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Somatic embryogenesis (SE) results from the transition of differentiated plant somatic
cells into embryogenic cells that requires the extensive reprogramming of the somatic
cell transcriptome. Commonly, the SE-involved genes are identified by analyzing the
heterogeneous population of explant cells and thus, it is necessary to validate the
expression of the candidate genes in the cells that are competent for embryogenic
transition. Here, we optimized and implemented the whole mount in situ hybridization
(WISH) method (Bleckmann and Dresselhaus, 2016; Dastidar et al., 2016) in order to
analyze the spatiotemporal localization of miRNAs (miR156, miR166, miR390, miR167)
and mRNAs such as WOX5 and PHABULOSA-target of miR165/166 during the SE
that is induced in Arabidopsis explants. This study presents a detailed step-by-step
description of the WISH procedure in which DIG-labeled LNA and RNA probes were
used to detect miRNAs and mRNAs, respectively. The usefulness of the WISH in the
functional analysis of the SE-involved regulatory pathways is demonstrated and the
advantages of this method are highlighted: (i) the ability to analyze intact non-sectioned
plant tissue; (ii) the specificity of transcript detection; (iii) the detection of miRNA; and (iv)
a semi-quantitative assessment of the RNA abundance.

Keywords: WISH, miRNA, mRNA, somatic embryogenesis, Arabidopsis, in situ hybridisation, in vitro

INTRODUCTION

Somatic embryogenesis (SE) involves the formation of somatic embryos in somatic cells that are
cultured in vitro, and therefore, it provides a model system to study the developmental plasticity
of plant somatic cells. Because SE results in the efficient production of somatic embryo-derived
regenerates, it has become a powerful tool in plant biotechnology, and is widely applied in the
clonal propagation and genetic transformation of numerous plant species (reviewed Misra and
Saema, 2016). Moreover, considering the similarities between SE and zygotic embryogenesis (ZE),
the functional genomics of SE could facilitate the analysis of the molecular mechanisms of ZE
(Zimmerman, 1993).
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Various molecular tools have been employed to identify the
genes that are essential for the embryogenic transition of somatic
plant cells and several genes that have a regulatory function,
mainly encoding transcription factors, were discovered in the last
decade. In contrast, data on the involvement of miRNA in SE
is limited primarily because of limitations in the availability of
the research tools that are required for such analyses. Following
reports on a key role of miRNAs in ZE in Arabidopsis (Nodine
and Bartel, 2010; Seefried et al., 2014; Armenta-Medina et al.,
2017), the central function of MIRNA genes in embryogenic
transition in vitro can be assumed. In support of the hypothesis
of the involvement of miRNA in SE, mutations in DICER-
LIKE1 (DCL1), which is required for miRNA biogenesis, have
been found to inhibit SE-induction in vitro in cultures of
Arabidopsis explants (Wójcik and Gaj, 2016). The hypothesis has
also been supported by the analysis of more than 190 MIRNA
in Arabidopsis, which showed that more than 20 genes were
differentially regulated during SE induction (Szyrajew et al.,
2017). Similar to Arabidopsis, the differential expression of
miRNAs was reported in embryogenic cultures of other plants,
including Oryza sativa (Chen et al., 2011), hybrid yellow poplar
(Li et al., 2012), Larix laptolerix (Zhang et al., 2012), Dimocarpus
longan (Lin and Lai, 2013), Gossypium hirsutum (Yang et al.,
2013), and Zea mays (Chávez-Hernández et al., 2015).

The current limitation for identifying SE-enriched
genes/miRNA is to distinguish the cells that are triggered
toward embryogenic development from the surrounding explant
cells. One way to examine whether the expression of the
analyzed gene is present in cells that are undergoing SE is to
analyze the reporter lines, which are based on the GUS or GFP
constructs. However, the overwhelming majority of the available
reporter lines monitor promoter activity rather than lead to the
localization of the corresponding transcript. In order to overcome
the time-consuming and laborious processes that are required to
prepare a specific construct and plant transformation, we present
the whole mount in situ hybridization (WISH) protocol for
miRNA and mRNA molecules in explants that are undergoing
SE induction.

MATERIALS AND METHODS

Plant Material and Growth Conditions
The Arabidopsis thaliana (L.) Heynh. Columbia (Col-0)
parental genotype and the transgenic lines 35S::MIR156
(N9952) and 35S::MIM156 (N9953) were supplied by the
Nottingham Arabidopsis Stock Centre (NASC). The seeds
of the 2x35S::STTM165/166 line (hereafter referred to as
STTM165/166) were kindly provided by Dr. Guiliang Tang
(Michigan Technological University, United States), while the
seeds of the PMIR167a::GUS and PMIR167c::GUS lines were kindly
provided by Jason W. Reed from the Department of Biology,
University of North Carolina at Chapel Hill.

