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Rice (Oryza sativa L.) is one of the most important staple foods in the world. It is possible
to identify candidate genes associated with rice yield using the model of random walk
with restart on a functional similarity network. We demonstrated the high performance
of this approach by a five-fold cross-validation experiment, as well as the robustness of
the parameter r. We also assessed the strength of associations between known seeds
and candidate genes in the light of the results scores. The candidates ranking at the top
of the results list were considered to be the most relevant rice yield-related genes. This
study provides a valuable alternative for rice breeding and biology research. The relevant
dataset and script can be downloaded at the website: http://lab.malab.cn/~jj/rice.htm.
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INTRODUCTION

Rice (Oryza sativa L.) is one of the most important food crops worldwide, being used as the main
food source by more than half of the global population (Mahender et al., 2016; Li et al., 2017).
In the developing world, rice provides 27% of dietary energy and 20% of dietary protein (Huang
et al., 2013). However, despite genetic improvements in grain yield delivered by the exploitation of
semi-dwarfism and heterosis over the past 50 years, a substantial increase in grain productivity of
the major crops is still required to feed a growing world population (Abe et al., 2018). The prime
breeding target is to increase both grain size and grain number, because they impact both on yield
potential and its end-use quality (Okada et al., 2018). However, the simultaneous improvement
of grain quality and grain yield is a major challenge because of the well-established negative
correlation between these two traits which is controlled by quantitative trait loci and influenced by
environmental changes. Additionally, determining which genes in quantitative trait loci regulate
grain size and number has not been clarified (Borzee et al., 2018; Li et al., 2018). Therefore, the
identification genetic variants associated with improvements in grain yield would facilitate the
breeding of new high-yielding rice varieties and may also be applicable to other crops (You et al.,
2017).

Vast numbers of genetic variants have been detected by traditional genome-wide association
studies and recent sequencing studies, and connecting the functional implications of these
results to known genes has become a standard task (Li et al., 2015; Dehury et al., 2017;

Abbreviations: AUC, area under the ROC curve; GO, gene ontology; ROC, receiver operating characteristic; RWR, random
walk with restart.
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Torres and Henry, 2018; Wu et al., 2018). We previously
developed a database, RicyerDB, to collect all known rice yield-
related genes by integrating multiple omics data, information
from the literature, and associated databases (Jiang et al., 2018).
This work also established a search tool to query a particular gene,
and to provide insights into gene functions and locations. Any
rice yield-related gene can therefore be easily queried and the
findings downloaded through the webpage, while candidate genes
can be screened and prioritized to identify those most likely to be
associated with known genes.

To achieve this goal, several approaches have been proposed
from the perspective of computational systems biology
(Behroozi-Khazaei and Nasirahmadi, 2017; He et al., 2017;
Liu E. et al., 2017; Liu Y. et al., 2017; Xiong et al., 2017; Maione
and Barbosa, 2018; Zhang M. et al., 2018; Zhou et al., 2018).
For example, the Endeavor tool uses the guilt-by-association
principle to rank candidate genes according to their functional
similarities to a set of predefined seed genes (Aerts et al., 2006;
Tranchevent et al., 2008, 2016). In recent years, a protein–protein
interaction (PPI) network has been developed to achieve a
global inference of entire genes (Liu et al., 2010; Lee, 2011;
Rezadoost et al., 2016; Wang et al., 2016; Zeng et al., 2016; Luo
and Liu, 2017; Holland and Johnson, 2018; Vlaic et al., 2018).
PPI networks have also been used to provide a simplified yet
systematic measure of functional similarities between genes
(Chen et al., 2017a, 2018a).

Some methods for identifying yield-related genes have linked
profile and sequence technology to facilitate the prediction
of related genes. For example, Odilbekov et al. (2018) used
machine learning and integrated this analysis with data obtained
from spectroradiometer, infrared thermometer, and chlorophyll
fluorescence measurements to identify the most predictive proxy
measurements for studying Septoria tritici blotch disease of
wheat.

Hybrid breeding is an effective tool to improve yield in
rice, although parental selection remains a difficult issue. Xu
et al. (2018) compared six genomic selection methods, such as
least absolute shrinkage and selection operation and support
vector machine, to evaluate predictabilities for different methods,
and demonstrated their implementation to predict the hybrid
performance of rice. Although good results have been achieved
by these studies, the techniques of microarray and sequencing are
nevertheless expensive.

