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The accurate assessment of rice yield is crucially important for China’s food security
and sustainable development. Remote sensing (RS), as an emerging technology, is
expected to be useful for rice yield estimation especially at regional scales. With the
development of unmanned aerial vehicles (UAVs), a novel approach for RS has been
provided, and it is possible to acquire high spatio-temporal resolution imagery on a
regional scale. Previous reports have shown that the predictive ability of vegetation index
(VI) decreased under the influence of panicle emergence during the later stages of rice
growth. In this study, a new approach which integrated UAV-based VI and abundance
information obtained from spectral mixture analysis (SMA) was established to improve
the estimation accuracy of rice yield at heading stage. The six-band image of all studied
rice plots was collected by a camera system mounted on an UAV at booting stage and
heading stage respectively. And the corresponding ground measured data was also
acquired at the same time. The relationship of several widely-used VIs and Rice Yield
was tested at these two stages and a relatively weaker correlation between VI and yield
was found at heading stage. In order to improve the estimation accuracy of rice yield at
heading stage, the plot-level abundance of panicle, leaf and soil, indicating the fraction of
different components within the plot, was derived from SMA on the six-band image and
in situ endmember spectra collected for different components. The results showed that
VI incorporated with abundance information exhibited a better predictive ability for yield
than VI alone. And the product of VI and the difference of leaf abundance and panicle
abundance was the most accurate index to reliably estimate yield for rice under different
nitrogen treatments at heading stage with the coefficient of determination reaching 0.6
and estimation error below 10%.

Keywords: rice, yield, remote sensing (RS), unmanned aerial vehicle (UAV), vegetation index (VI), spectral mixture
analysis (SMA)
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INTRODUCTION

Rice (Oryza sativa L.) is one of the most important grain crops
in the world, especially in China. There are more than half of the
China’s population regarding rice as the staple food (Xiao et al.,
2002). The accurate estimation of rice yield is of significance to
ensure food security and promote sustainable development.

Remote sensing (RS) is a technique which can obtain the
information about an object without making physical contact
with the object (Wikipedia1) and it can efficiently obtain
canopy spectra data in a non-destructive way, which carries
valuable information indicating the canopy interaction with
solar radiation such as vegetation absorption and scattering
(Thenkabail et al., 2011). The vegetation canopy spectra are
closely related to vegetation growth. In the visible range,
vegetation has strongly absorption of light due to the pigments
and presents as low reflectance (Woolley, 1971). But in the near-
infrared (NIR) range, vegetation reflectance is relatively high and
affected by thick plant tissues and canopy structure (Gausman
et al., 1969). A series of studies have been developed to relate
the vegetation spectra to vegetation growth parameters such
as chlorophyll content (Gitelson et al., 2006; Wu et al., 2008;
Feret et al., 2011), leaf area index (LAI) (Broge and Leblanc,
2001; Viña et al., 2011) and biomass (Thenkabail et al., 2000;
Hansen and Schjoerring, 2003), and thus a lot of vegetation
indices (VIs) calculated from reflectance of different spectra
ranges (Hatfield et al., 2008) have been proposed to accurately
estimate these parameters. For example, Peng et al. (2013) used
Enhanced Vegetation Index (EVI) and Wide Dynamic Range
Vegetation Index (WDRVI) obtained from MODIS to accurately
estimate the gross primary productivity in crops with coefficients
of variation below 20% in maize and 25% in soybean (Peng et al.,
2013). Li et al. (2014) applied several red-edge based spectral
indices to estimate plant nitrogen uptake with the coefficient
of determination above 0.76. Parametric statistical approaches
based on VIs are by far the simplest and most studied variable
estimation approaches and have been widely used in monitoring
crop growth (Verrelst et al., 2015). And the changes of crop
growth status, which can be effectively monitored by spectral
measures, directly determine its ultimate yield. Therefore, VIs
have also exhibited good potential in remote estimation of crop
yield especially at the large scales (Rahman et al., 2012; Sun
et al., 2017). Becker-Reshef et al. (2010) estimated the wheat
yield in Kansas and Ukraine with a 7% error by using time
series Normalized Difference Vegetation Index (NDVI) data
from MODIS. Holzman et al. (2014) came up with a new method
to estimate regional crop yield using the Temperature Vegetation
Dryness Index (TVDI) with the RMSE values ranged from 12 to
13% for soybean and 14 to 22% for wheat. Sakamoto et al. (2014)
mapped U.S. corn yields successfully using Wide Dynamic Range
Vegetation Index (WDRVI) derived from timeseries MODIS
data with the estimation error below 30% at the state level.
Generally, VI-based methods are the mainstream approach for
crop yield prediction, and a lot of regression algorithms of using
VIs to estimate crop yield were established including simple

1https://en.wikipedia.org/wiki/Remote_sensing

linear functions and complex non-linear functions (Tucker et al.,
1980). Many experiments showed that the use of appropriate
VI was the key to crop yield estimation instead of the complex
function structures in VI-based methods (Gholizadeh et al.,
2015). Therefore, it is particularly important for crop yield
evaluation to get the exact VIs.