The seeds were sterilized using a 20% solution of commercial
bleach and then plated on a solid 1/2 MS medium. The plates were
kept in a growth chamber at 21± 1◦C under a 16/8 h photoperiod
of 40 µM m−2s−1 white, fluorescent light. The young seedlings

were transferred into Jiffy-7 pots and grown in a walk-in type
green room under the conditions that are described above until
the siliques were harvested.

Somatic Embryogenesis Induction
Immature zygotic embryos (IZEs) at the green cotyledonary stage
were used as the explants to induce SE. The IZEs were cultured in
an E5 solid medium with 5 µM 2,4-dichlorophenoxyacetic acid
(2,4-D) according to Gaj (2001) for 5, 10, 15, and 21 days.

Scanning Electron Microscopy (SEM)
Explants from different time points of the SE culture were
collected and fixed in 4% PFA in PBS with 0.1% Tween in a
vacuum for 3 h at room temperature (RT). Next, the samples were
rinsed for 30 min in methanol and then washed 3 × 5 min in
100% ethanol. After fixation, the samples were washed in PBS and
dehydrated in an ethanol series (30, 50, 70, 80, 90, 95, and 100%)
for 10 min each, followed by replacing the ethanol with acetone.
The dehydrated samples were dried with a CPD 2 critical-point
drier (Pelco) using liquid carbon dioxide, mounted on aluminum
stubs with double-sided adhesive carbon tape and sputter-coated
with a 12.5 nm (0, 5, 10, 15 days) or 20 nm (21 and 28 days)
film of gold in an SC-6 sputter coater (Pelco). After processing,
the samples were imaged using a Hitachi SU 8010 UHR FESEM
field emission scanning electron microscope (Hitachi High-
Technologies Corporation, Tokyo, Japan) at a 5 kV accelerating
voltage with a secondary electron detector (ESD).

Light Microscopy (LM)
After stopping the colorimetric detection, the explants were
transferred to three-welled glass slides, mounted in 70% glycerol
in a TE buffer or Clear Solution and sealed with cover-slips. The
slides were subsequently imaged on an automated Pannoramic
SCAN 150 slide scanner (3D HISTECH) with transmitted light
and a 20X plan-apochromat objective or with an Olympus BX-
43 microscope. Images of the embryos were collected using the
Panoramic Viewer software (3DHISTECH) or with an Olympus
SC-30 camera using the CellSens software.

Probe Design
For the miRNA WISH procedure, LNA-modified oligonucleotide
probes that corresponded to the full antisense sequence of the
miRNA were DIG-labeled at both the 5′ and 3′ ends that
contained 4 LNA-modified bases at positions 7, 9, 11, 15. The
probes were synthesized using Exiqon.

The probes that were used for the mRNA WISH were
synthesized as ∼450 bp cDNA transcripts, and then cloned into
pSPT19. The T7/SP6 RNA polymerases were used to generate
DIG-labeled probes by an in vitro transcription reaction using an
NTP Labeling Mix.

Reagentsr Plant material: immature zygotic embryos that were
cultured on an SE induction medium for 0, 5, 10, 15 days);
60 explants per culture combinationr Formamide (Merck, F9037)
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r NBT/BCIP Stock solution (Roche, 11681451001)r Anti-Digoxigenin-AP (Roche, 11093274910)r 1-Methylimidazole (Merck, 336092)r N-(3-Dimethylaminopropyl)-N′-ethylcarbodiimide
hydrochloride (Merck, E7750)r BSA solution 30% (Merck, A8577)r Denhardt’s solution (Merck, 30915)r Dextran sulfate 50% solution (Merckmillipore, S4030)r tRNA 50 mg/ml (Roche, 10109541001)r Histo-Clear II (Electron Microscopy Science, 64111-01)r SSC buffer 20× concentrate (Merck, S6639)r Glycine (Merck, 410225)r Tween-20 (Merck, 27.434-8)r Proteinase K (Thermo Fisher Scientific, EO0491)r Sodium acetate (Merck, cat. no. 6268.1000)r T7 RNA polymerase (Roche, 10881767001)r SP6 RNA polymerase (Roche, 10810274001)r NTP Labeling Mix (Roche, II277073910)r Methanol (POCH, 621990110)r Ethanol (POCH, 396480111)r Formaldehyde solution 37% (Merck, 252549)r RNaseZAP (Merc, R2020)