The main target of this research was to use current
knowledge to identify rice yield-related genes with network
prediction methods. We proposed a computational systems
biology approach for the identification of candidate genes via a
random walk model on a PPI network with functional similarities
(Kohler et al., 2008). Starting from known nodes, our method
simulates the process in which a random walker travels to its
neighbors or jumps to itself in the network, scores a gene using
the probability that the walker stays in the gene at a steady
state, and then ranks candidate genes according to their scores.
Using a series of cross-validation experiments, we systematically
demonstrated the robustness of our method, and applied our
approach to predict a landscape of associations between known
genes and candidates.

MATERIALS AND METHODS

Flowchart Overview
We modeled the problem of identifying candidate genes
associated with a set of known genes as a prioritization problem,
and proposed to solve this problem using a three-step approach.
As shown in Figure 1, taking the set of known genes as input, we
first standardized the genes between STRING (Szklarczyk et al.,
2015) and RicyerDB (Jiang et al., 2018). Then, we constructed a
protein–protein network that scores the edges through functional
similarities. This procedure applied a RWR algorithm to the
network to calculate a score for each candidate gene, and then
ranked the candidates to obtain a ranking list as the output (Chen
et al., 2012a,b; Chen, 2016; Chen X. et al., 2016; Li et al., 2016;
Peng et al., 2016; Zhu et al., 2018). Finally, the top candidate
gene was verified according to its function and by the published
literature.

Construction of the Functional Similarity
Network
The functional similarity network is described as a graph
G = (V, E), where V represents the nodes of the network and E
stands for the edges of the network. The background network
comes from the STRING database because of existing potential
associated interactions among the proteins. The known rice
yield-related genes were identified from our previous work with
RicyerDB (Jiang et al., 2018). To standardize gene names between
STRING and RicyerDB, genes were retrieved by reference to
National Center for Biotechnology Information gene names.
Functional similarities among genes in the background network
were considered by scoring E for GO annotations. Using the latest
release of the GO database (Ashburner et al., 2000; Chen L. et al.,
2016; Raza, 2016; The Gene Ontology, 2017), edges were scored
for a shared functional significance score of genes in the network
that were annotated with GO terms.

The shared functional significance score F(i,j) between gene i
and j was measured by the Weighted Shared Functions approach,
which considered a gene’s functions as a set of functional
categories in GO. The functions shared by a small number of
genes are taken to be far more significant than ones shared by a
large number of genes. Each function had its own significance,
which was defined as the inverse number of genes sharing the
function. When two genes, i and j, have m functions in common,
i.e., F(i)∩F(j) = ( f1, f2, . . ., fm ), F(i,j) was given as the total sum of
the significance of the functions shared between them as follows:

F(i, j) =
m∑

n= 1

sig(fn)

sig(fn) =
1

|Gene(fn)|

Here sig(fn) denotes the significance of a function fn(n = 1,2,..., m)
shared between genes i and j, | Genes (fn)| is the number of genes
sharing a function fn. We calculated the ranking score, p, for each
gene in the disease-related network and ranked these genes in the
descending order of p.
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FIGURE 1 | Illustration of the proposed method. Our method takes a set of seed genes as the input, and gives a ranking list of the candidates as the output.
A functional similarity network was constructed by applying a random walk with restart algorithm to the network to obtain scores for candidate genes, and then the
candidates were ranked according to their scores.

Random Walking on the Functional
Similarity Network
We achieved the goal of identifying candidates related to known
seeds by calculating a score for each candidate and then ranking
the candidates to obtain a ranking list. The higher the rank, the
more likely the gene was to be related to the given source nodes.
For this purpose, we adapted the RWR method in the functional
similarity network.

At the beginning, the walker chooses the seeds as the starting
point. In each step of the walking process, the walker may start
on a new journey with probability r or move on with probability
1−r. When moving on, the walker may move at random to one
of its direct neighbors.

