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Making decisions on plant breeding programs require plant breeders to be able to test
different breeding strategies by taking into account all the crucial factors affecting crop
genetic improvement. Due to the complexity of the decisions, computer simulation
serves as an important tool for researchers and plant breeders. This paper describes
ADAM-plant, which is a computer software that models breeding schemes for self-
pollinated and cross-pollinated crop plants using stochastic simulation. The program
simulates a population of plants and traces the genetic changes in the population
under different breeding scenarios. It takes into account different population structures,
genomic models, selection (strategies and units) and crossing strategies. It also covers
important features e.g., allowing users to perform genomic selection (GS) and speed
breeding, simulate genotype-by-environment interactions using multiple trait approach,
simulate parallel breeding cycles and consider plot sizes. In addition, the software can
be used to simulate datasets produced from very complex breeding program in order
to test new statistical methodology to analyze such data. As an example, three wheat-
breeding strategies were simulated in the current study: (1) phenotypic selection, (2)
GS, and (3) speed breeding with genomic information. The results indicate that the
genetic gain can be doubled by GS compared to phenotypic selection and genetic gain
can be further increased considerably by speed breeding. In conclusion, ADAM-plant
is an important tool for comparing strategies for plant breeding and for estimating the
effects of allocation of different resources to the breeding program. In the current study, it
was used to compare different methodologies for utilizing genomic information in cereal
breeding programs for selection of best-fit breeding strategy as per available resources.

Keywords: stochastic simulation, genomic selection, plant breeding, breeding program, wheat

Abbreviations: BLUP, best linear unbiased prediction; BVP, breeder’s visual preference; DHs, doubled-haploids; EBV,
Estimated breeding value; GEBV, genomic estimated breeding value; GS, genomic selection; IBD, identical-by-descent; LD,
linkage disequilibrium; MAS, marker-assisted selection; PS, phenotype-based selection; QTL, quantitative trait locus; TBV,
true breeding value; YA, yield at advanced yield trial; YP, yield at preliminary yield trial.
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INTRODUCTION

The goal of most plant breeding programs is to hybridize and
select best elite lines or varieties with the best combination
of desired characteristics, viz., yield-attributing traits, quality
traits, and insect and pest resistance (Collard and Mackill,
2008). The success of selection based on yield-related traits
has been attributed to classical PS methods by which superior
individuals are selected based on their individual phenotypic
performance or combined index. Besides, with decreasing costs
of SNP genotyping, MAS was widely used in particular for
biotic and abiotic stress resistant traits (Jonas and de Koning,
2013; Ragimekula et al., 2013). However, the success of selection
can either be limited with PS if the trait under selection has
low heritability or with MAS if the trait is govern by many
quantitative loci (QTLs) with small effects. The introduction of
GS has provided the opportunity to overcome these limitations.
GS refers to selection decisions based on GEBVs, which are
calculated as the sum of effects of dense genetic markers
in LD with one or more QTLs across the entire genome
(Meuwissen et al., 2001; Meuwissen, 2007; Heffner et al., 2009).
The key advantages of integrating of GS in plant breeding
decisions are an increase in genetic gain per breeding cycle
and a reduction in the length of the breeding cycle (Crossa
et al., 2017). In addition to applying GS, there are many
other factors, which also affect the genetic gain in a plant-
breeding program. These factors include breeding objectives,
experimental design (e.g., plot size and number of replicates
per family), selection strategy (e.g., individual/family selection
and recurrent selection) and biological aspects (e.g., mode
of pollination, self-incompatibility, heritability and genotype–
environment interactions). Consideration of all these factors
means that the number of alternative breeding programs can
be numerous. The choice of breeding program is based on how
plant breeders are able to test the consequences of selected
alternatives. Comparing alternative breeding strategies in large-
scale field experiments can be labor-intensive in terms of time and
effort needed. Instead of field experiments, simulation studies can
serve as an efficient means to model different breeding strategies
and predict their performance. Moreover, simulation studies can
provide us with a deep understanding on the impact of different
factors on the genetic gain and other variables of interest (e.g.,
selection accuracy and genetic variance) of breeding programs,
which facilitates the development and choice of better breeding
programs. From a methodological point of view, quantifying
the expected genetic gain of breeding programs can be done
using either stochastic simulation or deterministic methods. In
the cases where a number of factors need to be accounted for,
however, it may be difficult to derive accurate deterministic
methods. The advantage of stochastic simulation in this situation
is that, it can be used to simulate an entire population of
individual plants, so that one can mimic the actual artificial
plant breeding programs in any detail desired. This enables
stochastic simulation to be able to provide very precise prediction
of consequence of alternatives. Hence, a tool that is capable of
simulating a large range of practical breeding programs with
sufficient feasibility and flexibility needs to be developed.

