
fpls-09-01878 December 18, 2018 Time: 19:6 # 1

ORIGINAL RESEARCH
published: 20 December 2018
doi: 10.3389/fpls.2018.01878

Edited by:
Jacqueline Batley,

University of Western Australia,
Australia

Reviewed by:
Kevin E. McPhee,

Montana State University,
United States

Sukhjiwan Kaur,
La Trobe University, Australia

Zhaobin Dong,
University of California, Berkeley,

United States

*Correspondence:
Margaret A. Carpenter
Margaret.Carpenter@

plantandfood.co.nz

Specialty section:
This article was submitted to

Plant Breeding,
a section of the journal

Frontiers in Plant Science

Received: 25 February 2018
Accepted: 05 December 2018
Published: 20 December 2018

Citation:
Carpenter MA, Goulden DS,

Woods CJ, Thomson SJ, Kenel F,
Frew TJ, Cooper RD and

Timmerman-Vaughan GM (2018)
Genomic Selection for Ascochyta

Blight Resistance in Pea.
Front. Plant Sci. 9:1878.

doi: 10.3389/fpls.2018.01878

Genomic Selection for Ascochyta
Blight Resistance in Pea
Margaret A. Carpenter* , David S. Goulden, Carmel J. Woods, Susan J. Thomson,
Fernand Kenel, Tonya J. Frew, Rebecca D. Cooper and Gail M. Timmerman-Vaughan

The New Zealand Institute for Plant & Food Research Limited, Christchurch, New Zealand

Genomic selection (GS) is a breeding tool, which is rapidly gaining popularity for plant
breeding, particularly for traits that are difficult to measure. One such trait is ascochyta
blight resistance in pea (Pisum sativum L.), which is difficult to assay because it is
strongly influenced by the environment and depends on the natural occurrence of
multiple pathogens. Here we report a study of the efficacy of GS for predicting ascochyta
blight resistance in pea, as represented by ascochyta blight disease score (ASC),
and using nucleotide polymorphism data acquired through genotyping-by-sequencing.
The effects on prediction accuracy of different GS models and different thresholds for
missing genotypic data (which modified the number of single nucleotide polymorphisms
used in the analysis) were compared using cross-validation. Additionally, the inclusion
of marker × environment interactions in a genomic best linear unbiased prediction
(GBLUP) model was evaluated. Finally, different ways of combining trait data from two
field trials using bivariate, spatial, and single-stage analyses were compared to results
obtained using a mean value. The best prediction accuracy achieved for ASC was 0.56,
obtained using GBLUP analysis with a mean value for ASC and data quality threshold
of 70% (i.e., missing SNP data in <30% of lines). GBLUP and Bayesian Reproducing
kernel Hilbert spaces regression (RKHS) performed slightly better than the other
models trialed, whereas different missing data thresholds made minimal differences
to prediction accuracy. The prediction accuracies of individual, randomly selected,
testing/training partitions were highly variable, highlighting the effect that the choice of
training population has on prediction accuracy. The inclusion of marker × environment
interactions did not increase the prediction accuracy for lines which had not been
phenotyped, but did improve the results of prediction across environments. GS is
potentially useful for pea breeding programs pursuing ascochyta blight resistance, both
for predicting breeding values for lines that have not been phenotyped, and for providing
enhanced estimated breeding values for lines for which trait data is available.

Keywords: genomic selection, ascochyta blight, pea, disease resistance, genotyping-by-sequencing

Abbreviations: ASC, ascochyta blight disease score; BL, Bayesian Lasso; BRR, Bayesian ridge regression; GBLUP, genomic
best linear unbiased prediction; GBS, genotyping-by-sequencing; GEBV, genomic estimated breeding value; GS, genomic
selection; PFR, The New Zealand Institute of Plant and Food Research; RKHS, Bayesian Reproducing kernel Hilbert spaces
regression.
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INTRODUCTION

The pea, Pisum sativum L., is an important cool-season
legume crop grown in temperate climates, with a global
annual production of 17 million tons (FAOSTAT, 2014). It is
nutritionally valuable, providing a rich source of protein and
starch, as well as a range of other nutrients. The symbiotic
relationship with nitrogen-fixing bacteria makes the pea an
important component of sustainable cropping systems (Tayeh
et al., 2015a). Pea cultivars are inbred lines which are largely
homozygous, produced by several generations of self-fertilization
after the initial cross. Therefore, it takes several years to produce
genetically and phenotypically stable lines, and then to produce
enough seed for field trials and commercialization. Increasing the
efficiency of the breeding process by detecting elite lines earlier,
using high-throughput genotyping or phenotyping, would be
valuable.