In our application, the initial probability vector P0 was
constructed such that equal probabilities were assigned to the

nodes representing members of the disease, with the sum of the
probabilities equal to 1. This is equivalent to letting the random
walker begin from each of the known disease genes with equal
probability. The transition matrix W is the column-normalized
adjacency matrix of the graph, and Pt is a vector in which the ith
element holds the probability of being at node i at time step t.
Formally, the RWR is defined as:

Pt+1 = (1− r)WPt + rP0

Candidate genes were ranked according to the values in the
steady-state probability vector P. P vector changes with time t,
while it is possible to obtain it by explicitly calculating Equation
(1) until convergence. The iteration is finished when the change
between Pt and Pt+1 falls below 10−10. In this paper, we set
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default values for parameters r = 0.3 (see Results section for
details).

Validation Method
We adopted a five-fold cross-validation experiment to assess the
capability of RWR to identify the left seeds. All seed genes were
divided equally into five parts, then one part was removed as a
test set, and added to the candidate genes. All candidate genes
were ranked by RWR to determine the ranking of the test gene.
This procedure was repeated until all seed genes were used up as
test genes.

In the context of the functional similarity network, the above
validation procedure was equivalent to removing one part of
the seed genes to candidate genes and determining whether
candidates containing these seeds could receive a high rank. The
r parameter of RWR ranged from [0,1] and was used to identify
the ranking of the five parts. ROC curves were plotted, and areas
under the ROC curve (AUC) values were used to evaluate the
performance of r.

RESULTS

Data Sources
We obtained the rice background protein–protein network from
the STRING database. In the network, protein associations
were either directly derived from physical interactions or
functional links from experimental evidence and computational
methods (Jensen et al., 2009). The network composes of
6561 nodes and 567034 edges, which represent proteins and
interactions between them, respectively. In our study, 136
known genes were selected as seed genes and other genes as
candidate genes. We downloaded O. sativa Japonica protein

network data through STRING version 10.5 (Szklarczyk et al.,
2015).

Proteins with accurate functional annotations are vital
to biological research. We obtained functional annotation
information from the GO Consortium (Ashburner et al., 2000),
and downloaded GO annotations of O. sativa from the most
recent GO version. GO enrichment analysis is used to interpret
high-throughput molecular data. GO annotation is the list of
all annotated genes linked to ontological terms describing those
genes.

The RicyerDB database integrates publicly available resources
to construct a public platform for browsing and the interactive
visualization of yield-related genes. The first release of RicyerDB
contained more than 400 manually curated gene information
entries which were all associated with rice yield.

Performance of the Proposed Method
The score vector P (the probability of being at the current node)
for all genes in the network was calculated based on the ranking of
corresponding r coefficients. Candidate genes were then ranked
in the descending order of P score.

For optimal parameters, genes were also ranked according to
the calculated p scores with nine different r-values (r = 0.1, 0.2,
0.3, 0.4, 0.5, 0.6, 0.7, 0.8, and 0.9). The matching numbers of
the five-part seed genes were applied to assess the effectiveness
of RWR. In Figure 2 listed the five cases of all, the number of
matched seeds among the top 500 (every 100 is a measurement
cutoff) in the ranking list of r = 0.3 was higher than other r-values
in most cases.

The sum of the numbers of matched seed nodes in all ranking
results was determined, and r = 0.3 was shown to have the
maximum match in general. Finally, the parameter r = 0.3 was
selected to calculate vector P to obtain the ranking results.

FIGURE 2 | Five-fold cross validation of the parameter r in RWR. The abscissa represents the top 500 ranking positions, and the ordinate represents the number of
matching seed nodes.
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FIGURE 3 | The ranking of all seeds in different r-values after 100 times fivefold cross validation. The number of ordinate in left part presents the sum of all seeds
ranking and in right part presents the ranking position of all seeds.

Further to detect the robustness of parameter r, we repeated the
five-fold cross validation 100 times. Then we applying statistical
analysis to compare the ranking of all seeds at different r-values
in our model, the results were shown as Figure 3.