Many software packages are available to design alternative
plant breeding programs. Sun et al. (2011) provided a summary
of available software packages with focus on the diversity in
the features, functionality and underlying assumptions in each
program. For instance, GREGOR predicts the average outcome
of mating or selection under specific assumptions about gene
action, linkage, or allele frequency (Tinker and Mather, 1993);
Qu-Gene models1, such as QuLine, QuHybrid, and QuMARs are
capable to simulate simple to complex genetic models mimicking
line breeding programs, including conventional selection, MAS
and GS (Wang et al., 2003; Wang and Dieters, 2008a,b; Li and
Wang, 2011; Wang, 2011). Faux et al. (2016) has developed
a software, which integrates biotechnologies such as DHs and
gene editing and allow simulating sequence data. It can be
used to simulate a wide range of possible scenarios using
GS in the breeding programs. While these simulation tools
are useful in improving the efficiency of different selections
strategies, details regarding breeding cycles in actual breeding
programs applied in the field were not considered in most of
these simulation software packages. They only allow simulating
one breeding program running at each time step, ignoring
the fact that in practice every year a new breeding scheme
starts with a similar experimental set-up as the previous
breeding cycle, which also enables interactions between breeding
cycles.

The current work introduces ADAM-plant, which is a
software for simulating breeding programs with overlapping
breeding cycles for self-pollinated (e.g., line breeding of inbred
varieties) and cross-pollinated crop plants (e.g., breeding of
synthetic varieties)and for application of new technologies such
as speed breeding. It was developed from an existing computer
program named ADAM, which can simulate a large range
of breeding programs for animals using stochastic simulation
(Pedersen et al., 2009). ADAM-plant models the full complexity
of actual breeding programs and allows users to generate
sequence data, perform GS using different genomic prediction
models and simulate genetic × environment interactions using
multiple trait approach for plant breeding. These features enable
ADAM-plant to be a tool for both research purpose and plant
breeding companies to test and develop breeding strategies with
consideration of various aspects:

(1) It allows users to simulate overlapping breeding cycles with a
new cycle starting at each time step. In this paper, each time
step represents a reproductive step with different actions such
as selection, testing or replication being carried out at specific
time steps. The simulation of overlapping breeding cycles
allows early generations in one cycle to be used as parents
in a new cycle before the parental cycle is finished.

(2) It allows users to simulate different breeding strategy (e.g.,
recurrent selection and speed breeding) for different stage of
the breeding program. For instance, there are many options
for different actions in each time step i.e., selected plants
can be genotyped, phenotyped, reproduced and/or have
germplasm stored.

1http://sites.google.com/view/qu-gene
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(3) It allows different units of selection. The selection unit can
be population, within family, or entire family. The family
can be full-sib family, half-sib family or defined by a group
of parents (e.g., a set of parents or a set of plants used in a
poly-cross to create synthetics) in an earlier generation.

(4) It allows accounting for plot size (number of plants grown),
that can be used for mimicking different planting density in
different generations.

This paper describes the simulation method and working
process of ADAM-plant in different plant breeding applications
with an emphasis on its main characteristics, component
elements and computational performance using a couple of
examples of wheat-breeding programs.

MATERIALS AND METHODS

An overview of ADAM-plant working pipeline is presented in
Figure 1. It consists of four stages:

(1) The genetic model, which is the method used to generate
breeding values, is specified by the user.

(2) A founder population is simulated if genomic model with LD
between QTLs and markers is used. This creates desired LD
in the genome. This founder population is used as the basis
for subsequent stages.

(3) The selected population is generated. It initiates with a base
population that is assumed unrelated based on the pedigree
and followed by selection in subsequent generations. The
user needs to specify the number of replicates of the selected
population, selection strategy used for each selection stage
and the type of propagation used for seed reproduction.
If genomic model is used, the simulation of the selected
population can initiate from the same or a unique founder
population, depending on the choice made by the user.

(4) The output variables are recorded and analyzed. Not all
output variables are required in any simulation. The user
specifies what to output (e.g., genetic gain, genetic variance
and accuracy of EBVs) in each time step. These results are
also summarized when more than one replicate have been
obtained. If desired all the data generated on the molecular
as well as phenotypic level in each time step can also be saved
for further analysis.

Genetic Model
There are mainly two models available to generate breeding
values for single and multiple traits.

(1) Infinitesimal model, mimicking a polygenic makeup.
(2) Genomic model with LD between QTLs and markers where

individual QTL and markers are simulated.

When a genomic model is used, it is necessary to simulate
founder population or read in individual-level genome-wide
SNP/sequence data either collected from breeding programs
under investigation or simulated. This step is skipped when an
infinitesimal model is used.

Founder Population
When a genomic model is used, a founder population is
generated by default using a Fisher-Wright inheritance model
in order to establish recombination-drift-mutation-selection
equilibrium and create initial LD among markers and QTLs
(Fisher, 1930; Wright, 1931). The maternal and paternal haploid
genomes of founder individuals are simulated by considering
discrete generations, random mating and three evolutionary
forces: mutation, drift and selection based on the fitness
of the individuals. The user needs to define the number
of paternal (Npat) and maternal (Nmat) founder plants, the
number and length of chromosomes (Nchrom), the number of
loci (Nloci) on each chromosome and the number of founder
generations (NGfounder). Expansion and contraction of the
founder population are allowed in order to generate different
LD structures e.g., long/short-range LD (Schopp et al., 2017).
The plants are randomly mated without selfing for NGfounder
discrete generation producing (Npat + Nmat) offspring. In the
first generation of founder population, a total of Nloci are evenly
distributed across Nchrom genomes. The user specifies N so
that every Nth locus harbors a QTL that coded for the trait
under selection. The remaining loci are genetic markers. The
user needs to specify the mutation rate, which is the probability
of mutation occurring at each locus of genotype. Bi-allelic
polymorphism at each locus is generated with this specified
mutation rate. An additive effect for the mutant allele at each
QTL is sampled from an exponential distribution. The additive
effects are assumed to be negative probability 0.9 by default
because the exponential distribution only generates positive
values. The additive effects of the wild-type alleles are zero.
Selection is introduced by culling and resampling 5% of plants
with lowest TBV by default. The TBV of the ith plant in the
founder population, gi, is calculated as gi =