However, there may be a considerable discrepancy between
pixel sizes of RS images (e.g., 1 km for MODIS satellite image)
and much smaller sizes of croplands (e.g., usually 33 m × 20 m
in South China) due to the limitation of the spatial resolution as
well as the landscape fragmentation (Gong et al., 2018). In this
case, one pixel of a RS image may contain several land cover
types and the signal of this pixel (mixed pixel) is the outcome of
various land cover components that have significantly different
spectra. VI, derived from the spectra of such mixed pixels,
may encompass the unexpected information of the components
not related to yield, which could lower the precision of yield
estimation. The mixed pixel is always a problem that have to
be discussed in the application of RS technique. Even for the
high spatial resolution images, the problem of mixed pixel still
exists because of the smaller cropland components such as flower,
fruit and grain. This problem is more obvious when addressing
rice yield prediction with RS data in VI-based method. Rice is
a type of grain crop, the panicle will gradually emerge in paddy
rice field when rice steps into reproductive phase and may last
until maturation. In the early stage of rice panicle emergence,
the panicle was bright green and scarcely distributed in rice
canopy, while rice leaves were still the dominant component
in paddy rice field. With the continuous growth of rice, the
amount of panicle increased and its color gradually changed to
yellow. Since rice panicle had the dramatically different spectra
from rice leaves, the remotely detected canopy spectra of rice
after panicle emergence were greatly mixed by panicle and leaf
spectra, and the accuracy of estimated crop growth parameters
in VI-based method would decrease. Zhou et al. (2017) found
that the appearance of the rice panicle enhances the difficulty of
LAI estimation and yield prediction in the later growth stages of
rice. And Sakamoto et al. (2011) found the same result in rice
that the color index performed well-before the booting stage but
poorly in the late growth stages. Harrell et al. (2011) reported
that the reduced predictive ability at heading stage was most
likely associated with the uneven emergence of panicles into the
sensor field of view. These studies showed that the canopy spectra
remotely obtained from rice in late growth stages were susceptible
to the interference of uneven emergence of panicles, and the
factor of spectral mixture that influence the rice yield estimation
must be considered.

Spectral mixture analysis (SMA) was extensively used to
quantify the spectral contributions from different components
in a mixed pixel. It assumed that the spectrum of a mixed pixel
was a linear or non-linear combination of its constituent spectral
components (called endmember) weighted by their subpixel
fractional cover (called abundance) (Somers et al., 2011). Once
the pure spectra of endmembers were obtained, the fraction of
each endmember within a mixed pixel can be estimated based on
its mixed spectra (Bioucas-Dias et al., 2012). SMA has been widely
applied in RS for evaluating vegetation properties. Gitelson et al.
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(2002) developed an approach to estimate vegetation fraction in
sampling zones based on measured spectra of two endmembers
(bare soil and dense vegetation). Lobell and Asner presented
a SMA approach that employs time series of MODIS data to
estimate subpixel fractions of land cover types with R2 reaching
0.8 (Lobell and Asner, 2004). Therefore, SMA can be a good
tool to analyze the influence of spectral mixture to rice yield
estimation and it also has good potential to improve the accuracy
of rice yield estimation by combining with VIs.

In recent years, unmanned aerial vehicles (UAVs) have become
an increasingly used platform for RS application in Precision
agriculture due to its high spatial and temporal resolutions
(Zarcotejada et al., 2013; Candiago et al., 2015; Fang et al., 2016;
Aasen and Bolten, 2018). And the UAV-collected data is playing a
more and more important role in monitoring crop growth. Based
on multi-band images obtained by an UAV system, this study
explores to improve VI-based approach for rice yield estimation
by combining with SMA.

MATERIALS AND METHODS

Study Area
The study site was located at the Rice Experiment and
Research Base of Huazhong Agricultural University near Wuxue
City, Hubei Province, China (30.1117◦N, 115.5892◦E). In this
investigation, the data from 24 rice plots was studied – Figure 1A.
They were of the size about 20 m2 including around 330
plants and all planted with the same hybrid of rice. The field
management for these plots were similar except that different
levels of nitrogen fertilizer were applied. Eight levels of nitrogen
fertilizer (0, 3, 5.5, 8.5, 11, 14, 16.5, and 19.5 kg/ha) were utilized,
and each level was repeated on three randomly distributed
plots – Figure 1B. The growing period for rice in our study was
from June to September, and field experiments were conducted
during booting (13 August, 2015) and heading (29 August,
2015) stages of rice growth. At these two stages, rice has
gradually completed the transformation from vegetative period
to reproductive period. There was no obvious panicle in rice field
at booting stage; on the contrary, the panicle began to emerge at
heading stage. During the course of each experiment, one UAV
flight was arranged to obtain the image of all rice plots. After
the UAV flight (from 11:00 am to 2:00 pm), the corresponding
ground measurements were carried out in situ immediately.

Field Data Collection
The LAI and leaf chlorophyll content were measured at booting
(13 August, 2015) and heading (29 August, 2015) stage of
rice growth. Ground rice canopy LAI was measured using a
SunScan canopy analysis system (Delta-T Devices, Ltd., Burwell,
Cambridge, United Kingdom) under windless conditions and
stable light levels. For each plot, three LAI readings were
acquired and their average represented the canopy LAI of the
plot. A SPAD-502 Chlorophyll Meter (Soil and Plant Analyzer
Development Chlorophyll Meter, Spectrum Technologies, Inc.,
Plainfield, IL, United States; abbreviated as SPAD) was utilized
to measure the leaf chlorophyll content of rice. Five positions

were selected in each plot, and the rice leaf chlorophyll content
was measured in each position. For each position in plot, three
SPAD values of top layer leaf, middle layer leaf, and bottom
layer leaf were recorded and the average SPAD indicated the
rice leaf chlorophyll content of the position. And the plot level
leaf chlorophyll content was the average of five SAPD values in
five positions.

At the heading stage of rice, some samples of typical ground
features were collected and their spectra were measured as the
endmember spectra used for SMA. The spectra of six kinds
of endmember were measured using an ASD Field Spec 4
spectrometer (Analytical Spectral Devices Inc., Boulder, CO,
United States), including top layer leaf (TL), bottom layer leaf
(BL), top layer panicle (TP), bottom layer panicle (BP), dry soil
(DS), and wet soil (WS). Samples of different endmember were
collected from the studied area and their spectra were measured
in situ immediately, and the measurements were carried out
in a stable light condition after UAV flight. For soil spectra
collection, we walked into the rice field and selected several
representative sample-collecting spots in the ridges between
plots. The measurement of soil spectra was conducted using
ASD probe pointing to the ground vertically at the appropriate
height to make sure the field of view was full of wet or dry soil
with no other land cover features, and the averaged spectra were
used as soil spectra. In the same way, the panicle spectra were
obtained with ASD probe pointing downward approximately
10 cm above the panicle samples. Since the rice panicle was
small and granular, the samples of panicle were put on a black
background and evenly spread. As for the leaf spectra, a self-
illuminated leaf clip of ASD was used and then the spectra of
top layer leaf and bottom layer leaf were taken respectively.
In the whole study area, five positions were selected randomly
and the spectra of top layer leaf, bottom layer leaf, top layer
panicle, and bottom layer panicle were gained respectively for
each plot. Similarly, the averaged spectra were used as their
endmember spectra.