Prioritization of Candidate Genes and
Validation by Literature Review
In the functional similarity network, all candidate genes were
prioritized by RWR according to vector P at the final status.
We manually searched the 100 top candidate genes (Table 1)
in PubMed1 for their association with yield. This verified
eight candidate genes associated with rice production. The
LOC_Os11g40150 (rank 39) alias is OsRad51A1, which is a key
component of homologous recombination in DNA repair. Direct
interaction with OsNAC14 recruits factors involved in DNA
damage repair and defense response, resulting in an improved
tolerance to drought (Shim et al., 2018). LOC_Os04g37619
(rank 11) named ZEP, which is one of the key genes that
involved hormone abscisic acid biosynthesis in rice by ion beam.
Irritation can enhance the expression of genes involved in ABA
biosynthesis, resulting in increasing content of endogenous plant
hormone abscisic acid in rice (Chen et al., 2014).

Taken together, of the top 100 candidate genes in the ranking
list, 46 candidate genes predicted by our method had been
confirmed to be correlated with rice yield in PubMed literature
(Table 1). Top-ranked candidates were found to have a high
confirmation rate in terms of their association with rice yield,
especially top 20 candidates (Table 2).

We conducted GO analysis to assess the functional
enrichment of the top 100 candidate genes (Figure 4). The
GO term having the most candidates annotated to was GO:
0005524 ∼ ATP binding, which is a binding motif within
the primary structure of an ATP binding protein. A recently
identified rice ATP binding cassette plays multiple roles in plant

1http://www.ncbi.nlm.nih.gov/pubmed

growth, development and environmental stress responses (Zhang
X.D. et al., 2018). ATP binding has also been shown to play an
important role in rice development (Coneva et al., 2014; Zhao
et al., 2015; Chang et al., 2016; Lei et al., 2018).

TABLE 1 | The top 100 candidate genes in the ranking list.

Ranking Gene name P score PubMedID

1 LOC_Os06g09390 0.001487617 PMID: 20713616,
PMID: 27555860

2 LOC_Os06g50480 0.001475286

3 LOC_Os02g02480 0.00146746

4 LOC_Os08g42470 0.001461294

5 LOC_Os01g03340 0.000941415

6 LOC_Os01g03390 0.00080268 PMID: 12972663

7 LOC_Os01g04040 0.00080268

8 LOC_Os01g04050 0.00080268

9 LOC_Os07g02350 0.000775571 PMID: 16240106,
PMID: 11416158

10 LOC_Os08g02640 0.000669873

11 LOC_Os04g37619 0.000640376 PMID: 24634194

12 LOC_Os11g35500 0.00062345 PMID:29813124,
PMID:29402905

13 LOC_Os05g41970 0.000594578 PMID: 1731968

14 LOC_Os12g16890 0.000594578

15 LOC_Os01g03680 0.000584668

16 LOC_Os07g10580 0.000564849 PMID: 28158863,
PMID: 22108719

17 LOC_Os06g50340 0.000561268 PMID: 19704753,
PMID: 16511358

18 LOC_Os10g14150 0.000555163 PMID: 19201764

19 LOC_Os01g55540 0.000551598 PMID: 15753104

20 LOC_Os10g22860 0.00054974 PMID: 23384860,
PMID: 28101092

(Continued)
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TABLE 1 | Continued