∑nQTL
j=1 , where nQTL

is the number of QTLs across the genome, xij is the number
of copies of the mutant allele that plant i inherited at jth QTL
(xij = 0, 1, 2), and gi is the additive effect of mutant allele at jth
QTL. Each offspring inherits marker and QTL alleles from their
parents following Mendel’s rules allowing for recombination.
ADAM-plant samples the number of crossovers from a Poisson
distribution with mean number of crossovers equal to the
length of the chromosomes in Morgan and then the crossovers
are placed randomly along the chromosome. Alternatively, the
user can also generate and store their genome of the founder
population externally or use real genome and import them into
ADAM-plant. The founder plants in generation NGfounder or the
stored genome are pooled for the subsequent sampling of base
population.

Base Population and Trait
When an infinitesimal model is used, TBV of individuals in
the base population are sampled from a normal distribution
with user-specified additive genetic variance. When genomic
model is used, the genotype of each base plant is sampled
from the pool of chromosomes in generation NGfounder of the
founder population. For chromosome k (k = 1...Nchrom), two
chromosomes are randomly sampled without replacement from
the kth pool of chromosomes. The sampled chromosomes are
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FIGURE 1 | An overview of ADAM-plant working pipeline. ∗The replicates of selected populations can start either from the same founder population or from a unique
founder population in each replicate. Alternatively, the base population can consist of phased genotypes from real or simulated individuals.

replaced before the next base plant is sampled. When the plants
in a base population are assumed inbred lines (self-pollinated),
then the second haplotype of a base plant is set to be identical
to the first haplotype. The user needs to define the genetic
variance σ2

g of the trait. The additive effects of the mutant
alleles at the segregating QTLs are standardized so that the total
additive genetic variance for the trait under selection is σ2

g . The
environmental effect for each individual plant is sampled from a

normal distribution N(0, σ2
e ), which ensures that h2

=
σ2
g

σ2
g+σ2

e
. As

a result, the phenotypes of each individual is a sum of genetic and
environmental effects. In some situations, instead of h2 , the user
may have prior knowledge about heritability of plot phenotypes

(plot heritability; h2
plot) in a certain generation (Nyquist, 1991;

Ogunniyan and Olakojo, 2014), which is equal to the square of
the correlation between the sum of TBV of individuals and sum of
the phenotypes of individuals in the plots. Under the assumption
of Hardy-Weinberg Equilibrium σ2

e can be estimated using the
equation:

σ2
e =

2NsHσ2
g(1− h2

plot)

h2
plot

− (1−H)σ2
g

where H is the expected frequency of homozygosity in the
generation and Ns is the number of plants grown per plot. Then
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in the situation where selection is performed, the user needs to
calibrate σ2

e according to this equation by trial and error so that
the realized h2

plot is equal to the desired h2
plot.

When genomic model is used, ADAM-plant also allows users
to trace the contribution of each plant in the base population to
following generations and infer IBD status relative to the base
plants. This is done by assigning equidistant IBD markers across
the genome. These IBD markers are assigned unique alleles to
each base plant, but not involved in selection. Within each locus
of a descendant, each IBD marker allele could be traced directly
back to the base plants from which it was derived (Liu et al., 2017).
True inbreeding of each individual, which measures the level of
inbreeding of the whole genome, is calculated using these IBD
markers as the proportion of IBD markers that are identical by
descent within an individual.

ADAM-plant allows simulation of multiple traits. Taking
finite-locus model as an example, the correlated traits are
characterized by the same set of QTLs, although some of these
QTLs may have near-zero effect on one or more traits. The
QTL effects on multiple traits are sampled from a standard
multivariate normal distribution with a user-specified matrix of
additive genetic variance and covariance between the traits.

Simulation of Breeding Programs
Cycles
To mimic the structure of commercial plant breeding programs,
ADAM-plant allows simulation of parallel breeding cycles with a
new cycle starting at each time step. In this paper, a generation

represents a distinct phase where meiosis and fertilization have
occurred in the context of a breeding cycle. The user needs
to define the last generation of a breeding cycle, which is the
generation where new lines will be released to relevant markets.
Normally, a cycle in a cereal breeding program can last up to
8 generations (n = 8) from the first parental lines to the final
selection of a new elite line, but other crops may have a different
length of a breeding cycle. The base population in the first n− 1
cycles are established by randomly sampling two copies of the
genome of all the base plants from the founder population. From
cycle n onward, however, the base population is built using
the germplasm stored from user-specified generation(s) in the
previous cycles (Figure 2).