At maturity, the all rice plants in each plot were harvested
manually for determination of grain yield. The seeds were cleaned
and exposed to the sun until their weight did not change. And
then all the dry seeds were weighted according to plots and the
plot-level yield was obtained.

Surface Reflectance and Vegetation
Index Derived From UAV Data
The image of study plots was acquired using a Mini-MCA
system mounted on a UAV (S1000, SZ DJI Technology, Co.,
Ltd., Shenzhen, China) on 13 August and 29 August, 2015 –
Figure 2. The Mini-MCA system consists of an array of six
individual miniature digital cameras (Mini-MCA 6, Tetracam,
Inc., Chatsworth, CA, United States) – Figure 2C. Each camera
imager was equipped with a customer-specified band pass filter
centered at a wavelength of 490, 550, 670, 720, 800, or 900 nm,
respectively, and the band width was 10 nm. These bands
were selected since they were commonly employed to analyze
vegetation growth-related parameters (Behrens et al., 2006; Ray
et al., 2010; Kira et al., 2015).
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FIGURE 1 | (A) the location of study site and (B) the level of nitrogen fertilizer in each plot.

FIGURE 2 | The illustration of (A) UAV, (B) gimbal, and (C) Mini-MCA.

The Mini-MCA system was attached to the UAV on a
gimbal which can help to compensate for the UAV movement
(pitch and roll) during the flight and guarantee close to nadir
image collection – Figure 2B (Turner et al., 2014). Since the
imaging system had a significant camera mis-registration effect,
six cameras were co-registered in the laboratory prior to the
flight so that corresponding pixels of each lens were spatially
overlapping in the same focal plane (Jhan et al., 2016). UAV flight
was conducted under clear skies with little cloud cover between

10:00 and 14:00 local time when the changes in the solar zenith
angle were minimal. The image was collected at approximately
60 m above the ground with the spatial resolution of 3 cm around.

In this study, an empirical linear correction method was
applied to transform image Digital Numbers (DNs) into surface
Reflectance (ρ) (Dwyer et al., 1995; Laliberte et al., 2011). Four
calibration ground targets were placed in the cameras’ field of
view as a standard for image radiometric corrections and the
image taken from Mini-MCA system included all of them. The
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calibration targets used in this study have the relatively constant
reflectance of 0.06, 0.24, 0.48, and 1 respectively throughout
the visible to NIR wavelengths and are specially utilized for
aerial image radiometric calibration. As a linear relationship was
assumed between DNs and ρ, the canopy surface reflectance can
be calculated as

ρλ = DNλ × Gainλ

+ Offsetλ(λ = 490, 550, 670, 720, 800 and 900 nm) (1)

Where ρλ and DNλ are the surface reflectance and digital
number, respectively, of a given pixel at wavelength λ; Gainλ;
and Offsetλ are gains and bias of the camera at different
wavelengths respectively. For each wavelength, Gainλ and Offsetλ
can be calculated using the least-square method from ρ and DN
values (referring to DN0.06, DN0.24, DN0.48, and DN1) of four
calibration targets.


0.06
0.24
0.48

1

 =


DN0.06
DN0.24
DN0.48

DN1

× Gainλ + Offsetλ (2)

(
Offsetλ
Gainλ

)
=




1 DN0.06
1 DN0.24
1 DN0.48
1 DN1


T 

1 DN0.06
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1 DN0.48
1 DN1



−1


1 DN0.06
1 DN0.24
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T 

0.06
0.24
0.48

1

 (3)

For each of 24 plots, we defined a maximum rectangle in the
image that fit the plot – Figure 1B. The rectangle included
approximated 18000 pixels, and the plot-level VI was retrieved
by averaging all of the per-pixel values within the rectangle. The
VI tested in this study are shown in Table 1.

Fully Constrained Least Squares Linear
Spectral Mixture Analysis
Although UAV made it possible to get high resolution data,
one pixel on a UAV image still encompassed several land cover
components especially for crops with distinct grains like rice.
When rice was at heading stage, there were six dominant
components visible in the field of view – Figure 3, including
top layer leaf (TL), bottom layer leaf (BL), top layer panicle
(TP), bottom layer panicle (BP), dry soil (DS), and wet soil
(WS). And their continuous spectra were collected by an ASD
spectrometer used as the endmember spectra for SMA – Figure 4.
Compared with the ground measured reflectance spectra, the
spectra acquired by the MCA camera onboard UAV were discrete
wavebands (490, 550, 670, 720, 800, and 900 nm, 10 nm band
width). For each endmember, with reference to the wavelength
range of each MCA waveband, the average of ground measured
endmember reflectance in the corresponding wavelength range
was calculated as the endmember reflectance used for the SMA of
UAV images. Therefore, six kinds of endmember reflectance were
obtained as: ρ(TL), ρ(BL), ρ(TP), ρ(BP), ρ(DS), and ρ(WS).

In this study, fully constrained least squares linear SMA
method was employed to estimate the abundance fractions of
components present in an image pixel. For linear spectral mixing
model, a mixed pixel was defined as a linear combination of
components with their relative concentrations (Heinz, 2001). In
this case, the reflectance ρ of a mixed pixel at wavelength λ can
be approximated as

ρλ =

N∑
i=1

Abdiρλ(i)+ e (4)

where e is noise or can be interpreted as a measurement error, N is
the number of selected endmembers, Abdi denotes the abundance
fraction of endmember i, and ρλ(i) is the reference reflectance of
endmember i at wavelength λ.

And for the fully constrained linear mixing model, two
partially constraints were considered which were referred to as
non-negatively constraint and sum-to-one constraint

0 ≤ Abdi ≤ 1; and
N∑

i=1

Abdi = 1 (5)

TABLE 1 | Vegetation Indices tested in this study.