Ranking Gene name P score PubMedID

21 LOC_Os10g32990 0.000547737 PMID: 23384860,
PMID: 28101092

22 LOC_Osm1g00450 0.000540982

23 LOC_Os01g60670 0.000536737

24 LOC_Os07g11410 0.00053512

25 LOC_Os01g13800 0.000533159

26 LOC_Os02g13780 0.000533159

27 LOC_Os10g06760 0.000533159 PMID: 23384860,
PMID: 28101092

28 LOC_Os10g13970 0.000533159 PMID: 23384860,
PMID: 28101092

29 LOC_Os10g19160 0.000533159 PMID: 23384860,
PMID: 28101092

30 LOC_Os02g57530 0.000532385 PMID: 14754915

31 LOC_Os10g21810 0.000529529

32 LOC_Os01g47730 0.000507068

33 LOC_Os07g11920 0.000505391 PMID: 28158863,
PMID: 22108719

34 LOC_Os01g07870 0.00049357

35 LOC_Os03g54790 0.000492652

36 LOC_Os01g18670 0.000492651

37 LOC_Os07g42300 0.000483507 PMID: 24466124

38 LOC_Os11g10100 0.000478643

39 LOC_Os11g40150 0.000478361 PMID:28071676

40 LOC_Os12g31370 0.000478361 PMID:28071676

41 LOC_Os03g05740 0.000472443

42 LOC_Os08g38720 0.000468006

43 LOC_Os03g50330 0.000462237

44 LOC_Os04g08740 0.000461766 PMID: 19417056

45 LOC_Os01g42650 0.000461755 PMID: 16263700

46 LOC_Os03g27290 0.000460621 PMID: 19217306,
PMID: 15672456

47 LOC_Os10g39670 0.000460227

48 LOC_Os01g65230 0.000459159

49 LOC_Os03g54780 0.000456546

50 LOC_Os08g03640 0.000456163

51 LOC_Os01g14830 0.000454589

52 LOC_Os01g10820 0.000453601

53 LOC_Os10g42110 0.000449388

54 LOC_Os03g26860 0.000448345

55 LOC_Os07g41750 0.000448221

56 LOC_Os03g17580 0.000448145

57 LOC_Os10g42940 0.000447386 PMID: 24715026,
PMID: 10873582

58 LOC_Os03g03570 0.000446501 PMID: 10364408

59 LOC_Os12g43550 0.000445728

60 LOC_Os03g49500 0.000444206 PMID: 29767552

61 LOC_Os10g04674 0.000442469 PMID: 24145853,
PMID: 17986178

62 LOC_Os10g06740 0.000442469 PMID: 28154240

63 LOC_Os01g05980 0.000442411

64 LOC_Os10g33650 0.000440094

65 LOC_Os01g18150 0.000438562

66 LOC_Os01g22490 0.000436139

67 LOC_Os02g18550 0.000436139

(Continued)

TABLE 1 | Continued

Ranking Gene name P score PubMedID

91 LOC_Os05g50930 0.000408491

92 LOC_Os10g39440 0.000408336 PMID: 24372780,
PMID: 18335199

93 LOC_Os08g06630 0.000407594

94 LOC_Osp1g00820 0.000407028 PMID:25658309

95 LOC_Osp1g01050 0.000407028 PMID:25658309

96 LOC_Osp1g00420 0.00040642 PMID:25658309

97 LOC_Os05g49320 0.000404017

98 LOC_Os12g07720 0.000400566 PMID: 14756303

99 LOC_Os10g06930 0.000399998 PMID: 29356995

100 LOC_Os03g06410 0.000399411 PMID: 1731968

DISCUSSION

In the present study, we identified genes associated with rice yield
using the RWR method on a functional similarity network. We
demonstrated the high performance of the RWR approach via a
five-fold cross-validation experiment and showed the robustness
of the parameter r. As an application of the RWR approach, we
predicted a landscape of associations between known seeds and
candidate genes.

Our work has the following advantages. First, the RWR
method can predict associations among known seed genes and
candidate genes with the ability to spread the information that
known seeds carried via their neighbors. Second, the interaction
network provides a systematic view of functional similarities
between genes by calculating GO terms. Finally, the robustness
of the parameter r leads to a high level of accuracy in making
predictions, and the method that achieving parameter can be
adapted to other dataset.

Rice is the most important food crop worldwide. Use of the
RWR method in the function similarity network can identify
candidate genes associated with known rice yield-related genes,
while gene ranking saves experimental time in the exploitation
of rice as a major crop. Future development of our research will
include the collection of more rice yield-related genes via online
databases and the analysis of literature. Subsequent accurate
analysis involving an effective prediction algorithm will enable

TABLE 2 | The confirmation rate of top 100 candidate genes in the ranking list.

Top n Confirmation Number Confirmation Rate

20 11 55%

30 16 53.33%

40 20 50%

60 26 43.33%

70 30 42.86%

80 33 41.25%

100 46 46%

The confirmation rate was calculated by dividing the confirmation number by
the corresponding number of top n. It represented the effectiveness of the
confirmation.
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FIGURE 4 | GO terms in which the top 100 candidate genes are enriched. The abscissa shows GO terms, and the ordinate represents the number of GO terms.

the prediction of novel genes that can boost rice yield. In the
future, we would further develop computational models for the
identification and analysis of rice yield-related microRNAs/Long
non-coding RNAs based on Chen et al.’s researches (Chen and
Yan, 2013; Chen and Huang, 2017; Chen et al., 2017b, 2018b).
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