Speed Breeding
A technology that allows rapid generation advancement, called
“Speed breeding,” can be used to achieve 4–6 generations of
wheat per year (Alahmad et al., 2018; Watson et al., 2018).
Speed breeding utilizes extended period of light to accelerate
growth rate of a plant, which greatly shortens generation time
and accelerates genetic improvement. ADAM-plant enables the
simulation of speed breeding by allowing the user to specify the
number of time steps or years each generation takes. For instance,
in each cycle, the first 4 generations can be assumed to achieve
within a year instead of 4 years (Figure 3).

Phenotyping
As mentioned above, the phenotype of the trait for the ith base
plant, yi, was calculated as yi = gi + ei, where gi is the base plant’s

FIGURE 2 | The structure of simulated plant breeding programs, which mimics the practical plant breeding programs with parallel breeding cycles starting at each
time step. In each cycle, P represents parental lines and F1–Fn represent generation 1 to n. Fn is the last generation of a breeding cycle. The base population (filled
orange circle) in the first n− 1 cycles are established by randomly sampling the two haplotypes from the founder population. From cycle Ngen onward, however, the
base population (filled blue circle) is sampled from germplasm of selected individuals in the user-defined generation(s) in the previous cycles.
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FIGURE 3 | An example of structure of simulated speed breeding programs for crop plants, which mimics the practical wheat breeding programs with parallel
breeding cycles starting at each time step. In each cycle, P represents parental lines and F1 to F8 represents generation 1 to 8. The reproduction of the first 4
generations (F1–F4) are assumed to achieve within a year, whereas the reproduction of remaining generations takes 1 year each. The base population (filled orange
circle) in the first 5 cycles are established by randomly sampling the two haplotypes from the founder population. From cycle 6 onward, however, the base population
(filled green circle) is sampled from germplasm of selected individuals the user-defined generation(s) in the previous cycles.

true additive-genetic value and ei is its residual environmental
value. In descendant generations, the alleles at QTL and marker
positions were sampled according to principles of Mendelian
inheritance, and the phenotypes of plants in these generations are
also a sum of g and e.

The user needs to specify at which generations and which
selection stages the phenotypic record of each trait is realized.
The user also needs to specify the number of observations, which
represents the number of replicates recorded for the trait(s) of
interest and number of plots grown per family in a user-specific
selection stage. For instance, if there are three observations for a
trait, then there are three plots for each family.

Breeding Goal and Economic Value
The user needs to specify the economic values for each trait to
calculate true aggregate-breeding value. The aggregate-breeding
value is calculated by weighting TBV of each trait by its economic
value. The user can also specify different economic values on each
trait in each selection stage.

Selection
Selection is carried out in each time step. Selection is carried out
on single or multiple traits by threshold selection or truncation
selection. Threshold selection is based on the phenotypic
observation(s) with associated threshold. Truncation selection is
based on one of the following criteria: phenotype, BLUP (based
on phenotype and pedigree information), GBLUP, single-step
GBLUP when only parts of plants are genotyped or phenotyped
(Legarra et al., 2009; Christensen and Lund, 2010) or Bayesian

models (Yu and Meuwissen, 2011). The breeding values are
estimated using DMU version 6 (Madsen and Jensen, 2013),
which is a package for analyzing multivariate mixed models,
including prediction of breeding values.

ADAM-plant also allows users to carry out optimum-
contribution selection (OCS), which maximizes long-term
genetic gain while constraining inbreeding by constraining the
relationship among selected parents (Wray and Goddard, 1994;
Meuwissen, 1997). Optimum contribution selection allocates
matings to selection candidates at time t by maximizing the
function Ut :

âUt (c) = c′â−
ω

L2 (c+ Pv)′ A (c+ Pv)

where c is a n vector (n is the total number of plants in the
population pedigree) of genetic contributions to the new cohort
and the number of matings allocated to each candidate is a
linear function of these contributions, â is a vector of EBVs, ω

is the penalty applied to the average relationship of the current
generation, L is the generation interval, v is a k vector of expected
relative contributions to future age-class, P is a n× k matrix
of contributions to future age-class of plants in the current
generation, A is a n× n matrix of additive–genetic relationships
or genomic relationships (Henryon et al., 2015). ADAM-Plant
makes use of “EVA” to perform optimum-contribution selection
(Berg et al., 2006).

Selection can be carried out in single or multiple stages in the
population, on lines, within families, across families or on entire
families, depending on the user-specified selection unit.

Frontiers in Plant Science | www.frontiersin.org 6 January 2019 | Volume 9 | Article 1926

https://www.frontiersin.org/journals/plant-science/
https://www.frontiersin.org/
https://www.frontiersin.org/journals/plant-science#articles


fpls-09-01926 January 3, 2019 Time: 17:40 # 7

Liu et al. Simulations of Plant Breeding Program

Seed Propagation
Before considering the type of seed propagation, the user
needs to specify reproductive and life cycle characteristics of
the population. Such characteristics include the reproductive
age of the plant, the last generation of the breeding cycle
and the generation at which germplasm is stored for later
use.