Vegetation Indices Formula Reference

Simple Ratio (SR) ρ800/ρ670 Jordan, 1969

Red-edge Chlorophyll Index (CIrededge) ρ800/ρ720 − 1 Gitelson et al., 2005

Green-edge Chlorophyll Index (CIgreen) ρ800/ρ550 − 1 Gitelson et al., 2005

Normalized Difference Vegetation Index (NDVI) (ρ800 − ρ670)/(ρ800 + ρ670) Rouse et al., 1974

Green Normalized Difference Vegetation Index (GNDVI) (ρ800 − ρ550)/(ρ800 + ρ550) Gitelson et al., 1996

Normalized Difference Red edge (NDRE) (ρ800 − ρ720)/(ρ800 + ρ720) Glenn et al., 2010)

Visible Atmospherically Resistant Index (VARI) (ρ550 − ρ670)/(ρ550 + ρ670) Gitelson et al., 2002

MERIS Terrestrial Chlorophyll Index (MTCI) (ρ800 − ρ720)/(ρ720 − ρ670) Dash and Curran, 2004

Enhanced Vegetation Index (EVI) 2.5(ρ800 − ρ670)/(ρ800 + 6ρ670 − 7.5ρ490 + 1) Liu and Huete, 1995

Two-band Enhanced Vegetation Index (EVI2) 2.5(ρ800 − ρ670)/(ρ800 + 2.4ρ670 + 1) Jiang et al., 2008

Frontiers in Plant Science | www.frontiersin.org 5 February 2019 | Volume 10 | Article 204

https://www.frontiersin.org/journals/plant-science/
https://www.frontiersin.org/
https://www.frontiersin.org/journals/plant-science#articles


fpls-10-00204 February 25, 2019 Time: 16:4 # 6

Duan et al. Remote Estimation of Rice Yield

FIGURE 3 | The actual scene of paddy field at booting stage and heading stage.

FIGURE 4 | The ground measured spectra of selected endmembers.

As shown above, the value of abundance was non-negative
with its maximum constrained to 1 and for each mixed pixel
the sum of the endmember abundance equals to 1. Generally,
the abundance that meets these conditions can indicate the
proportion of the corresponding endmember within the mixed
pixel. An abundance of 0 means no presence of the particular
endmember in this pixel, while an abundance of 1 indicates that
this pixel is a pure pixel of the particular endmember.

To solve the abundance of these selected six components,
a least squares method was applied (Pu et al., 2014). In this
study, we used MATLAB (MATLAB 2016a, MathWorks, Inc.,
Natick, MA, United States) to derive the abundance gray images
of six selected endmembers whose gray level values meant the

estimated abundance of the corresponding endmember in the
image pixel. The plot-level abundance was calculated in the
same manner as plot-level reflectance, and for each plot the
same maximum rectangle was utilized again. In consideration
of endmember selection, the panicle abundance (AbdP) and leaf
abundance (AbdL) were the sum of the corresponding elements
in top layer and bottom layer together.

Data Analysis Among UAV Data, Ground
Measured Data, and Rice Yield
In this study, the IBM SPSS Statistics (Statistical Product and
Service Solutions 22.0, IBM, Armonk, NY, United States) was
used to statistically describe and analyze data. Firstly, a normally
distribution test was applied to the rice yield data and the product
data of LAI and SPAD value (LAI × SPAD) at booting and
heading stage. The result of Shapiro–Wilk test served as the
indicator to test whether the data is normally distributed or
not. And then, the correlation analysis and regression analysis
were successively applied. The Pearson correlation coefficient
(r) was exhibited as the result of correlation analysis. And for
regression analysis, adjusted R square (R2), root mean square
error (RMSE) and p-value were analyzed and compared. The
detailed calculation method of above evaluation indices can be
found in the help document of SPSS.

The relationship between ground measured data
(LAI × SPAD) and rice yield was firstly established at booting
and heading stage respectively. And the plot-level VI derived
from UAV data was correlated with rice yield directly and
compared with the ground measured data. The difference of
these two rice growth stages was discussed and analyzed.

At the heading stage of rice, in consideration of the impact
of spectral mixture within 1 pixel, the leaf and panicle make
different spectral contributions to the reflectance of the mixed
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pixel. For each studied plot, different proportion of leaf and
panicle may affect the accuracy of yield estimation based on plot-
level VI at heading stage. In order to eliminate the influence,
plot-level VI was incorporated with abundance information to
relate with rice yield and four relationships were developed using
23 samples (one of the rice yield data was obviously wrong): (1)
yield vs. VI, (2) yield vs. VI × AbdL, (3) yield vs. VI × AbdP and
(4) yield vs. VI×AbdL−P. The different estimation ability for rice
yield of these four kinds of index was compared and evaluated.

Algorithm Establishment Using Leave
One Out Cross-Validation
The final rice yield estimation model was established using a
leave one out cross-validation method. Leave one out cross-
validation is s statistics method widely applied in model
establishment and validation (Fielding and Bell, 1997). It
divided the samples into two groups, one for training and
the other one is used for validation. For leave one out cross-
validation, the validation set just included one sample and
the training and validating process was repeated K times (K
equals to the number of samples, K = 23 in this study). For
each time i, K-1 samples were used iteratively as training
data to calibrate the coefficients (Coefi) of the algorithm
with the accuracy was measured in terms of coefficients of
determination (R2

i ), and the remaining single sample was used
for validation to obtain the estimation error (Ei). The training
and validating process was repeated K times until every single
sample was used exactly one time for validation data. After K
iterations, the coefficients and accuracy of the final algorithm
can be produced as

Coef =
∑K

i=1 Coefi
K

R2
=

∑K
i=1 R2

i
K

RMSE =

√∑K
i=1 E2

i
K

RESULTS

Relationship Between Ground Measured
Data and Rice Yield
In general, the product of LAI and leaf-level SPAD (LAI× SPAD)
was used to estimate canopy chlorophyll status of rice and
has been proven to be a promising index to predict rice
yield (Liu et al., 2017). In this study, LAI × SPAD was
calculated according to the ground measured LAI and SPAD
value both at booting and heading stage. Among all plots

which have yield data, one of the plot-level LAI records was
missing and 22 LAI × SPAD values was calculated at these
two stages. Before correlation analysis and regression analysis,
a normal distribution test was applied to the rice yield data
and LAI × SPAD data. The result of Shapiro–Wilk test turned
out that the yield and LAI × SPAD data followed normal
distribution – Table 2. And a simple linear regression analysis
of LAI × SPAD and yield was presented in Figure 5A. At
booting stage, the result provided a satisfactory linear fitting
equation between yield and LAI × SPAD with a relatively
high R2 value (R2 = 0.627∗∗). However, at heading stage, an
obviously lower R2 value (R2 = 0379∗∗) was found compared with
booting stage.