Resistance to disease is an important target for pea breeding,
and progress has been made using marker assisted selection
(MAS) for pea diseases where resistance is a single gene trait.
Polymerase chain reaction (PCR) markers are used to identify
breeding lines carrying DNA polymorphisms closely linked to
favorable alleles for selecting resistance to Pea seed borne mosaic
virus (sbm-1 and sbm-2; Gao et al., 2004), powdery mildew
(er-1; Ghafoor and Mcphee, 2011; Pavan et al., 2011), and Pea
enationmosaic virus (En; Jain et al., 2013). Several diseases remain
problematic for the industry, particularly those in which disease
resistance is multi-genic, e.g., Aphanomyces root rot (Desgroux
et al., 2016) and ascochyta blight (Timmerman-Vaughan et al.,
2002). Ascochyta blight typically reduces pea yield in an infected
crop by 10%, or up to 60% if conditions favor it, and decreases
the crop quality, so has a substantial effect on the industry (Liu
et al., 2016). The ascochyta blight disease complex can involve
three fungal pathogens: Didymella pinodes (Berk. & Bloxham)
Verstergren, Phoma medicaginis Malbr. & Roum. var. pinodella
(L.K. Jones) Boerema, and Ascochyta pisi Lib. Resistance to
ascochyta blight is multi-genic, and numerous QTL associated
with it have been discovered (Timmerman-Vaughan et al., 2002,
2004; Jha et al., 2014). Some studies have focused on susceptibility
to D. pinodes (Tar’an et al., 2003; Prioul et al., 2004; Fondevilla
et al., 2011a), where a number of associated QTL have also
been identified. Microarray analysis has shown that hundreds
of genes are differentially expressed during a resistant reaction
to D. pinodes (Fondevilla et al., 2011b). Complete resistance to
ascochyta blight has not been identified in pea, and measuring
partial resistance is challenging because the disease prevalence in
the field is influenced greatly by environmental factors such as
rainfall, temperature and inoculum levels (Kraft et al., 1998). GS,
which uses a large number of genetic markers located throughout
the genome, may provide a solution for selecting elite breeding
lines for a trait such as resistance to ascochyta blight which is
multigenic and difficult to phenotype.

Genomic selection, which was initiated in the livestock
industry, is now being used in a range of plant species, including
fruit and timber trees (Kumar et al., 2011; Resende et al.,
2012), and field crops such as wheat (Lopez-Cruz et al., 2015;
Crossa et al., 2016), maize (Massman et al., 2013), and rice

(Spindel et al., 2015). GS can enable selection to occur many
years earlier in perennial plants where traits cannot be measured
until later, e.g., fruit quality in apples (Kumar et al., 2011) and
timber quality in pines (Resende et al., 2012). GS can shorten
the breeding cycle for inbred annual crops such as wheat by
allowing selection of new breeding parents, based on GEBV, to
occur at an earlier filial generation (Bassi et al., 2016). GS has
been shown to be an effective tool for increasing genetic gain
per unit time for grain yield in maize (Massman et al., 2013;
Beyene et al., 2015). GS studies in wheat have focused on the
importance of genotype by environment interactions (Burgueño
et al., 2012; Lopez-Cruz et al., 2015; Crossa et al., 2016) as a means
of increasing prediction accuracy, both for predicting GEBV of
lines that have not been phenotyped, and predicting GEBV across
environments, for lines which have been phenotyped in some
environments but not others. The way in which GS is used for
breeding will vary greatly between crops, depending on genetics
of the crop and the breeding and growing systems (Jonas and De
Koning, 2013).

Genomic selection has been tested in pea for traits (thousand
seed weight, number of seeds per plant, and flowering date) which
are relatively easy to measure and highly heritable, using a SNP
array for genotyping (Tayeh et al., 2015b). Cross-environment
prediction accuracies were high (up to 0.83) for thousand seed
weight. The authors concluded that GS was very promising
for pea breeding provided that training and testing populations
were chosen carefully, as the size and composition of the
training population were found to have substantial influence on
prediction accuracy. In a more recent study, GS was used to
predict pea grain yield under drought conditions using GBS data
(Annicchiarico et al., 2017). Genomic prediction of pea grain
yield using GBS was accurate (with intra-population prediction
accuracies for grain yield reaching 0.84 and inter-population
0.71) and cost-effective (phenotyping costs were estimated to be
twice as much as genotyping costs). These results indicate that GS
may be a valuable addition to pea breeding programs, however, its
effectiveness for a retractable trait in pea is yet to be determined.

Genomic selection analysis is a two-step process: first
genotypic and phenotypic data from a training population are
fitted to a model. The model can then be used as a tool to predict
phenotypes in a testing population which has been genotyped
but not phenotyped (Jonas and De Koning, 2013; Desta and
Ortiz, 2014). Subsequent phenotyping of the testing population
can be used to assess the accuracy of the prediction, and also to
update the model. A range of models have been developed for
GS analyses (Desta and Ortiz, 2014), with the goal of improving
the prediction accuracy. Initially, Bayesian models BayesA and
BayesB were compared to best linear unbiased predictors (BLUP)
and least squares (LS) (Meuwissen et al., 2001), and later other
Bayesian models were developed (Park and Casella, 2008; Habier
et al., 2011). Other approaches include kernel regression, random
forests, and neural networks (Gianola and Van Kaam, 2008; Desta
and Ortiz, 2014). Comparisons of the various methods used for
genomic prediction have not revealed a single model which is
superior in all cases (Habier et al., 2011; Heffner et al., 2011)
because model performance depends on the number of genomic
regions influencing a trait and the size of the effects, and different
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models make assumptions that may or may not match the genetic
architecture of the trait(s) of interest.

Genomic selection requires genotypic data from a large
number of markers throughout the genome. These can be
generated using SNP arrays or GBS approaches, such as whole
genome resequencing or reduced representation sequencing
(reviewed by Scheben et al., 2017). The reduced representation
GBS method developed at Cornell University (Elshire et al.,
2011), is a high-throughput method, effective for generating
single nucleotide polymorphism (SNP) data from a large number
of DNA samples, and consequently has been used in numerous
GS studies (Bhat et al., 2016). This method produces sequences
from regions adjacent to restriction enzyme sites, and by using
methylation-sensitive restriction enzymes, can target coding
regions rather than repetitive DNA. This makes it an ideal
method for large genomes with abundant repetitive sequences,
such as pea.