There are four options for seed propagation: cloning, crossing,
selfing, and DHs. Different types of seed propagation can be
used in different propagation stages. Crossing can be performed
either within families, across families or in the population. When
crossing is used, the user needs to specify the maximum number
of crosses where a plant can be used for crossing. Double-haploids
are created by allowing recombination of the two haplotypes
of an individual, randomly sampling one of the recombined
gametes and then doubling this gamete to create a new diploid
individual.

The user needs to specify the number of seeds generated from
seed propagation at each selection stage. This is related to the
selection unit. If the selection unit is population or within family,
the number of seeds represents the number of seeds produced
by each individual plant. If the selection unit is entire family, the
number of seeds represents the number of seeds produced by the
user-specified family.

Output
The output files are generated and written to a user-specified
output directory. Different variables for each generation and each
time step can be output depending on the interest of the user. The
description of the major variables is as follows:

(1) The phased haplotypes and genotypes of the simulated
individuals for each chromosome, the position and allele
frequencies of the QTLs and the markers, and the pedigree
can be stored for each generation and each time step. This
yields the opportunity to create simulated datasets from
full scale and complex breeding programs e.g., to test new
evaluation methods or models and to test methods for
estimation of population parameters etc., In addition, it
enables the user to develop summary statistics currently not
included in the standard set of output.

(2) Estimated breeding values of every single plant can be stored
if EBV is predicted for certain generation and time step.

(3) The average TBV and phenotypes for each trait can be stored
for each trait, for each generation and each time step.

(4) Realized variance within- and between- families (families are
specified by the user) can be calculated for each trait, for each
generation and each time step.

(5) Accuracy of selection can be recorded if selection is
performed at certain generation and time step. If the selection
unit is population or within family, the accuracy is either the
correlation between TBV and EBV under selection on EBV
or the correlation between TBV and phenotypes under PS.
If selection is on entire families, the accuracy is calculated as
the correlation between the sum of TBV of individuals in the
family and the sum of EBV/phenotypes in the family.

(6) Mean inbreeding computed based on pedigree information
and, optionally, inbreeding based on IBD markers.

A log file is written and updated as the program is running.
The log files show the detailed information of simulation process
(e.g., the selection and mating strategy, number of selection
candidates and the number of seeds produced) at each time step.

The user decides what genetic variables are saved. Not all
outputs are required in any simulation. When all the replicates
are complete, the mean and the standard deviation of all the
genetic variables are also written. Plots showing development in
means and standard deviations are written to pdf files as well.

Availability
ADAM-Plant is written in Fortran 95. The program makes
use of other programs for specific procedures: “Randlib90” to
generate random numbers (Randlib.Version 90, 2002) and DMU
to estimate breeding values (Madsen and Jensen, 2013); “EVA”
for optimum contribution selection (Berg et al., 2006); and “IBD”
to calculate identity-by-descent matrices (Thomsen, 2006). It has
been developed under Linux on 32 and 64 bit based workstations.
ADAM-plant is distributed as executable files and is free of charge
for research purposes. Further information is available from http:
//adam.agrsci.dk.

Examples
In the next section, the current study showed three examples
of commercial wheat-breeding programs using a finite-locus
model. The founder population for these programs is established
based on stored real dataset containing 988 individual genomes
collected from a commercial plant breeding company (Cericola
et al., 2017). Data are from three breeding cycles, each
consisting of 330 new F6 lines. Approximately 60 parental
lines were crossed in the beginning of each breeding cycle,
followed by five generations of selfing to produce the F6
lines. The number of markers were 9582 on the entire
genome. As no QTL information was available in the data,
among all the 9582 markers, 1039 loci that were randomly
chosen across the genome were assumed as QTLs, and the
remaining 8543 loci were assumed as markers for breeding value
prediction. The real dataset help to make reasonable commercial
breeding plans by considering the population structure and LD
structure.

RESULTS

Breeding Plan A. Breeding Program With
Phenotypic Selection
For breeding plan A, the current study simulated a 25-year
commercial wheat-breeding program using phenotypic selection
(Figure 4). The generation time is 1 year and a new breeding
cycle started every year, so in total there were 25 breeding
cycles initiated. Each breeding cycle was initiated by selecting
20 parental lines and completed at generation 8 (F8) after
seven generations of selfing. In the first seven cycles, the
genome of the 20 parental lines were randomly sampled from
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FIGURE 4 | Overview of one cycle in the conventional breeding program with phenotypic selection. The F5, F6, and F7 were regarded as lines as the F4 individuals
were used to create lines of single seed descent. Within each F4-line the individuals were genetically similar because of several rounds of selfing. For instance, there
were 225 F4 lines as selection candidates in F5. Out of 225 lines, 75 lines were selected to produce F6. BVP, breeder’s visual preference yield; PYT, preliminary yield
trial; AYT, advanced yield trials.