Equipmentr Medium incubation baskets (100 µm) (Intavis, 12.440)r 24-well cell culture clusters (Costar, 3526)r “PTFE” Slides (Electron Microscopy Science, 63418-11)r ExPellPlus Filter Tip (Biokom, 5130150, 5030090, 5030030)r Glass bottles, sterile, nucleases free (baked 8h at 180◦C)r RNase-free Microfuge Tubes (1.5 mL) (Thermo Fisher
Scientific, AM12400)r Cover slips 24 mm× 50 mm (Menzel-Glaser)r Tweezers

Buffersr Tris–HCl 1 M [250 ml]: 30.275 g Tris+ up to 250 ml H2O;
add pure HCl till pH 7.5; 8.0 or 9.0r EDTA 0.5 M [250 ml]: 46.525 g EDTA+ up to 250 ml H2O;
add crystals of NaOH (∼0.5 g) till pH 8r NaCl 5 M [250 ml]: 73.05 g NaCl+ up to 250 ml H2Or MgCl2 1 M [100 ml]: 20.3 g MgCl2 × 6H2O+ up to 100 ml
H2Or RNase buffer 5× [500 ml]: 25 ml 1 M Tris–HCl pH 7.5
[50 mM] + 5 ml 0.5 M EDTA [5 mM] + 250 ml 5 M NaCl
[2,5 M]+ up to 500 ml H2O; pH 7.5r Clearing solution [1 ml]: 2.5 g chloral hydrate in 1 ml 30%
glycerol in H2Or 2× carbonate buffer [100 ml]: 1.277 g Na2CO3 [120 mM]+
0.672 g NaHCO3 [80 mM]+ up to 100 ml H20 – DEPC; pH
10.2 [NaOH]r PBS 10× [1000 ml]: 76 g NaCl+ 4.14 g NaH2PO4 + 25.07 g
Na2HPO4 + up to 1000 ml H2O; pH 7.0 [HCl]r Proteinase K buffer [200 ml]: 100 ml 1 M Tris pH 7.5 +
100 ml 0.5 M EDTA + 0.5 ml acetic anhydride (DO NOT
TREAT WITH DEPC!)r PBST: PBS+ 0.1% Tween (1 µl of Tween per 1 ml PBS)

r Na2HPO4 1 M [1000 ml]: 141.96 g Na2HPO4 + up to
1000 ml H2Or NaH2PO4 1 M [1000 ml]: 138 g NaH2PO4 + up to 1000 ml
H2Or Na-phosphate [100 ml]: 46.3 ml Na2HPO4 1 M + 53.7 ml
NaH2PO4 1 M; pH 6.8r In situ salts 10× [10 ml]: 6 ml 5 M NaCl + 1 ml 1 M Tris
pH 8.0 + 1 ml 1 M Na-phosphate + 1 ml 0.5 M EDTA +
1 ml H20r Hybridization Mix [10 ml]: 5 ml formamide + 2 ml 50%
dextran sulfate + 1 ml 10× in situ salts + 0.2 ml 50×
Denhardt’s salts + 0.1 ml tRNA 50 mg/ml + 1.7 ml H2O-
DEPC (fresh)r TNM-50 [1000 ml]: 100 ml 1 M Tris pH 9.5 + 20 ml 5 M
NaCl+ 50 ml 1 M MgCl2 + 830 ml H2O-DEPC (fresh)r TE 10× [1000 ml]: 100 ml 1 M Tris pH 8.0 + 20 ml 0.5 M
EDTA+ up to 1000 ml H2Or Methylimidazole-NaCl [1000 ml]: 10.36 ml
methylimidazole + 75 ml NaCl 5 M + up to 1000 ml
H2O; pH 8.0/HCl (pH is very important!)r EDC [1000 ml]: 31.632 g N-(3-Dimethylaminopropyl)-
N′-ethylcarbodiimide hydrochloride + up to 1000 ml
methylimidazole-NaCl pH 8.0

Stepwise Procedures
WISH of the miRNA Molecules
The available protocol of WISH (Dastidar et al., 2016) was
modified and optimized for explants undergoing SE induction.
Accordingly, each step of the procedure was optimized in terms
of duration of treatments, amount of washings, composition of
buffers and probe/enzymes concentration. During the procedure
to prepare the liquid solutions, RNase-free water and RNase-free
baked glass bottles should be used. Whenever possible, the buffers
should be treated with DEPC. The full list of buffers and solutions
can be found in the section “Materials and Methods.” To facilitate
frequent buffer changes, the entire procedure can be carried out
in medium incubation baskets (100 µm) (Intavis), washed in 24-
well plates with lids. The tissue should be covered with the buffers
in the wells (from 0.6 ml to 1.0 ml of the buffer/reagent per
well). Until the hybridization step is finished, only RNase- and
DNase-free barrier pipette tips should be used.