Genomic selection analyses commonly report prediction
accuracy based on the correlation between predicted and
observed trait values. However, in addition to estimates of
breeding value (BV) for the whole population, plant breeders
often want an accurate prediction of the top individuals to be
selected as elite cultivars or parents for the next round of breeding
(Bassi et al., 2016). GS has the potential to contribute to pea
breeding in two ways: by enabling the prediction of GEBV in
unphenotyped individuals, and by improving the accuracy of
the BV of individuals that have been phenotyped, particularly
for recalcitrant/hard-to-measure traits, by combining trait data
from multiple environments and/or years with genotypic data.
The use of molecular data to estimate BV is fundamentally more
accurate than the use of pedigree data (Hayes et al., 2009), because
molecular data generate a realized relationship matrix, whereas a
pedigree-based matrix uses expected values in which siblings all
have an average and equal value.

Here we report the evaluation of GS for breeding ascochyta
blight disease resistance in a pea breeding program. GBS was used
to genotype the training population. We compared the ability of
several GS models to predict phenotypes, and explored the effects
SNP quality and number, spatial analysis of phenotype data, and
single- versus two-stage analyses, on the prediction accuracy.

MATERIALS AND METHODS

Plant Material
The training population was a collection of 215 lines from PFR
pea breeding program made up of current PFR breeding lines
and commercial cultivars from both PFR and elsewhere, some of
which have been used as parents in the PFR breeding program
(Supplementary File 1). Some of these lines have been bred for
ascochyta blight resistance.

Phenotyping
Ascochyta blight resistance was estimated for the training
population as a disease severity score (ASC). ASC was determined
from two field trials located in Gore, Southland, New Zealand
(46.11 S, 168.89 E); one sown in 2013 and one in 2015. The trial

site is subject to naturally occurring field epidemics of ascochyta
blight and the pathogens at this site have previously been
characterized as D. pinodes and P. medicaginis (Timmerman-
Vaughan et al., 2002, 2016). The trials were sown in early
November and scored in February of the following year. Each
trial comprised three biological replicates and was set out as a
randomized complete block design with three blocks; each block
contained 3 rows and 77 columns. One breeding line (“Ashton,”
Seminis) was used as a control and planted in every 11th plot.
Each plot was sown with 50 seeds in a single row. Management
of the trials included herbicide application but no irrigation,
fertilizer or fungicide. Ascochyta blight disease was allowed to
develop spontaneously from environmental sources. Each plot
was given a score based on visual appearance of the whole plot
using a scale from 1 to 5 with increments of 0.5. Scores were:
1 = nearly symptomless plants, 2 = trace of infection on stem and
leaves, pods clear of infection, 3, leaves strongly affected, slight
penetration of the stem, and less than 25% of the pod surface
covered by lesions, 4, leaves strongly affected, complete girdling of
the stems and 25–50% of the pod surface covered by lesions, and
5, all plants severely infected, lesions coalesced, vine blue black,
and >50% of the pod surfaces covered by lesions. The trials were
scored when most plots were at the pod fill stage, a time when
disease severity between lines was readily distinguished.

Spatial Analysis of Phenotypic Data
To adjust for possible spatial effects in the ascochyta blight field
trials, a linear mixed effects model was fitted to the 2 years
of data using ASReml-R (Butler et al., 2009). A model with
year as a fixed effect, variety and row as random effects, and a
first-order separable autoregressive (AR1xAR1) variance model
(with both the row effect and the AR1xAR1 variance structure
allowed to vary by year) was determined to be an appropriate
model, following the method of Gilmour et al. (1997), and was
significantly better than a base model with year as a fixed effect
and variety as a random effect (p< 0.001). The final model gave a
BLUP for each variety which was then used in GS analyses (ASC
Spatial). Simple (unadjusted) means were also calculated across
the three plots for each year (ASC2013 and ASC2015), and across
both years (ASC Mean), and used in the GS models.

Genotyping
DNA was purified from young pea leaf samples using a DNeasy
Plant Mini Kit (Qiagen, Hilde, Germany) and quantified using a
Quant-iT PicoGreen dsDNA Assay Kit (Thermo Fisher Scientific,
MA, United States). GBS libraries were constructed according
to the method of Elshire et al. (2011) with some modifications
as detailed below. Sets of 48 barcoded adaptors were designed
by Deena Bioinformatics1, and supplied as BioRP-purified
oligonucleotides by Bioneer Corporation (Daejeon, Korea).
Adaptor oligonucleotides were dissolved at 50 µM, then equal
volumes of plus and minus strands were mixed and annealed by
incubation at 95◦C for 2 min, ramped down to 25◦C by 0.1◦C/s,
and incubated at 25◦ C for 30 min. Annealed adaptors were
diluted 1/100 in water and the concentration determined using

1http://www.deenabio.com
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Picogreen. Barcoded and common adaptors were combined
so that each adaptor had a concentration of 0.3 ng/µl. The
PCR primers were PAGE (polyacrylamide gel electrophoresis)
purified from Integrated DNA Technologies (Coralville, IA,
United States). Adaptor, barcode and primer sequences are listed
in Supplementary File 2. DNA (200 ng) was digested with 5 U
ApeKI enzyme (NEB, Ipswich, MA, United States) at 75◦C for
2 h in NEB buffer 3. Adaptors were ligated to the digested DNA
by adding 0.9 ng of each of the barcoded and common adaptors
with 400 U T4 DNA ligase (NEB) in ligase buffer, the amount
of adaptor being previously determined by titration (Elshire
et al., 2011). Ligation reactions were incubated at 22◦C for 2 h
then inactivated at 65◦C for 30 min. Ligation products were
purified using Ampclean magnetic beads (MAGBIO genomics,
Gaithersburg, MD, United States), then amplified by PCR using
Taq 2× mastermix (NEB), with 25 pmol of each primer, and
10 µl ligation products in 50 µl, in individual reactions. The
PCR was initiated at 72◦C for 5 min, followed by 98◦C for
30 s, then 18 cycles of 98◦C for 10 s, 65◦C for 30 s, 72◦C for
30 s, finishing with 72◦C for 5 min. Amplified libraries were
checked by electrophoresis in an agarose gel to ensure they had
successfully amplified. Aliquots of 10 µl per amplified library
were pooled, in batches of 48, then purified using Ampclean
magnetic beads and eluted into 40 µl. The pooled libraries
were sequenced using the Illumina HiSeq 2000 platform at the
Australian Genome Research Facility (Brisbane, Australia), using
one lane per pooled library batch of 48 samples. The sequencing
generated 100 bp single-end reads, reading from the end of each
construct that contained the internal barcode.