Correlations of Vegetation Index With
Yield and LAI × SPAD
Vegetation index calculated from reflectance of different
wavebands could be used to estimate rice growth parameters
and thus has a good potential to predict the rice yield. To
compare the relationships of VI to LAI × SPAD and yield,
we performed a correlation analysis at booting and heading
stages. The result of correlation analysis indicated that the VIs
were correlated positively to LAI × SPAD and yield except
VARI, with 0.01 significance levels at two individual stages –
Table 3. On the whole, the Pearson correlation coefficients
(r) of VI and LAI × SPAD were obviously higher than that
of VI and yield at these two stages. Compared with heading
stage, most VIs exhibited better correlation with yield and
LAI × SPAD at booting stage. Generally, the VIs which had
better correlation with LAI × SPAD also produced higher r
values with yield at both two stages – Figure 6. At booting
stage, SR and NDRE showed most strong correlations with
yield (r was 0.756 and 0.730 respectively), and the r values
of most VIs were above 0.7 except CIgreen, EVI2 and EVI.
Where it came to heading stage, the situation was different,
the r values of all VIs were below 0.7. Among the test indices,
NDRE and NDVI had the highest r values with yield (r was
0.697 and 0.695 respectively). In addition, the relationships of
VARI vs. yield appeared obvious extremely weak correlation
at both booting and heading stage. For the most relevant VI
with yield at each stage (SR at booting stage and NDRE at
heading stage), their correlation with LAI × SPAD had little
difference (r was 0.844 and 0.818 respectively), but the result
was obviously different when correlated with yield (r was 0.756
and 0.697 respectively).

TABLE 2 | The statistical description and Shapiro–Wilk test results of LAI × SPAD, abundance and yield.

Observation plots Minimum value Maximum value Mean value p-Value Coefficient of variation

LAI × SPAD Booting stage 22 87.66 201.74 148.79 0.079 23.25%

Heading stage 22 86.74 233.92 164.96 0.076 27.88%

Leaf abundance Heading stage 23 0.64 1.00 0.93 0.000 –

Panicle abundance Heading stage 23 0.00 0.33 0.06 0.000 –

Yield 23 2.70 4.46 3.61 0.948 11.95%

p-Value is the result of Shapiro–Wilk test.
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FIGURE 5 | The linear regression result of yield and different indices. (A) Yield vs. LAI × SPAD, (B) yield vs. abundance, (C,D) yield vs. the product of VI and
abundance and (E) Estimated yield vs. measured yield. ∗∗F-test statistical significance at 0.01 probability level.

TABLE 3 | The Pearson correlation coefficients of VI with yield and LAI × SPAD at booting and heading stage.

Growth stage SR NDRE GNDVI NDVI CIrededge MTCI CIgreen EVI2 EVI VARI

Yield Booting stage 0.756∗∗ 0.730∗∗ 0.728∗∗ 0.721∗∗ 0.710∗∗ 0.704∗∗ 0.696∗∗ 0.616∗∗ 0.586∗∗ −0.381

Heading stage 0.685∗∗ 0.697∗∗ 0.644∗∗ 0.695∗∗ 0.656∗∗ 0.661∗∗ 0.565∗∗ 0.624∗∗ 0.575∗∗ −0.386

LAI × SPAD Booting stage 0.844∗∗ 0.896∗∗ 0.875∗∗ 0.830∗∗ 0.896∗∗ 0.894∗∗ 0.869∗∗ 0.757∗∗ 0.726∗∗ −0.546∗∗

Heading stage 0.774∗∗ 0.818∗∗ 0.794∗∗ 0.841∗∗ 0.763∗∗ 0.756∗∗ 0.589 ∗∗ 0.614∗∗ 0.557∗∗ −0.293

∗∗Correlation is significant at the 0.01 level (two-tailed).

Spectral Mixture Analysis in Rice Field
In consideration of the impact of mixed pixel, SMA was applied to
the UAV image obtained at rice heading stage. According to the
ground measured spectra, there was obvious spectral difference
in various endmembers – Figure 4. In the top layer, both leaf and
panicle spectra appeared the peak and valley configuration as that
of other typical vegetation spectra characteristics. Nevertheless,
leaf reflectance was a little higher than panicle reflectance in
blue bands (7 vs. 5%) and it is much higher than panicle
reflectance in NIR bands. On the contrary, leaf reflectance was
a bit lower than panicle reflectance in red bands. Compared
to the top layer, both leaf reflectance and panicle reflectance
were low in the bottom layer, but leaf reflectance was still
higher than panicle reflectance in NIR bands. As for soil
endmember, the reflectance decreased at all wavelengths with soil
moisture increasing.

In this study, abundance image of each component was
obtained using fully constrained least squares linear SMA and
the spectra of selected endmember measured by ASD. As shown
in Figure 7, significant differences existed in abundance images
of different endmembers. On the whole, the brightness of the
dry and wet soil abundance images was relatively low. And the
bright pixels were mainly clustered in the ridges surrounding the
plots in these two abundance images, while the pixels located at
rice growing area were really dark. For the other four abundance
images, leaf abundance images were obviously brighter than
panicle abundance images both in top and bottom layers which
was fully corresponded to the actual occurrence in paddy field.
Noted that obvious brightness heterogeneity was existed among
different plots in the images, and such heterogeneity patterns
were quite different in panicle abundance images which indicated
the uneven emergence of rice panicles.