Procedure
Tissue Collection and Fixation (Timing 3.5 h+)

1. Depending on the age of the explants in the culture,
different approaches were developed. Freshly isolated
explants from the siliques (0 day of culture) were dissected
in a drop of PBS, while the explants after 5, 10, and 15 days
of SE culture were transferred directly from the medium
onto 3.7% PFA in PBST (PBS+ 0.1% of Tween R© 20) on ice.
The tissue was fixed under a vacuum for 3 h at RT.

⊕ PAUSE: The fixation may also proceed overnight at 4◦C
without vacuum.

! NOTE: The incubation baskets should be washed with
RNAseZAP and then in H2O-DNase and RNase free. Put the
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baskets into the wells in the culture cluster using tweezers and
fill it with 3.7% PFA in PBST.

! NOTE: The recommended fixation for 10 days or older
tissues is 3 h under a vacuum at RT and overnight at 4◦C without
vacuum.

Dehydration (Timing 20 min – A Few Weeks)
2. Incubate the tissue in 100% methanol until the chlorophyll

is removed (at least three times for 5 min), then twice in
100% ethanol for 5 min each at RT.

! NOTE: For 10 days and older tissues, the incubation in
methanol can take up to 1 h at RT.
⊕ PAUSE: The fixed and dehydrated tissue can be stored in

100% ethanol at−20◦C for several weeks.

Permeabilization (Timing 5 h)
3. Incubate for 30 min in 1:1 Histo-Clear II and a 100%

ethanol solution at RT.
4. Wash twice for 5 min in 100% ethanol at RT.
5. Rehydrate in 90, 70, 50, and 30% ethanol/H2O, 10 min each

at RT.
6. Incubate in a proteinase K buffer for 5 min at RT.
7. Incubate with proteinase K (75 µg/ml) in a proteinase K

buffer for 15 min at 37◦C.

! NOTE: The proteinase K buffer should be preheated to 37◦C.

8. Stop the digestion using glycine (2 mg/ml) in PBS by
incubating it for 5 min at RT.

9. Wash for 5 min in PBST at RT.
10. Refix in 3.7% PFA in PBST for 10 min at RT.
11. Wash twice in PBST for 5 min each at RT.
12. Incubate three times for 10 min each in methylimidazole-

NaCl (pH 8.0) at RT.
13. Incubate for 2 h in 0.16 M EDC in methylimidazole-NaCl

at 60◦C.
14. Wash twice for 10 min in PBST at RT.

Probe Hybridization (Timing 12 h/Overnight)
15. Wash in a pre-hybridization mix (hybridization mix

without the probe) for 10 min at RT.
16. Denature the probe in the hybridization mix for 2 min at

80◦C.
17. Incubate 12 h or overnight at 65◦C in the hybridization mix

with the denatured probe.

! NOTE: The hybridization mix should be prepared fresh
shortly before use.

! NOTE: The best probe concentration was 20 nM.
! NOTE: The incubation at 65◦C may be carried out in a water

bath in a 24-well plate that is sealed by Parafilm or in a humidified
chamber.

Washing (Timing 1.5 h)
18. Wash twice for 10 min in 2×SSC at RT.
19. Incubate twice for 30 min in 0.2×SSC at 65◦C.

! NOTE: During the incubation in 0.2×SSC at 65◦C, the
probes should be shaken from time to time OR the incubation
can be carried out on a shaker at 65◦C.

20. Wash 5 min in PBST at RT.

Antibody Binding (Timing 3 h)
21. Incubate in 1% BSA in PBST for 30 min on a shaker at RT.
22. Incubate with Anti-Digoxigenin-AP (1:1250) in 1% BSA in

PBST for 90 min on a shaker at RT.
23. Incubate in 1% BSA in PBST for 30 min on a shaker at RT.
24. Wash twice for 10 min in PBST at RT.

Probe Detection (Timing 1 h+)
25. Wash three times in TNM-50, 5 min each at RT.
26. Incubate in NBT-BCIP (1:50) in TNM-50 at RT.

! NOTE: The TNM-50 buffer and NBT-BCIP solution should
be freshly prepared, shortly before use.

! NOTE: The incubation in NBT-BCIP can be carried out
at RT or at 37◦C in the dark. If the incubation is at 37◦C, the
colorimetric reaction should be checked every 10 min.