the 988 stored genomes without replacement and these 20
parental lines were used for crossing. Genotype-by-environment
interaction was considered for the yield trait by taking F5 yield
and F6/F7 yield as different traits. Therefore, three traits were
simulated: BVP, YP in F5 and YAs in F6 and F7 (YA). The term
“preliminary yield trial” means that the population is tested in
one replicate in sparse field plots with reduced phenotyping.
An important use of the YP, therefore is replication of seeds.
The term “advanced yield trials” means that the population
is tested when the amount of seeds for the population is
sufficient to conduct multiple location trials in dense yield
plots with possibilities for extensive phenotyping. The genetic
variance of BVP, YP, and YA was set to 1 (standardized
unit). Heritability of BVP was 0.1, and the plot heritability
for YP and YA were 0.2 and 0.3 given prior knowledge of
analysis using real dataset (Cericola et al., 2017). The current

study investigated the consequence of the breeding program
considering different correlations between the traits. Negative
correlations between the traits were not considered. Four levels
of correlation between YP and YA (0.1, 0.3, 0.5, and 0.7)
and two levels of correlation between BVP and the other
traits (0 or 0.1) were tested, resulting in eight scenarios. The
selection was on different traits in different selection stages as
follows:

(1) Parental lines P0: For the first seven cycles, 20 parental lines
(P0) were randomly sampled from the founder population.
For the remaining 18 cycles, the 20 P0 were sampled from the
genotypes of selected F5, F6, and F7 in the previous cycles,
assuming the germplasm of all the selected individual plants
at these three generations were available. The 20 parental
lines were allowed to be randomly crossed with each other,
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and the maximum times of crosses that one individual could
be used were four. In total, a smaller subset of 50 out of
possible 190 crosses were kept to produce F1.

(2) F1: In total, 50 F1 were generated. In reality, a single cross
can actually produce a number of F1 individuals that are
genetically identical. Therefore, for simplicity, only a single
F1 individual was simulated for each cross. These 50 F1 were
self-pollinated to produce 10 seeds (F2) each. From F2 to
F4, the families were derived by selfing from their common
ancestors at F1 generation and were denoted as F1-families.

(3) F2: Within family selection was conducted on F2. Within
each of the 50 F1-families, out of 10 F2, the five highest-
ranking individuals were selected based on BVP. The self-
pollination of each selected F2 produced 30 seeds, resulting
in 7500 F3 seeds in total.

(4) F3: Entire family selection was conducted based on the YP
performance of F3 individuals in each F1-families. Each F1-
family was assumed planted in three plots, and therefore,
three replicates were simulated. In total, out of 50 families,
45 families with highest-ranking YP were selected and were
self-pollinated to produce 60 seeds (F4) per F1 family (20 F4
per plot).

(5) F4: Within family selection was conducted for F4. Within
each of the 45 F1-families, five highest-ranking individuals
were selected based on BVP. So 225 F4 were selected in total.
From now on, these F4 were used to create lines of single
seed descent. Each F4 was self-pollinated to generate 20 seeds,
resulting in 4500 F5. From F5 to F8, the selection were all
based on the F4-lines.

(6) F5: Line selection was conducted based on the YP
performance of all F5 individuals in each F4-line. Only one
replicate was simulated for each F4-line. In total, 75 out
of 225 lines with highest YP were selected and were self-
pollinated to produce 900 F6 per line (100 F6 per plot). The
germplasm of the 75 selected lines were stored and potentially
become parental lines for the next cycles.

(7) F6: Line selection was conducted based on the total YA
performance of all F6 individuals in each F4-line. Nine
replicates were simulated for each F4-line, which means
that each F6 line was grown in 9 plots. In total, 30 out of
75 lines with the highest YA were selected and were self-
pollinated to produce 900 F7 per line (100 F7 per plot).
The germplasm of the 30 selected lines were stored and
they could potentially become parental lines for the next
cycles.

(8) F7: Line selection was conducted based on the total YA
performance of all F7 individuals in each F4-line. Nine
replicates were simulated for each F4-line, which means
that each F7 line was grown in 9 plots. In total, 5 out
of 30 lines with the highest YA were selected and were
self-pollinated to produce 900 F8 per line (100 F8 per
plot). The germplasm of the five selected lines were stored
and could potentially become parental lines for the next
cycles.

Figure 5 shows the average breeding value of YA across the
cycles every year and the average breeding value of YA at F8

every year for different scenarios. The results show that higher
correlation (positive) between the traits result in higher genetic
gain.

Breeding Plan B. Breeding Program With
Genomic Selection
For breeding plan B, a 25-year commercial wheat-breeding
program using GS was simulated. The first 10 years was
used as a burn-in stage, where PS was used as in breeding
plan A without GS. The breeding strategy for this burn-
in stage was the same as in breeding plan A. In the
last 15 years, the selection decisions in F1 to F3 was the
same as in breeding plan A. The current study present the
breeding strategy of breeding plan B for F4–F7 at year 11–25
where the difference existed between breeding plan A and B
(Figure 6):

(1) F4: The breeding strategy of F4 for GS was the same as for
PS with the exception that all the 225 individual F4 were
assumed genotyped in each cycle. The genotyped germplasm
of F4 with phenotypes for the targeted traits were added
yearly to establish the reference population (growing by 225
genotypes per year) for the current cycle where the selection
is performed (Figure 7).