Frontiers in Plant Science | www.frontiersin.org 8 February 2019 | Volume 10 | Article 204

https://www.frontiersin.org/journals/plant-science/
https://www.frontiersin.org/
https://www.frontiersin.org/journals/plant-science#articles


fpls-10-00204 February 25, 2019 Time: 16:4 # 9

Duan et al. Remote Estimation of Rice Yield

FIGURE 6 | The contrast between Pearson correlation coefficients of VI vs.
yield and VI vs. LAI × SPAD at booting stage and heading stage.

In consideration of endmember selection, the sum of panicle
abundance in top layer and bottom layer was calculated as panicle
abundance (AbdP), and the leaf abundance (AbdL) was obtained
in the same way. A normal distribution test was also used to AbdL
and AbdP data, the result of statistical description and Shapiro–
Wilk test was presented in Table 2. Evidently, AbdL concentrated
near 1, while AbdP concentrated near 0. The aggregation effect
of abundance data was more apparent in the fit plot of yield with
AbdL and AbdP – Figure 5B.

Rice Yield Estimation Using Vegetation
Index and Abundance Data
At heading stage, the uneven emergence of panicles may
influence the accuracy of rice yield estimation. Since panicle
abundance and leaf abundance were the indicators of how
much panicle had been emerging, in our proposed approach
the VIs were incorporated with the information of plot-level
panicle abundance (AbdP) and leaf abundance (AbdL) to estimate
the yield of rice. In this part, yield was firstly correlated
with VI, VI × AbdL, and VI × AbdP respectively, and the
Pearson correlation coefficients (r) were compared – Table 4.
Generally, after multiplied by AbdL or AbdP, most VIs produced
relatively higher r values with yield than VI alone. The result of
correlation analysis indicated that the VI × AbdL was correlated
positively with yield; on the contrary, VI × AbdP showed a
negative correlation. And the correlation is numerically higher
in VI × AbdP and yield than in VI × AbdL and yield. In

FIGURE 7 | The abundance images of (A) top layer leaf, (B) top layer panicle,
(C) dry soil, (D) bottom layer leaf, (E) bottom layer panicle, and (F) wet soil.

TABLE 4 | The Pearson correlation coefficients of yield with VI, VI×AbdL,
VI×AbdP, and VI×AbdL−P at heading stage.

VI VI×AbdL VI×AbdP VI×AbdL−P

NDRE 0.697∗∗ 0.751∗∗ −0.775∗∗ 0.770∗∗

NDVI 0.695∗∗ 0.759∗∗ −0.759∗∗ 0.761∗∗

SR 0.685∗∗ 0.724∗∗ −0.785∗∗ 0.747∗∗

MTCI 0.661∗∗ 0.708∗∗ −0.783∗∗ 0.736∗∗

CIrededge 0.656∗∗ 0.698∗∗ −0.786∗∗ 0.725∗∗

GNDVI 0.644∗∗ 0.753∗∗ −0.765∗∗ 0.767∗∗

EVI2 0.624∗∗ 0.726∗∗ −0.752∗∗ 0.745∗∗

EVI 0.575∗∗ 0.710∗∗ −0.747∗∗ 0.738∗∗

CIgreen 0.565∗∗ 0.609∗∗ −0.796∗∗ 0.643∗∗

VARI −0.386 −0.081 −0.734∗∗ 0.183

∗∗Correlation is significant at the 0.01 level (two-tailed).

particular, VARI showed a really weak correlation with yield at
heading stage (r was −0.386), and there was even no correlation
in VARI × AbdL and yield. However, after multiplied by AbdP,
VARI showed a relatively strong correlation (r was−0.734).

For further analysis, regression analysis has been used, and
three linear relationship were developed using 23 samples: (1)
yield vs. VI, (2) yield vs. VI × AbdL and (3) yield vs. VI × AbdP.
Adjusted R2, RMSE and p-value were obtained in SPSS – Table 5.
For all tested indices, multiplying abundance data (VI × AbdP
and VI × AbdL) significantly increased the goodness of fit
with yield, and using VI × AbdP to regress with rice yield
was more accurate than using VI × AbdL with lower RMSE
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TABLE 5 | Regression analysis of yield with VI, VI×AbdL, VI×AbdP, and VI×AbdL−P at heading stage.

Adjusted R2 RMSE p-Value

VI VI×AbdL VI×AbdP VI×AbdL−P VI VI×AbdL VI×AbdP VI×AbdL−P VI VI×AbdL VI×AbdP VI×AbdL−P

NDRE 0.461 0.543 0.582 0.574 0.317 0.291 0.279 0.282 0.000 0.000 0.000 0.000

NDVI 0.456 0.555 0.556 0.569 0.317 0.288 0.287 0.283 0.000 0.000 0.000 0.000

SR 0.443 0.501 0.599 0.559 0.322 0.304 0.273 0.286 0.000 0.000 0.000 0.000

MTCI 0.410 0.477 0.595 0.537 0.331 0.312 0.275 0.293 0.001 0.000 0.000 0.000

CIrededge 0.403 0.463 0.600 0.534 0.333 0.316 0.273 0.294 0.001 0.000 0.000 0.000

GNDVI 0.387 0.546 0.566 0.523 0.338 0.291 0.284 0.298 0.001 0.000 0.000 0.000

EVI2 0.360 0.504 0.545 0.519 0.345 0.304 0.291 0.299 0.001 0.000 0.000 0.000

EVI 0.299 0.481 0.538 0.502 0.361 0.311 0.293 0.304 0.004 0.000 0.000 0.000

CIgreen 0.286 0.341 0.615 0.385 0.364 0.350 0.267 0.338 0.005 0.002 0.000 0.001

VARI 0.108 −0.041 0.518 −0.012 0.407 0.440 0.299 0.434 0.069 0.714 0.000 0.403

and higher Adjusted R2 values. Among the AbdL multiplied
indices (VI × AbdL), NDVI × AbdL had the best goodness of
fit with yield (Adjusted R2 was 0.555), while CIgreen × AbdP
for AbdP multiplied indices (Adjusted R2 was 0.615). Whereas
the saturation phenomenon of NDVI, the GNDVI × AbdL was
also taken into account. As shown in Figure 5C, the linear
fitting result of yield and these three indices (NDVI × AbdL,
GNDVI × AbdL and CIgreen × AbdP) was acceptable with R2

above 0.56, and CIgreen × AbdP produced the highest R2 (R2

was 0.633). However, the saturation phenomenon of NDVI was
still existed in NDVI × AbdL, and the CIgreen × AbdP data
concentrated near 0 which caused a phenomenon similar to
saturation. There was no obvious saturation in the fit plot of yield
and GNDVI× AbdL.