! NOTE: During the incubation at RT colorimetric reaction for
miR390 takes 1 h, while takes at least 3 h for miR124 and miR166.

27. Stop the reaction using TE and wash three times for 5 min
in TE at RT.

Mounting and Microscope Detection
28. Carefully transfer the explants in TE onto glass slides.
29. Remove the TE and add the 70% glycerol in TE or clearing

solution, gently cover with a cover slip.
30. Perform the microscope analysis.

! NOTE: Do not allow the explants to remain in the clearing
solution for longer than 30 min.

WISH of the mRNA Molecules
To perform the mRNA WISH in explants that are undergoing
the SE process, we modified and adjusted the procedure based
on alkaline phosphatase (AP) coupled antibody detecting the
anti-Digoxigenin labeled probes using BCIP-NBT substrates
(Bleckmann and Dresselhaus, 2016). The tips, notes and
procedure are quite similar to those for miRNA WISH that are
presented above with a few changes that are itemized below.

Procedure
1. - 2. Proceed with tissue collection, fixation, and

dehydratation as described in the procedure for
the miRNA WISH.

3 - 11. The Permeabilization steps are performed as in the
miRNA WISH procedure but omitting steps 12–14.

! NOTE: Although the EDC cross-links the small RNA 5′ ends
to the protein matrix, which has a superior sensitivity for miRNA-
WISH, it is no longer needed in the RNA probes in the mRNA-
WISH.
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12. Perform the hybridization as in the miRNA WISH
with a hybridization temperature of 55◦C and a probe
concentration of 0.5 ng/µl.

Washing and RNase A Treatment (Timing 3 h)
13. Wash the probes in 50% formamide in 2×SSC + 0.1%

Tween once for 10 min and once for 30 min at 55◦C.
14. Wash in 2×SSC twice for 5 min at RT.
15. Wash in 0.2×SSC for 30 min at 55◦C.

! NOTE: During the incubation in 0.2×SSC, the probes should
be shaken from time to time OR the incubation can be carried out
on a shaker at 55◦C.

16. Wash twice for 10 min in the RNase buffer at RT.
17. Incubate 15 min in RNase A (25 µg/ml in RNase buffer) at

37◦C.
18. Wash three times for 5 min in the RNase buffer at RT.

! NOTE: The RNase buffer should be preheated to 37◦C before
use.

19. Wash in 0.2×SSC for 30 min at 55◦C.

! NOTE: During the incubation in 0.2×SSC, the probes should
be shaken from time to time OR the incubation can be carried out
on a shaker at 55◦C.

20. Wash twice for 10 min in PBST.

Antibody Binding (Timing 4 h+)
21. Incubate in 1% BSA in PBST for 90 min on a shaker at RT.
22. Incubate with Anti-Digoxigenin-AP (1:1500) in 1% BSA in

PBST for 4 h on a shaker at RT.

⊕ PAUSE: The incubation with the antibody can proceed
overnight at RT.

23. Incubate in 1% BSA in PBST for 60 min on a shaker at RT.
24. Wash three times for 10 min in PBST at RT.

Probe detection, mounting, and microscope detection should be
performed as was described in steps 25–30 for the miRNA-WISH
procedure.

RESULTS AND DISCUSSION

Identifying the SE-specific miRNA molecules and genes is crucial
to understanding the mechanisms that govern the developmental
plasticity of plant cells. Different approaches have been used
to determine whether the candidate transcripts that have been
selected by expression analysis are present in the cells that are
undergoing SE induction within the mass of the explants’ cells.
Analyzing SE induction is difficult because of the heterogeneous
population of explant cells in which only a small fraction is
capable of responding to embryogenic induction. It has been
demonstrated that SE induction occurs in the upper part of the
explants, preferentially on the adaxial side of the cotyledons.
Moreover, somatic embryos can be of a single-cell or multicellular
origin and that they develop asynchronously from both the

protodermal and subprotodermal cell layers (Kurczyńska et al.,
2007; Singh et al., 2015; Figure 1). Because of such heterogeneous
cell populations, the results from RT-qPCR on whole explants
are often difficult to interpret. Therefore, identifying the SE-
associated genes requires insight into spatiotemporal expression
patterns of the candidate genes. Hence, based on the original
protocols for the direct localization of miRNA and mRNA using
in situ hybridization with specific anti-sense LNA (locked nucleic
acid) probes for miRNA molecules (Bleckmann and Dresselhaus,
2016; Dastidar et al., 2016), we modified and optimized the
procedure for explant tissue that is undergoing SE.