Raw data was assessed using FastQC (Andrews, 2010) for
sequence quality and presence of adapter read through. Sequence
data was also assessed by barcode splitting and enzyme integrity
checking using the ea-utils package, “fastq-multx” (Aronesty,
2011). The UNEAK (Universal Network Enabled Analysis Kit)
pipeline (Lu et al., 2013), which does not use a reference genome
sequence, was used to process the raw sequence reads and identify
SNPs by aligning similar reads to each other UNEAK was run
using default conditions, with the minimum number of reads (–c)
set to 5. The resulting hapmap files were imported into TASSEL
v3.0.165 (Bradbury et al., 2007) for filtering on SNP and taxa
quality. Data from unwanted lines (negative controls, duplicates,
any with inadequate data) were removed. Heterozygous base calls
were coded as missing data because inbred pea lines are expected
to be almost entirely homozygous, so heterozygous base calls are
likely to be errors. Any SNPs with a minor allele frequency of
<0.05 were removed. SNPs were filtered using three thresholds
for missing data: ≥50, 70, and 90% of lines have SNP data
(<50, 30, and 10% missing data, respectively). The subsequent
analyses made use of the ≥90% dataset, with the exception of a
comparison between the different thresholds.

Alleles were recoded as the number of copies of the minor
allele (0 or 2), using the R package “synbreed” (Wimmer et al.,
2012). Missing data was imputed as “0,” representing the major
allele, as in the absence of a pea genomic sequence, the order of
SNPs was not known so imputation based on haplotypes was not
possible. A principle component analysis (PCA) of the genotypic
data was conducted using the R package “stats.” Population

structure was determined from the genotypic data using the
program STRUCTURE v2.3 (Pritchard et al., 2000) and the best
estimate of K (the number of subpopulations) was determined by
the method of Evanno et al. (2005).

Genomic Selection Analyses
The performance of different GS models at predicting BV of
unphenotyped individuals was compared using the R package
“BGLR” (Bayesian Generalized Linear Regression) (Perez and
De Los Campos, 2014) to run GBLUP, BayesA, BayesB, BayesC,
BRR, BL, and RKHS analyses. SNP data quality thresholds of
90, 70, and 50% (i.e., % of lines that have data for a SNP)
were compared using the “BGLR” package to run GBLUP
and BayesA models. Both analyses comprised 500 random
partitions consisting of a training set of 150 individuals and
a testing set of 50, from the 200 lines for which there were
SNP and trait data. The trait data used were ASC Mean,
ASC Spatial, and the means from the individual ascochyta
blight trials, ASC2013 and ASC2015. GS analysis incorporating
marker × environment (M × E) interactions was conducted
for ASC2013 and ASC2015, using “BGLR” with a GBLUP
model (Lopez-Cruz et al., 2015) with 500 random partitions
and a testing set of 50. Three models were compared: a
single environment model in which there is no borrowing of
information across environments; an across environment model
where information is borrowed across environments but marker
effects are constant across environments; and a M× E interaction
model where information is borrowed across environments and
marker effects are allowed to change across environments. Two
M × E cross-validation analyses were done: one for predicting
GEBV for individuals which had not been phenotyped (CV1)
as in the previous analyses, and another (CV2) for predicting
GEBV for individuals in an environment in which they had
not been phenotyped, based on results from phenotyping in
another environment. Finally, the accuracy of GS analysis using
phenotype data from a single trial to predict GEBV of individuals
in a second trial was determined, using a GBLUP model with
“BGLR.”

Using ASReml-R, a GBLUP cross-validation was carried out to
compare a single-stage approach to five different non-weighted
two-stage approaches. In the two-stage analyses, phenotypic
means (or adjusted means) were calculated first, then used in the
GS analysis, whereas in the single-stage analysis the spatial effects,
multiple environments and genomic data were combined in a
single model to predict GEBVs. The five two-stage approaches
were: using the 2013 and 2015 ASC means separately (referred
to as 2013 and 2015, respectively); combining the 2 years’ data
as a grand mean (Mean); combining the 2 years’ data via a
bivariate analysis (Bivariate); and combining the 2 years’ data via
a spatial analysis to give an adjusted mean (Spatial); (Table 1).
The genomic relationship matrix (GRM) was calculated using the
R package “cpgen” (Van Raden, 2008), with lambda = 0.01. For
each of 500 iterations, a test set of size 50 out of the 215 breeding
lines was randomly selected; the training set (165 lines) was used
to fit the five different two-stage, and the single-stage, models;
and, finally, the correlation between predicted and observed ASC
score of each test set was calculated for each model.
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TABLE 1 | Summary of the two-stage and single-stage genomic selection
analyses.