The AbdP multiplied indices (VI × AbdP) could produce
higher R2 when regressed with yield, but was subjected to
saturation (the value was closed to 0). As for AbdL multiplied
indices, they were not susceptible to saturation although their
R2 was relatively lower. And Figure 5B showed that AbdL
related positively with yield but AbdP showed a negatively
correlation. Therefore, the difference of AbdL and AbdP
(AbdL−P) was next used to incorporate with VI. In this way,
the correlation analysis and regression analysis were also applied
to the relationship of VI × AbdL−P and yield – Tables 4, 5.
Compared with VI, VI × AbdL−P acquired better goodness of
fit when regressed with yield, Adjusted R2 could reach 0.574
and RMSE below 0.282 (NDRE × AbdL−P). And for the best
two indices (NDRE × AbdL−P and GNDVI × AbdL−P), there
was no obvious saturation existing in fit plot – Figure 5D.
Then on the base of these, leave one out cross-validation
approach was utilized to obtain the final yield estimation
model. The specific estimation formulas and the goodness
of fit between measured yield and estimated yield was
shown in Figure 5E.

DISCUSSION

The primary purpose of this study was to improve the accuracy
of rice yield estimation at heading stage based on the UAV data.

Vegetation index (VI) and SMA were incorporated to construct
new yield estimation algorithm.

In this paper, the same two sets of data were acquired
at booting and heading stage respectively, including ground
measured data (LAI× SPAD) and UAV data. At these two stages,
rice gradually completed the transformation from vegetative
growth to reproductive growth. The interval between each two
stages was around 2 weeks, and rice had similar growth status
except the influence of panicle. At booting stage, the rice plant
flourished but with no panicle appearing in canopy. On the
contrary, the panicle gradually emerged in canopy at heading
stage with the growth of rice plant. At these two stages, the
changes of rice leaves were not obvious – Figure 3.

First of all, the ground measured LAI × SPAD was correlated
with rice yield directly at the two individual stages. Before
regression analysis, LAI × SPAD data and yield data have
passed the normal distribution test. As shown in Figure 5A, the
goodness of fit between LAI × SPAD and yield at booting stage
was better than that at heading stage. And this result revealed that
the booting stage had better predictive ability for rice yield based
on ground measured data. The reason for this was probably that
the panicle began to emerge at heading stage. Sun et al. (2010)
found that the appearance of panicle may lead to the changes
of canopy spectral reflectance and thus the predictive ability for
yield decreased during the later stages of rice growth. In our
study, the LAI × SPAD was calculated from ground measured
LAI and SPAD, and the LAI data was obtained by a Sunscan
canopy analysis system. According to the principle of the used
SunScan instrument, each organ of rice plant (including leaf,
panicle, and stem) contributed to the LAI value. Compared with
booting stage, the LAI value of heading stage contained extra
panicle information. Actually, the LAI × SPAD which derived
from green leaves was associated with rice yield (Liu et al., 2017).
Therefore, the booting stage had better predictive ability for rice
yield than heading stage based on ground measured LAI× SPAD.

The plot-level VI derived from UAV data was also correlated
with rice yield. We chose 10 widely used VIs which were
successfully applied in estimating vegetation grow-related
parameters such as chlorophyll content, LAI, vegetation fraction
and grain yield. The similar result was found that the Pearson
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correlation coefficient (r) between VI and yield at booting stage
was mostly higher than that at heading stage – Table 3. And the
correlation analysis was also applied to analyze the relationship
between VI and ground measured LAI × SPAD. Although the
correlation between VI and LAI × SPAD had a bit difference at
these two stages, most VIs were well-correlated with LAI× SPAD
(r above 0.75). Moreover, the correlation of VI and yield was
consistent with the correlation of VI and LAI × SPAD –
Figure 6. This result revealed that the VI which had a better good
correlation with LAI× SPAD probably produced a higher r value
with yield. The LAI × SPAD was, so to speak, a bridge between
VI and yield. VI derived from UAV data had correlation with
LAI× SPAD and thus had a potential to estimate yield. As shown
in Table 3, the satisfactory correlation could be found between
VI and LAI × SPAD at both two stages, but the LAI × SPAD
correlated VIs showed obviously different correlation with yield
at booting and heading stage. As mentioned above, the ground
measured LAI × SPAD contained the extra panicle information
at heading stage. In this way, the VI, correlated with LAI× SPAD,
may also be affected by panicle emergence which lead to the
decrease of yield estimation based on UAV data at heading stage.

At heading stage, the plot-level VI was calculated from
mixed components including different proportion of panicles,
using VI alone for yield regression may introduce unexpected
uncertainties. Therefore, the SMA was utilized to improve the
predictive ability of VI in rice yield estimation at heading stage.

At this stage, the rice plant had really luxuriant growth
and the paddy field was almost covered by rice plants. The
canopy of rice was comprised of leaf and panicle – Figure 3.
And the background of field was mainly soil (wet soil and
dry soil), because the water was drained off. In addition, the
field management of rice was strict and there were no other
plants affecting the growth of rice such as weed. Therefore, six
endmembers were selected, including top layer leaf (TL), bottom
layer leaf (BL), top layer panicle (TP), bottom layer panicle (BP),
dry soil (DS), and wet soil (WS). Based on fully constrained
least squares linear SMA, the abundance images of six mainly
endmembers in paddy field were derived. Of the six abundance
images we obtained, the brightness of dry and wet soil abundance
images was relatively low. And compared to panicle abundance
image, the leaf abundance image was obviously brighter both in
top layer and bottom layer. This was consistent with the actual
situation of paddy field. At heading stage, rice leaves grew lushly
and the leaves occupied the largest proportion in paddy field.
Due to the different nitrogen treatments applied in 24 plots, the
growth situation of rice plant in different plots significantly varied
from each other even at the same growth stage. It is observed
that there was obvious difference among different plots in leaf
abundance images and panicle abundance images – Figure 7.
In consideration of endmember selection, the sum of panicle
abundance in top layer and bottom layer was calculated as panicle
abundance (AbdP), and the sum of leaf abundance in top layer
and bottom layer was calculated as leaf abundance (AbdL). The
result of analysis indicated that neither AbdL nor AbdP followed
normal distribution and AbdL concentrated near 1, while AbdP
concentrated near 0. This numerical distribution characteristic
was in accordance with the sum-to-one constraint condition

in fully constrained least squares linear SMA. Accordingly, the
abundance data was not adequate for yield estimation due to its
aggregation effect – Figure 5B.