As a positive control, we performed WISH for miR390, which
has been found to be expressed in the shoot and root meristem
region in zygotic embryos and seedlings (Marin et al., 2010;
Wong et al., 2011; Dastidar et al., 2016; Hobecker et al., 2017).
Consistent with these reports, the zygotic embryo explants (0 day)
displayed the miR390 signal in the root and shoot meristems.
The explants that were cultured for 5 days on the SE induction
medium also had a similar pattern of miR390 expression
(Figures 2A,B), while on the 10th day, the WISH signal was
localized exclusively in the cotyledons that were engaged in
the somatic embryo formation (Figure 2C). Given that miR390
controls the lateral root development (Marin et al., 2010), the
accumulation of miR390 in the SE-involved cotyledons supports
the postulated similarities between the regulatory pathways that
control the lateral root induction and in vitro plant regeneration,
including SE induction (Sugimoto et al., 2011; Fehér et al., 2016).

A signal for miR167 was barely detectable in the cotyledons
(Figure 2D) and the proximity of SAM in SE-induced explants
(Figures 2E,F). The weak signal of miR167 corresponded to the
results of the RT-qPCR analysis that showed a decreasing level of
mature miR167 during SE culture (Supplementary Figure S1).
Similarly, a low level of miR167 during the induction stage of
SE was observed in Longan (Lin and Lai, 2013), the Valencia
sweet orange (Wu et al., 2011) as well as in an embryogenic
culture of Arabidopsis, where miR167 was suggested to negatively
control SE induction by targeting the ARF6 and ARF8 genes (Su
et al., 2015b). The results of the performed WISH were verified
by analyzing the mouse-specific miR124 as a negative control
(Figures 2G–I).

The reporter lines that have promoter fusions are the most
common tools for the spatiotemporal analysis of the genes that
are involved in SE induction (Nolan et al., 2009; Bai et al., 2013;
Mozgová et al., 2017; Wójcikowska and Gaj, 2017), including
the MIRNA genes (Su et al., 2015b; Wójcik and Gaj, 2016).
However, a reporter line analysis might not reflect the localization
of the functional products of MIRNAs due to the extensive post-
transcriptional regulation of miRNA biogenesis during plant
and animal development (Lee et al., 2008; Nogueira et al.,
2009; Bielewicz et al., 2013; Barciszewska-Pacak et al., 2015).
Accordingly, the cotyledons and proximity of SAM showed an
intense GUS signal of MIR167a and MIR167c promoter activity
during all of the stages of SE induction that were analyzed
(Figure 3), which did not correspond to the low amount of
mature miR167 molecules that were found in the SE-induced
explants using the RT-qPCR (Supplementary Figure S1) and
WISH (Figures 2D–F) method.
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FIGURE 1 | Scanning electron microscopy images of the somatic embryogenesis culture of Arabidopsis from immature zygotic embryos on a medium with 5 µM of
2,4-D on 0th day (A), 5th day (B), 10th day (C), and 15th day (D–F) of the culture. (D–F) Somatic embryos in the globular (G), heart (H), torpedo (T), late torpedo
(LT), early cotyledonary (EC), cotyledonary (C), mature stages of development (M), arrow heads indicate tissue that is undergoing SE.

The method was also tested to determine whether it could
be used for the quantitative assessment of the analyzed miRNAs
in the tissue during SE process. For this purpose, we attempted
to detect miR156 during embryogenic induction in the MIM156
line, which has a decreased level of miR156 molecules (Todesco
et al., 2010; Cho et al., 2012) and in the 35S::MIR156 line,
which over-accumulates miR156 (Wang et al., 2009; Jia et al.,
2017). All of the samples were treated in parallel and the color
reaction was performed in the same conditions. The intensity
as well as the localization of the signal varied depending on the
genotype and accordingly, a strong miR156 signal was observed
in the SE-induced 35S::MIR156 explants, while the MIM156
explants exhibited a much weaker WISH signal (Figure 4).
The obtained results showed that the miRNA WISH procedure
can be used to detect the differences in miRNA abundance,
which was previously shown in the roots and zygotic embryos
of Arabidopsis (Dastidar et al., 2016). It is worth mentioning
that regardless of the intensity, the WISH signal of miR156
was localized in the cotyledons and SAM proximity of the
SE-induced explants, i.e., in the tissue that is involved in SE
induction (Kurczyńska et al., 2007). Hence, the role of miR156
in SE induction might be hypothesized given that the SPL
(SQUAMOSA PROMOTER BINDING PROTEIN LIKE) genes
have postulated to be among the candidate targets of miR156/157
in the SE of citrus (Wu et al., 2011), cotton (Yang et al., 2013), and
Arabidopsis (Szyrajew et al., 2017).