(2) F5: Line selection was conducted based on the YP
performance of all F5 individuals in each F4-line. Only one
replicate was simulated for each F4-line. YP performance of
all F5 individuals within each F4-line was recorded, so that
there were 225 phenotypes. These 225 phenotypes and 225
F4 genotypes and existing reference population were used
to estimate breeding values of each F4 using GBLUP model
(Madsen and Jensen, 2013), so that 75 highest-ranking F4-
lines were identified given GEBVs of F4. In total, 75 out of
225 F5 lines with highest GEBV were selected and were self-
pollinated to produce 900 F6 per F4 family (100 F6 per plot).
The information of phenotypes and genotypes in the current
cycle were stored and was used for predicting breeding values
in the next cycles. The germplasm of the 75 selected lines
were stored and potentially become parental lines for the next
cycles.

(3) F6: Line selection was conducted for F6 based on the YP
performance of all F5 individuals in each F4-line. Nine
replicates was simulated, and therefore, each F4-line was
grown in 9 plots. Similar to F5, total YA performance of all F6
individuals in each F4-line was recorded, so that there were
75 phenotypes. These 75 phenotypes and their corresponding
F4 genotype were used for EBV estimation. In total, 30 out
of 75 F6 lines with high GEBV were selected and were self-
pollinated to produce 900 F7 per F4-line (100 F7 per plot).
The germplasm of the 30 selected lines were stored and
potentially become parental lines for the next cycles.

(4) F7: Line selection was conducted based on the total YA
performance of all F7 individuals in each F4-line. Nine
replicates were simulated for each F4-line, which means that
each F7 line was grown in 9 plots. Similar to F5 and F6,
five out of 30 lines with the highest GEBV were selected and
were self-pollinated to produce 900 F8 per line (100 F8 per
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FIGURE 5 | The average breeding value of yield at advanced yield trials (YA) of across the cycles every year (plots a and b) and the average breeding value of YA at
F8 every year (plots c and d) from phenotypic selection with different genetic correlations between YA and yield at preliminary yield trial (YP). The correlation between
BVP and the other two traits is 0 for (a) and (c) and 0.1 for (b) and (d).

plot). The germplasm of the five selected lines were stored
and potentially become parental lines for the next cycles.

The comparison of genetic gain from breeding plan A with that
obtained from breeding plan B is given in Figure 7. The results
showed that GS can double the genetic gain compared to PS.

Breeding Plan C. Speed Breeding
Program With Genomic Selection
For breeding plan C, a 25-year speed-breeding program for wheat
using GS was simulated. The breeding program was similar to

breeding plan B with the exception that the first 4 generations
(F1-F4) were achieved within 1 year instead of 4 years.

The comparison of genetic gain from breeding plan C with
that obtained from breeding plan A and B is given in Figure 8.
The results showed that speed-breeding program could markedly
accelerate and increase the genetic gain.

The rate of genetic gain after the burn-in stage was the highest
in breeding plan C with SPB (0.28–0.46), which was 2–2.5 times
higher than breeding plan A with PS and was 7–20% higher than
Brreding plan B with GS (Table 1). The total genetic variance was
the highest with PS and the lowest in GS. The genetic variance
was not influenced by the genetic correlation.
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FIGURE 6 | Overview of one cycle in the proposed breeding program with genomic selection (GS). Only the difference in the procedure of proposed breeding
program with phenotypic selection is presented. PYT, preliminary yield trial; AYT, advanced yield trials.

All the three breeding plans were replicated 60 times and
performed on a Linux server. The running time for each replicate
was 2 h 15∼2 h 30 min for breeding plan A and B, and 6 h 40 min
for breeding plan C.

DISCUSSION

ADAM-plant is a computer software for stochastic simulation
of plant breeding programs that utilize diverse genomic and
phenotypic information. It was developed with a purpose of
guiding breeding decisions in early planning and implementation
phases. To maximize its utility, it was developed based on
effective models of the genome and the breeding process
with great flexibility. It can simulate easy to very complicated
breeding programs that are similar to commercial breeding
plans (with GS and/or speed breeding technologies), and
the best breeding strategy can be identified. Based on the
results from simulation experiments, breeders have the
opportunity to optimize their breeding methodology, and
use of resources (number of matings, number of test plots,
amount of genotyping etc.) and greatly improve breeding
efficiency.

(1) There are a number of computer software packages available
for simulating plant breeding programs. However, ADAM-
plant has several advantages over the others: It allows users
to simulate overlapping breeding cycles with the possibility
of a new cycle starting at each time step. The simulation
of overlapping breeding cycles allows information and elite
genetic material transfer from one breeding cycle to another.
It means that early generations in one cycle can be used as
parents in a new cycle. This system resembles the procedure
of actual commercial breeding programs for crop plants.
Adam-Plant also enables simulation of breeding programs

in competing companies, which use a proportion of parental
lines from the other companies.

(2) It allows simulation of speed breeding with flexibilities in
defining generation intervals in order to test the effectiveness
of selection in early generations and to quantify genetic
progress and genetic variance using different designs for
speed breeding. It is also possible to test the potential for
integrating speed breeding with GS in accelerating the rate of
genetic improvement in simulated crop breeding programs.

(3) It allows storing the advanced germplasm in any generation
and these germplasm can be used for later cycles. This
function makes it more flexible for selection of parental lines.

(4) There are more options for phenotyping, genotyping
strategies, selection and mating strategies. For instance,
optimum contribution selection or minimum co-ancestry
mating can be carried out for cross-pollinated crops such
as maize in order to constrain inbreeding while ensuring
high genetic progress by managing the distribution of genetic
contributions to the selected candidates.

