary
for plant growth under salt stress; thus, making clear the
detailed mechanisms of ethylene and AsA in maintaining
ROS homeostasis will provide new insights for salt-tolerant
genetic improvement.
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