Two-stage models tested for genomic selection

Model name Stage 1:
phenotypic value
calculated for use
in Stage 2

Stage 2: model
fitting,
phenotypic value
and genotypic
data

Observed values
(used for
comparison to
predicted values)

2013 2013 means LMM with GRM 2013 means

2015 2015 means LMM with GRM 2015 means

Mean Mean of 2013 and
2015 means

LMM with GRM Mean of 2013 and
2015 means

Bivariate 2013 means and
2015 means

Bivariate LMM with
GRM

Mean of 2013 and
2015 means

Spatial Adjusted mean
(BLUP) LMM: (2013
means, 2015
means) ∼ year
(fixed) + variety,
row
(random) + spatial
autocorrelation

LMM with GRM Adjusted mean
(BLUP)

Single-stage model tested for genomic selection

Single-stage LMM: (2013 means, 2015 means)∼ year
(fixed) + variety, row
(random) + spatial
autocorrelation + GRM

Adjusted mean
(BLUP)

LMM, linear mixed model; GRM, genomic relationship matrix; BLUP, best unbiased
linear predictor.

RESULTS

Genotypic Data
Sequencing of GBS libraries generated 1.9–5.7 million reads per
pea line, with a median read count of 3.9 million. This equated to
an estimated 0.1× coverage of the genome (per sample) based
on a genome size of 4.3 Gb. Analysis of GBS data using the
UNEAK pipeline produced 74,738 SNPs, however, most of these
SNPs had missing data for many pea lines. After the SNP data
had been filtered to remove those with minor alleles with a
frequency of <0.05, and those with excessive missing data and/or
heterozygous base calls, the numbers of SNPs were as follows:
14,451 SNPs had data for ≥50% of pea lines; 8954 SNPs had data
for ≥70% of pea lines, and 6019 SNPs had data for ≥90% of pea
lines (Supplementary File 3). Of the 215 pea lines, there were 200
for which both SNP and trait data were available, so these were
used in the following analyses.

Principle component analysis of the genotypic data showed
that the first principle component separated most of the lines
from the PFR breeding program from most of the lines from
other sources, while the second principle component separated a
small group of the PFR lines from the remaining lines (Figure 1).
However, the first two principal components accounted for only
7 and 6% of the variation, respectively, therefore the trends
described above are weak. Analysis of population structure also
confirmed that there was little structure in the population based

on the shape of the LnP(D) curve, and that the population
structure was best represented by 2 or 10 sub-populations
(Supplementary File 4).

Phenotypic Data
The ASC trait showed greater variation in the 2015 field trial
(range 1.7–4.7, mean 3.0) than in 2013 (range 2.7–4.5, mean 3.5).
Histograms of trait data are provided in Supplementary File 5.
Correlation (Pearson) between the mean ASC scores from the
two field trials was only moderate (r = 0.46, Figure 2). The spatial
analysis identified field trends with row and proximity effects (for
both years), whereas column effects were negligible. The mean
values and the spatially adjusted means for ASC were highly
correlated (0.96) and spatial adjustment produced little change
in the ranking of the lines.

Comparison of Different GS Models
The genotypic and phenotypic data were analyzed to determine
the extent to which the prediction accuracy was affected by the
choice of GS model, and by the SNP quality and number (i.e.,
fewer SNPs with less missing data versus more SNPs with a higher
proportion of missing data). Next, different ways of combining
the ASC data from two field trials for a two-stage GBLUP analysis
were explored (mean, spatially adjusted mean, and bivariate)
and compared to a single-stage analysis. Finally, the breeding
lines were ranked with respect to ASC using the two-stage and
single-stage GBLUP analyses, to determine how consistently the
methods predicted the top ten lines.

The performance of seven GS models (GBLUP, BayesA,
BayesB, BayesC, BRR, BL, and RKHS) was compared using the
trait values ASC2013, ASC2015, ASC Mean, and ASC Spatial
(Figure 3). In all cases, GBLUP and RKHS gave slightly higher
mean prediction accuracies than the other models (p < 0.01), but
overall, the differences between the models’ prediction accuracies
were small, ≤0.02. The mean prediction accuracy for ASC was
greatest when the trait value used was the mean of the 2 years
(Figure 3, ASC Mean, 0.55), which was slightly better than using
the trait value based on spatial analysis (Figure 3, ASC Spatial).
The prediction accuracies obtained from individual partitions
of the 200 pea genotypes into testing and training sets fell over
a large range for all traits (e.g., 0.2–0.8 for ASC Mean). Density
plots of these accuracies for the seven models tested are presented
in Figure 4. These plots indicate that the partitioning of the
testing and training sets had a large effect on the prediction
accuracy.

The inclusion of M × E interactions made little difference to
the prediction accuracies obtained for unphenotyped individuals
(CV1, Figure 5A). The three models (single environment, across
environment, and M× E interaction) generated mean prediction
accuracies of 0.40, 0.39, and 0.41, respectively, for ASC2013, and
0.52, 0.51, and 0.52, respectively, for ASC2015. In both cases
the across environment model, which assumes that effects are
constant across environments, gave the lowest accuracy, but the
differences were not significant (p > 0.09). However, prediction
accuracies were greater when using phenotype data from one
environment to predict phenotypes in a second environment
(CV2, Figure 5B). The single environment, across environment,
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FIGURE 1 | Principal component analysis plot of pea genotypic data. Lines originating from The New Zealand Institute for Plant and Food Research Limited (PFR)
breeding program are shown in blue, lines from other sources are red. The percent variance associated with each of the first two principal components (PC) is shown
in brackets.

and M× E models produced mean prediction accuracies of 0.40,
0.49, and 0.49, respectively, for ASC2013, and 0.51, 0.56, and 0.56,
respectively, for ASC2015. In both cases, the across environment
and M × E models gave higher mean accuracy than the single
environment model (p < 0.001).