(5) It allows different units for selection. The selection unit can
be population, within family, or entire family, in which the
family can be defined with great flexibility e.g., a set of parents
or a set of plants used in a poly-cross to create synthetics) in
an earlier generation.

(6) Adam-plant allows great flexibility in mating strategies as it
allows crossing of individuals that are in different generations
or in different selection units. For instance, ADAM-plant
allows backcrossing by storing the germplasm of one of
the parent and crossing this parent to its offspring in the
generation where selection is performed, it allows three
way cross by crossing an inbred line to an F1, it allows
crossing of two single crosses that come from four separate
inbred parents and it allows crossing between the individual
plants within a pre-defined unit i.e., full-sib cross or half-sib
cross.
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FIGURE 7 | The average breeding value of YAs across the cycles every year (plots a and b) and the average breeding value of YA at F8 every year (plots c and d)
from phenotypic selection and GS. In the figures, the correlation between BVP and the other two traits is 0. The genetic correlation between YA and YP is 0.1 for (a)
and (c) and 0.7 for (b) and (d).

For the three examples presented, breeding plan A represented
a traditional breeding program in wheat. Breeding plan B
represented a modern breeding program, which is a combination
of conventional breeding techniques and genomic tools leading
to a new genomics-based plant breeding. Breeding plan C
represented a new technology for rapid generation advance
named “speed breeding,” which has been successfully deployed
in bread wheat (Alahmad et al., 2018).

The comparison between breeding plans A and B indicated
that even adding 2000 genotypes per breeding cycle could result
in 2 times higher genetic gain. Phenotypic selection resulted in
higher genetic variance mainly due to less fixation of favorable
alleles with less accurate selection. Compared with breeding
plan 2, breeding plan 3 maintained more genetic variance as
well as resulted in higher genetic gain because the parent
lines were updated more rapidly. In the current study, real
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FIGURE 8 | The average breeding value of YAs across the cycles every year (plot a) and the average breeding value of YA at F8 every year (plot b) from phenotypic
selection, GS and speed breeding programs. In this scenario, the genetic correlation between yield at primary yield trial (YP) and YA is 0.3, and the genetic
correlation between BVP and the other two traits is 0.

haplotypes were used as parental lines considering the real
LD patterns in a commercial wheat-breeding program, and the
schemes simulated were similar to current commercial breeding
programs. Therefore, these results indicate that combining speed
breeding with GS is a very promising tool in plant breeding.
When the speed breeding and GS are considered, the initial
facilities investment such as a growth chamber with appropriate
supplemental lighting and temperature control capabilities can
be substantial (Ghosh et al., 2018). However, light-emitting
diode supplemental lighting with more efficient power usage
and decreasing cost of sequencing for a small number of single
individuals provides significant cost saving, and these costs
may also be compensated by a rapid genetic improvement
and the benefit can be expected after a short time if the
facilities are constructed (Ghosh et al., 2018; Watson et al.,
2018).

ADAM-plant is fast in generating simple breeding programs
and genotype data. However, the time consumed can become
significantly larger in particular when a large number of plants
and complex breeding strategies are simulated. The computation
time also depends on the utilization of genomic information
and on the genetic model used. With polygenic model where
no sequence data is generated, the running time is short even
with complex selection steps and large number of seeds. When
a very precise prediction is required with consideration of full
genomic information, however, the time is markedly increased

due to sampling of molecular information (QTLs, markers and
crossovers in the genome) and so on for each single plant.
For example, one replicate of a 40 year – commercial GS
breeding program with 40 overlapping breeding cycles takes
around 23 h for running (Tessema et al., unpublished data,
2018).

The software was developed with modules, which makes it
easy to be extended with new methodologies for example on how
to utilize genomic information. Although the examples presented
were wheat breeding programs, ADAM-plant can also be used
for simulating many other plant species such as outcrossing crop
maize and diploid ryegrass. In the future, the breeding program

TABLE 1 | The rate of genetic gain in generation 11–25 and genetic variance at
generation 25 in yield at advanced yield trials (YA).

1G Variance

Correlation1 PS GS SPB PS GS SPB

0.1 0.08 0.26 0.28 1.48 0.54 0.57

0.3 0.13 0.28 0.37 1.48 0.55 0.63

0.5 0.14 0.32 0.42 1.48 0.53 0.65

0.7 0.15 0.38 0.46 1.45 0.54 0.62

1The genetic correlation between yield at primary yield trial (YP) and YA. In all these
scenarios, the genetic correlation between breeder’s visual preference (BVP) and
the other two traits (YP and YA) is 0.
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design for tetraploid plants will be integrated in the software.
Dominance effects that are important for cross-pollinated crops
and epistasis effects that are important for self-pollinated crops
will also be integrated.

CONCLUSION

In conclusion, ADAM-plant is a flexible and efficient computer
software for stochastic simulation of breeding plans for crop
plants. ADAM-plant simulate real commercial breeding program
structures with parallel breeding cycles, GS and speed breedingfor
self-pollinated and cross-pollinated plant crops. This makes
ADAM-plant an important tool to compare breeding efficiencies
and the improvement of performance from a wide range of
selection strategies.
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