Note that, the LAI × SPAD of green leaf was associated
with rice yield closely and the VI obtained from UAV data had
a good correlation with LAI × SPAD at booting and heading
stage. However, the LAI × SPAD derived from VI contained
extra panicle information at heading stage which decreased the
predictive ability of VI in rice yield. The abundance data, indeed,
implies the proportion information of different components in
rice field. In this case, AbdL was incorporated with VI to extract
the portion of green leaf in total LAI × SPAD (contained panicle
portion) and thus the VI × AbdL was used to estimate rice yield
at heading stage. For comparison purpose, the relationship of
VI × AbdP and yield was also analyzed. The result of correlation
analysis revealed that after multiplied by AbdL or AbdP, most VIs
produced relatively higher r values with yield than VI alone –
Table 3. And the VI × AbdL was correlated positively with yield,
while VI × AbdP showed a negative correlation. According to
the sum-to-one constraint condition of fully constrained SMA,
the correlation of VI × AbdL and yield was opposite to that of
VI × AbdP and yield. Obviously, the VI × AbdL, reflected the
LAI× SPAD contributed by green leaf, had a positive correlation
with yield. The result of analysis also revealed that VI × AbdP
exhibited a better correlation with yield than VI × AbdL did.
However, as shown in Figure 5C, VI × AbdP concentrated on
0 and the aggregation effect of VI × AbdP produced a relatively
higher R2. The reason was that AbdP was close to 0 and the value
of VI × AbdP deeply depended on AbdP. Although there was
no aggregation phenomenon in VI × AbdL, the saturation of VI
itself still existed in its corresponding VI × AbdP (NDVI and
NDVI× AbdL).

The AbdL multiplied indices (VI × AbdL) and AbdP
multiplied indices (VI × AbdP) both had its advantages and
disadvantages, VI × AbdP could produce higher r but subjected
to aggregation, while VI × AbdL was not affected by aggregation
but produced relatively lower r. Therefore, AbdL and AbdP were
combined together to give full play to the advantages of the two.
In consideration of that AbdL correlated positively with yield and
AbdP correlated negatively with yield – Figure 5B, the difference
of AbdL and AbdP was calculated as AbdL−P and the relationship
between VI × AbdL−P and yield was analyzed. The regression
analysis showed that the goodness of fit in VI × AbdL−P and
yield was better than that in VI and yield (with higher Adjusted
R2) – Table 5. However, not all VIs had better regression results
with yield after multiplied by AbdL−P (such as CIgreen × AbdL−P
and VARI × AbdL−P). And the VI × AbdL−P was influenced
by the VI itself, if the VI had a poor correlation with yield, the
corresponding VI × AbdL−P may also show a bad correlation
with yield. And the result of regression analysis in VI × AbdL−P
and yield was better than that in VI × AbdL and yield but worse
than that in VI × AbdP and yield. It was important to note
that there was no obvious aggregation effect in VI × AbdL−P –
Figure 5D. The AbdL−P multiplied indices (VI × AbdL−P)
combined the advantages of VI × AbdL and VI × AbdP and
performed a better goodness of fit with no obvious aggregation
effect in the relationship of VI × AbdL−P and yield. Among all
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the tested VI× AbdL−P, two indices which had highest Adjusted
R2 were selected (NDRE × AbdL−P and GNDVI × AbdL−P)
and then leave one out cross-validation approach was utilized
to obtain the final yield estimation model – Figure 5E. The
result proved that NDRE and GNDVI multiplied by AbdL−P
could accurately estimate the rice yield at heading stage with R2

reaching 0.6 and estimation errors below 10%.
In this study, we developed a new approach to estimate rice

yield at heading stage using the integration of VI and abundance
information retrieved from the UAV image. The approach was
simple but it given some significant enlightenment for the yield
estimation of grain crop like rice. In the application of RS, the
impact of spectral mixture must be considered and this is also
important to UAV RS technology which has a really high spatial
resolution. And the SMA is a good way to get rid of the influence
of different spectral components contained in remotely sensed
images. Although the endmembers proposed in our approach
were limited to rice yield estimation at heading stage, this
work may offer a theoretical framework for yield estimation in
grain crops which have obvious grain with significantly different
spectra from their leaves. In the future study, we will try to apply
this approach to satellite data and in other crops.

CONCLUSION

In this study, we developed an approach to improve the
estimation of rice yield at heading stage using UAV-based
Vegetation Index and abundance data. Compared with booting
stage, a relatively weaker relationship between VI and rice
yield was found at heading stage. The reason was the uneven
emergence of rice panicle at heading stage which caused the
decrease of predictive ability of VI for rice yield. In order to
improve the accuracy of yield estimation at heading stage, a fully

constrained least squares linear spectral mixture method was
used to eliminate the influence of the panicle appearance on yield
estimation. The abundance images of six mainly endmembers in
paddy field was produced based on the six-band UAV image and
ground measured spectra, including top layer leaf, bottom layer
leaf, top layer panicle, bottom layer panicle, dry soil, and wet soil.
The integration of plot-level VI and abundance information can
estimate rice yield more accurately than using VI alone. Among
the test VIs, NDRE, and GNDVI multiplied by the difference
of leaf and panicle abundance were the most accurate for yield
estimation in rice under different nitrogen fertilizer treatment
with estimation errors below 10%.
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