When GEBVs of the testing set were based on phenotypic
data from a single ascochyta blight field trial, and compared to
the phenotypic values from a second trial, the mean prediction
accuracy was notably lower than in the previous analyses
(Figure 6, p < 0.001). GEBVs for ASC2015, based on ASC2013
phenotypic data, were generated with an accuracy of 0.38,
whereas the converse gave 0.34.

Comparison of SNP Quality Thresholds
Genomic selection prediction accuracy was compared across SNP
datasets filtered according to their amount of missing data to
determine whether best results were obtained using fewer SNPs
and minimal missing data, or more SNPs with a larger proportion
of missing data. The 90% data set comprised 6019 SNPs for which
data was missing for <10% of lines, with an average of 3% missing
data overall. Similarly, the 70% dataset had 8954 SNPs each with
missing data for <30% of lines, with an overall mean of 9%
missing data. The 50% dataset had 14,451 SNPs with a mean of
21% missing data overall. The GBLUP and BayesA methods were
used for these comparisons. For all trait values, the 70% SNP
filtering threshold gave the highest mean prediction accuracies,
however, the differences were minor (≤0.02, p > 0.1) for both

GBLUP and BayesA analyses (Figure 7). Since the addition of
SNPs of lower quality (i.e., with more missing data) did not
notably improve the prediction results, while the smaller, higher
quality 90% dataset had a reduced computational time (i.e.,
approximately half that of the 50% dataset), it appears practical
to use the smaller dataset.

An additional comparison was made between imputing with
the minor allele instead the major allele, using the 90% SNP
dataset with GBLUP and BayesA. The imputation difference
had a minimal effect on prediction accuracy (data not shown).
Imputation using the major allele was estimated to be correct in
76% of cases, based on the frequencies of the major and minor
alleles prior to imputation.

Two-Stage Versus Single-Stage Analyses
The above analyses using the R package BGLR were all non-
weighted two-stage approaches to GS, in which phenotypic
means were calculated in the first stage (for example, to adjust for
spatial effects or multiple environments), then fed into a model
to predict GEBVs based on SNPs. In contrast, in a single-stage
approach, spatial effects and multiple environments are modeled
at the same time as incorporating SNP information to predict
GEBVs. Box plots of the prediction accuracies generated by
various two-stage approaches and a single-stage analysis (Table 1)
are shown in Figure 8, and indicate that the single-stage approach
did not substantially improve the prediction accuracy of the
test sets.
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FIGURE 2 | Scatter plot comparing ascochyta blight disease scores (ASC) from two field trials. The plotted values are means of three biological replicates, with a
regression line shown in blue. The correlation between the data from the two field trials was r = 0.46. Points which are over-plotted have been made visible using the
jitter function in R package “ggplot2.”

FIGURE 3 | Mean prediction accuracy for seven genomic selection models calculated from 500 randomized testing/training partitions. Prediction accuracy is the
correlation between predicted and observed trait values for the testing set.
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FIGURE 4 | Density plots of prediction accuracy for seven genomic selection
models using 500 randomized testing/training partitions.

Performance of Genomic Selection in
Pea
The greatest mean prediction accuracy achieved for ASC was
0.56, obtained using GBLUP analysis with a mean value for ASC
and data quality threshold of 70% (i.e., missing data in <30% of
lines).

As the heritability of a trait may affect the accuracy of
GS, heritabilities were estimated using the GBLUP model. The
calculated heritabilities followed a similar trend to the prediction
accuracies, i.e., 0.53 and 0.59 for ASC2013 and ASC2015, and 0.61
and 0.63 for ASC Spatial and ASC Mean.

Selecting Elite Lines
Plant breeders are interested in identifying the elite lines in a
breeding program, in addition to determining trait values for all

lines. The predicted top 10 lines for ASC, as determined by the
two-stage and single-stage methods using GBLUP, are presented
in Table 2. Despite little difference in average prediction accuracy
of the different methods, there was variation in the ranks for the
top 10 breeding lines. However, estimates for the top three lines
were consistent across the analyses which combined data from
the two trials (Mean GBLUP, Bivariate GBLUP, Spatial GBLUP,
and single-stage).

DISCUSSION

Genotyping-by-sequencing (Elshire et al., 2011) proved to be an
effective method for generating SNP data for GS in pea, with
a simple and efficient laboratory protocol. The amplification of
samples individually, rather than amplifying pooled samples,
made the process less efficient but allowed us to ensure that all
samples were successfully amplified. The use of magnetic beads
for the clean-up steps gave results consistent with spin columns
(data not shown) but required less handling time. Although
GBS resulted in a large number of SNPs with missing data for
many lines, the overall number of SNPs identified was so large
that there were plenty that had little missing data (>6000 SNPs
had data for ≥90% of samples). The results of other studies
suggest that this number is quite sufficient for GS. Although
the accuracy of GS increases with increased marker density, the
effect is small (Heffner et al., 2011; Tayeh et al., 2015b) and
in barley and wheat reached plateau at around 1000 and 1500
markers, respectively (Bonnett et al., 2013; Oakey et al., 2016).
Similarly, the size of the training population influences prediction
accuracy, with little increase in prediction accuracy between 210
and 240 individuals in pea (Tayeh et al., 2015b), suggesting
that the number of individuals used in this study was adequate.
The average genome coverage was low at approximately 0.1×,
but because the sequence reads were generated only at ApeKI
restriction sites, the subset of the genome which was sequenced
would have had much higher read coverage.