Additionally, we evaluated the usefulness of the WISH method
for detecting miRNAs with a low abundance in the explants.
To this end, we performed WISH for the miR166 in the
STTM165/166 line in which the miR165/166 molecules are

degraded (Yan et al., 2012). Consistent with distinctly decreased
accumulation of miR166 that was indicated in the RT-qPCR
analysis (Supplementary Figure S2), the signal of WISH miR166
was barely visible in the SE-induced explants of STTM165/166
(Figures 5A–C), in comparison to strong signal of miR166
during SE culture in WT (Wójcik et al., 2017). In order to
improve the visibility of a WISH signal, we modified the
standard procedure by replacing the treatment of the samples
with 70% glycerol with a clearing solution (Bleckmann and
Dresselhaus, 2016). We found that the resolution of the miR166
WISH signal was significantly improved in the cleared samples
(Figures 5D–F). In conclusion, the use of the clearing solution
instead of 70% glycerol might be recommended in order to
increase the detection of the low-abundant RNAs, in particular,
when relatively thick samples of in vitro cultured tissue are being
analyzed.

The development of somatic embryos is often overlooked and
significantly more attention is paid to the induction phase of
SE. Several studies have shown a similarity in the somatic and
zygotic embryos in terms of their morphological, histological,
biochemical, and physiological aspects, and have introduced SE
as a model for studying ZE (Zimmerman, 1993; Palada-Nicolau
and Hausman, 2001; review in Winkelmann, 2016). However,
there is a very limited number of publications that refer to the
development of somatic embryos that is caused by the specificity
of this material as well as limitations in the available analytical
methods (Santos et al., 2006; Kumar et al., 2007; Kurczyńska
et al., 2007; Nowak et al., 2012; Baskaran and Van Staden, 2017)
and none of them has shown the molecular aspect of somatic
embryo development. Performing WISH in explants that were
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FIGURE 2 | Whole mount in situ hybridization of the miR390 and miR167 molecules in the explants undergoing SE induction in 0th day (A,D,G), 5th day (B,E,H),
and 10th day (C,F,I). Probe against the mouse miR124 were used as the negative control. A higher magnification views of the SE-involved cotyledons on the 10th
day of the SE culture are presented in black boxes (C1, F1, and I1). Arrow heads indicate the detected signal.

FIGURE 3 | Patterns of the activity of the GUS-monitored promoters of the MIR167a (A–C) and MIR167c (D–F) genes at 0th day (A,D), 5th day (B,E), and 10th day
(C,F) of the SE culture.
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FIGURE 4 | Whole mount in situ hybridization of the miR156 molecules in the explants undergoing SE induction in WT (A–C), MIM156 (D–F), and 35S::MIR156
(G–I) at 0th day (A,D,G), 5th day (B,E,H), and 10th day (C,F,I). Arrow heads indicate the detected signal.

undergoing SE in Arabidopsis enabled specific miR390 signals
to be detected in the somatic embryos during different stages of
development (Figure 6). A strong miR390 signal was detected
in the subprotodermal explant tissue from which the somatic
embryos might be formed (Figure 6A) as was also found by a
cytological analysis (Kurczyńska et al., 2007). In line with a SAM-
related expression of miR390 in maize (Douglas et al., 2010)
and soybean (Wong et al., 2011), a WISH miR390 signal was
also detected in tissue that corresponded with the SAM area of
developing somatic embryos (Figures 6B,C).

Interestingly, somatic embryos that were at the torpedo
stage of development displayed numerous isolated and intense
miR390 signals that were located in the surface layer of
the somatic embryo tissue (Figure 6D). Given that miR390
controls the lateral root development (Yoon et al., 2014) that
has distinct molecular similarities with SE induction (Fehér
et al., 2016), we assumed that the miR390 signals that were
detected in the advanced SE culture may correspond to the
formation of the secondary somatic embryos. The generation
of secondary embryos by the primary somatic embryos is

common in different plants (Santos et al., 2006; Priyono
et al., 2010), including the embryogenic culture of Arabidopsis
(Supplementary Figure S3).

Collectively, the miR390 signals that were observed in the
somatic embryos of Arabidopsis (present results) together with
the accumulation of miR390 in the somatic embryos of different
species, including longan, (Lin and Lai, 2013), citrus (Wu et al.,
2011), and larch (Zhang et al., 2012) suggest that miR390 might
be a conserved regulator of somatic embryo development in
plants.

In the mRNA WISH as the positive control, we analyzed
WOX5 (WUSCHEL-RELATED HOMEOBOX5), which is
expressed in the quiescent center in embryos and mature roots
(Sarkar et al., 2007; Drisch and Stahl, 2015; Yan et al., 2016). The
WOX5 signal for the antisense probe was detected in RAM at
all of the analyzed time points (0, 5, 10 days) of the SE culture
(Figures 7A–C). Consistent with the observation of Su et al.
(2015a) that the WOX5 expression preceded the development
of somatic embryos by the embryogenic tissue, we detected
an intense WOX5 signal in the SE-involved cotyledons that
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FIGURE 5 | Whole mount in situ hybridization of the miR166 molecules in the explants undergoing SE induction in the STTM165/166 line after treatment with 70%
glycerol (A–C) and the clearing solution (D–F) at 0th day (A,D), 5th day (B,E), and 10th day (C,F) of culture. Arrow heads indicate the detected signal.

FIGURE 6 | Whole mount in situ hybridization of the miR390 molecules (A–D) in the explants undergoing SE induction in WT on the 15th day of the culture. Probes
against the mouse miR124 were used as the negative control (E–H). All of the images show the somatic embryos during the globular (G), late globular (LG), heart
(H), torpedo (T), late torpedo (LT), early cotyledonary (EC), cotyledonary (C), and mature stages of development (M).

were induced for 10 days (Figure 7C). Then, the WISH for
PHABULOSA (PHB), which is a target gene for the miR165/166
molecules (Tang et al., 2003; Vashisht and Nodine, 2014; Wójcik
et al., 2017), was performed with antisense (Figures 7D–F)
and sense (Figures 7G–I) probes. The signal of the antisense
PHB probe was detected in the cotyledons of 0 d explants
(Figure 7D) and in the proximity of SAM and vessels in the
hypocotyl of 5 days explants (Figure 7E). In a more advanced

SE culture (10 days), an intense PHB signal was found in
the SE-involved upper parts of the explant including in the
proximity of SAM and cotyledons (Figure 7F). However, we
assumed that the hypocotyl-localized WISH signal might be a
false positive background, as it was also detected by the PHB
sense probe (Figure 7I). The spatiotemporal pattern of the PHB
transcripts corresponded to the one that is observed during
ZE in Arabidopsis (Gillmor et al., 2010) and is also similar to
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FIGURE 7 | Whole mount in situ hybridization of WOX5 (A–C) and PHB (D–I) in the explants undergoing SE induction at 0th day (A,D,G), 5th day (B,E,H), and 10th
day (C,F,I). The sense probes PHB (G–I) and WOX5 (not shown) were used as the controls. Arrow heads indicate the detected signal; red arrow heads indicate the
detected signal in RAM.

FIGURE 8 | Flow chart of the protocols. The detailed procedure can be found in the section “Material and Methods.”
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the localization of the PHB-GFP protein fusion during SE in
Arabidopsis (Wójcik et al., 2017).

CONCLUSION

The protocols that are presented here, which enable the spatio-
temporal localization of miRNAs and mRNAs in in vitro
cultured tissue (Figure 8) are sensitive, efficient, and time
saving as they do not require the long, time-consuming steps
of preparing and sectioning tissues before hybridization. Thus,
the recommended protocol enables the WISH signal to be
monitored at different stages of a SE culture including the
early and more advanced stages of SE in which the somatic
embryos develop. The high sensitivity and specificity of the
implemented miRNA-WISH with DIG-labeled LNA probes was
proven by the very weak/absence of signal when using either
the sense probes, animal miRNA (miR124) or when performing
hybridization in the transgenic lines that had a reduced miRNA
abundance.
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FIGURE S1 | Relative amount of mature miR167 molecules at 0th, 5th, and 10th
days of the Col-0 SE culture. Bars represent the standard deviation (n = 3). The
relative transcript level was normalized to the internal control (At4g27090). Values
that were significantly different from the 0 day are indicated with an asterisk
(P < 0.05; n = 3 ± SD).

FIGURE S2 | Relative amount of mature miR166 molecules at the 0th, 5th, and
10th days of the STTM165/166 SE culture. Bars represent the standard deviation
(n = 3). The relative transcript level was normalized to the internal control
(At4g27090). Values that were significantly different from the Col-0-derived culture
of the same age are indicated with an asterisk (P < 0.05; n = 3 ± SD).

FIGURE S3 | Light microscopy and scanning electron microscopy images of the
primary and secondary somatic embryos in the SE culture of Arabidopsis on the
medium with 5 µM of 2,4-D. PSE – primary somatic embryos; SSE – secondary
somatic embryos.
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