FIGURE 5 | Box plots from GS analysis incorporating marker × environment (M × E) showing the distributions, median values, 25 and 75% quantiles, and outliers
for the prediction accuracies obtained from 500 testing/training partitions, for ascochyta blight disease score from the 2013 and 2015 pea field trials.
(A) Cross-validation of predicted breeding values for lines with no phenotypic data available (CV1). (B) Cross-validation of predicted breeding values for lines which
had phenotype data available from one environment but not the other (CV2). Three models were compared: single environment, across environment, and M × E
interaction.
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FIGURE 6 | Box plots from a GBLUP GS analysis comparing accuracy of
predictions across trials versus within trials. Plots show the distributions,
median values, 25 and 75% quantiles, and outliers for the prediction
accuracies obtained from 500 testing/training partitions, for ascochyta blight
disease score from the 2013 and 2015 pea field trials. The panel on the right
shows the accuracy when GEBV predicted from ASC2013 and ASC2015
training populations is compared to test populations from ASC2015.

The UNEAK analysis pipeline was designed to be used in
any species, irrespective of the availability of a genome sequence,
making it were ideal for a pea GS study. However, aligning to
a genome would be preferable as the SNP positions would be
known, allowing imputation of missing data based on haplotypes.
Synteny between the Medicago truncatula and pea genomes
(Aubert et al., 2006; Young et al., 2011) suggested that aligning
the pea GBS reads to the M. truncatula genome might prove
useful. This was attempted, as well as aligning to an unpublished
fragmented pea genome. However, in both cases the number of
SNPs generated was less than with UNEAK (data not shown).
Finally, the pea GS SNPs were ordered using GBS SNPs from a
pea mapping population, however, that also reduced the number
of SNPs available due to the lower genetic diversity within the
mapping population. Therefore, we chose to use the SNPs derived
from the UNEAK analysis, and to stringently filter out SNPs that

FIGURE 7 | Mean prediction accuracy for genomic best linear unbiased
prediction (GBLUP) and BayesA calculated from 500 testing/training partitions
using three different single nucleotide polymorphism (SNP) quality (missing
data) thresholds.

had excessive missing data, to provide optimal data for the GS
analyses. Imputation with the major allele, which was estimated
to be correct in 76% of cases, was considered to be a satisfactory
alternative to imputation based on a genome sequence.

Analysis of the SNP data revealed little population structure
among the lines used for GS. The PCA plot showed some
separation of the lines bred at PFR from other lines, but the two
groups overlapped. This is consistent with some of the other lines
having been used as parents in the PFR breeding program. Strong
population structure can decrease the cross-validation accuracy
of GS (Habyarimana, 2016) so the weak population structure
observed here is advantageous.

The choice of model used in the GS analysis made small
but significant (p < 0.01) differences to the mean prediction
accuracies obtained. GBLUP and RKHS (which both use a
GRM rather than calculating marker effects) gave slightly higher
prediction accuracies than the other models (Figure 3). Although
the choice of model can sometimes make a difference, depending
on the number of QTL which affect the trait (Lin et al., 2014),
other studies have found that the choice of model does not
affect the prediction accuracy substantially in pea (Tayeh et al.,
2015b), wheat (Heffner et al., 2011), and dairy cattle (Habier et al.,
2011). It was noted that the prediction accuracy of individual
testing:training partitions was highly variable, which emphasizes
that the choice of training population is critical and has a
substantial effect on the ability to predict phenotypes. Previous
studies have shown that prediction accuracies can be increased
by optimizing the division of samples into testing and training
sets so that the relatedness between individuals in the testing
and training sets is maximized (Rincent et al., 2012; Tayeh et al.,
2015b; Bassi et al., 2016).

The best prediction accuracy obtained in this study, for lines
which had not been phenotyped, was 0.56, using a GBLUP model
and the mean of two field trials. Previous GS studies of multi-
genic traits in pea have achieved higher prediction accuracies
than this, but have also used traits which have higher heritability
and/or gave more consistent phenotypic data. A previous study
in pea (Burstin et al., 2015) attained a prediction accuracy of 0.62
for the highly heritable trait thousand seed weight (h2 = 0.98)
but lower accuracies for flowering time and number of seeds
(0.46 and 0.39, respectively) which, compared to thousand seed
weight, had lower heritability (h2 = 0.71 for number of seeds)
or less consistency between trials (R2 = 0.62 for flowering time).
Another pea study using the same trait data but with a SNP
array to produce more markers (Tayeh et al., 2015b) gained
higher prediction accuracies of 0.83, 0.68, and 0.65 for the three
traits, respectively, all of which had higher heritability than the
ASC mean reported here (h2 = 0.63). A more recent study
(Annicchiarico et al., 2017) achieved prediction accuracies of
0.54–0.84 for highly heritable (h2 = 0.9) pea grain yield under
drought stress, when predicting within bi-parental populations
with limited genetic variation and a limited number of relevant
QTL. However, the inter-population prediction abilities were
much lower.

The ASC2015 trait consistently gave higher prediction
accuracies than ASC2013, which is likely due to the greater spread
of the disease scores in 2015 (Figure 2 and Supplementary File 2)
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FIGURE 8 | Box plots showing the distributions, median values, 25 and 75% quantiles, and outliers for the prediction accuracies obtained from various two-stage
(2013, 2015, Mean, Bivariate, and Spatial) and single-stage approaches to breeding value estimation for ascochyta blight disease score (ASC), calculated from 500
testing/training partitions.

which provided better discrimination between lines. The cross-
environment prediction accuracies, where GEBVs calculated
using phenotypic data from one field trial were compared
to phenotypic data from a second trial, were relatively low
(Figure 6). This is not unexpected given that the correlation
between the two phenotypic data sets was only moderate
(r = 0.46). The variation in the distribution of the ASC
trait values, and the moderate correlation, between years
are consistent with the extensive influence of environmental
variables on the disease severity, including variation in the
composition of natural pathogen populations in the field.
Previous research revealed that ascochyta blight in pea was

associated with the presence of bothD. pinodes and P. medicaginis
(Timmerman-Vaughan et al., 2016), so variation in the disease
scores between years could be due to changes in strains or
the relative amounts of these two pathogens. Consequently,
when using GS for breeding peas with resistance to ascochyta
blight, it may be advisable for the phenotypic values for
the training population to be based on at least two field
trials.

The inclusion of M × E interactions in a GBLUP GS model
did not improve the prediction accuracy for lines which had not
been phenotyped (CV1, Figure 5A). The results were consistent
with previous results from wheat (Lopez-Cruz et al., 2015) in

TABLE 2 | Top 10 ranked lines for ascochyta blight resistance (ASC) according to the single-stage genomic best linear unbiased prediction (GBLUP) method, along with
their rankings according to six other methods.

Variety Single-stage
GBLUP

Spatial GBLUP Bivariate GBLUP Mean GBLUP 2015 GBLUP 2013 GBLUP Simple means (no
genotype data)

PFR00-8212 1 2 1 1 1 7 1

S2-271 2 1 2 2 10 1 8

K95-2198 3 3 3 3 3 6 3

K95-2063 4 4 30 36 87 2 22

PFR92-845 5 17 4 18 2 76 3

PFR10-A24 6 6 16 19 30 16 11

Foli_1 7 8 7 8 6 31 15

Supergreen 8 14 5 15 36 5 6

PFR00-8264 9 7 8 4 8 11 2

PFR00-8257 10 5 11 5 13 12 8
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that the single environment and M × E models gave slightly
higher prediction accuracy than the across environment model.
However, for CV2, where phenotypic data from one environment
were used to predict GEBV for a second environment, an increase
in prediction accuracy was gained in the across environment
and M × E models compared to the single environment model
(Figure 5B). For comparison, the CV2 prediction accuracies
for wheat were highest for the M × E model, and lowest for
the across environment model (Lopez-Cruz et al., 2015), for
most of the environments analyzed. In both pea and wheat, the
CV2 M × E model gave greater prediction accuracy than CV1
M × E model, indicating that there may be value in an approach
where different subsets of breeding lines are phenotyped in
different environments, provided that the environments are
similar enough to produce positively correlated phenotypic data
(Lopez-Cruz et al., 2015).

The filtering threshold of the SNP data also made little
difference to the prediction accuracy (Figure 7). Therefore
it makes sense to remove SNPs that are poorly represented
among the lines, and thereby reduce the computational time.
Increasing the number of markers used in GS is known
to improve prediction accuracies, but this is a small effect
(Heffner et al., 2011) that reaches a plateau. A recent study
with GBS data in pea (Annicchiarico et al., 2017) found that
increasing the missing data threshold from 10 to 50% of
lines caused a substantial increase in the number of markers,
thereby improving the predictive ability. However, the increase
in predictive accuracy plateaued; increasing the number of
markers up to 400–500 improved prediction accuracy, but
further increases produced little gain. In this case, bi-parental
populations with relatively narrow genetic variation were used,
which explains why a small number of markers was sufficient
for GS. Similarly, in a large and diverse cohort of wheat
breeding lines, increased markers produced an increase in
predictive ability that reached a plateau at approximately 1500
markers (Bonnett et al., 2013). Therefore, it is likely that
altering the filtering threshold had minimal effect in our study
because the number of markers was high (>6000) at all
thresholds.

Complex analyses of the ASC trait data, including spatial,
bivariate, and single-stage analyses, did not substantially improve
the prediction accuracy over that of a simple grand mean value of
the 2013 and 2015 means (Figure 8). This has some similarity
to the results of GS in rye (Bernal-Vasquez et al., 2014) where
complex spatial models did not improve the prediction accuracy,
but using row and column effects was effective. In contrast,
genomic prediction accuracy in barley was improved using a
single-stage GS approach incorporating spatial effects and data
from multi-environment trials (Oakey et al., 2016). The single-
stage approach is considered to be the gold-standard as it fully
accounts for the entire variance–covariance structure of the
observed data, though it may not always be practical; for example,
complicated models may fail to converge (Schulz-Streeck et al.,
2013).

For a trait such as ASC which is difficult to phenotype reliably,
requiring repeated field trials that are expensive, time consuming,
and depend on the natural occurrence of disease that varies in

prevalence and pathogen strain composition, the inclusion of
genomic data can give a better estimate of the true trait value than
phenotypic measurements alone. Therefore, GS is potentially
valuable for pea breeding for this trait, and may be useful in
different ways: to provide a better estimated BV for phenotyped
lines; to predict BV for lines that are not phenotyped, and to
predict BV across environments. However, for GS to be effective,
the choice of training population is critical; it must adequately
represent the testing population so that accurate trait values
are predicted. In addition, the costs associated with genotyping
must be outweighed by the cost savings generated through a
reduction in phenotyping effort. GS in pea would benefit from
the availability of a high quality genome sequence, and results are
also likely to be improved by using a larger number of pea lines,
and running more trials.
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