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The extracellular matrix of plants, algae, bacteria, fungi, and some archaea consist of a
semipermeable composite containing polysaccharides. Many of these polysaccharides
are O-acetylated imparting important physiochemical properties to the polymers. The
position and degree of O-acetylation is genetically determined and varies between
organisms, cell types, and developmental stages. Despite the importance of wall
polysaccharide O-acetylation, only recently progress has been made to elucidate the
molecular mechanism of O-acetylation. In plants, three protein families are involved
in the transfer of the acetyl substituents to the various polysaccharides. In other
organisms, this mechanism seems to be conserved, although the number of required
components varies. In this review, we provide an update on the latest advances on plant
polysaccharide O-acetylation and related information from other wall polysaccharide
O-acetylating organisms such as bacteria and fungi. The biotechnological impact of
understanding wall polysaccharide O-acetylation ranges from the design of novel drugs
against human pathogenic bacteria to the development of improved lignocellulosic
feedstocks for biofuel production.
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PLANT CELL WALL POLYMERS ARE O-ACETYLATED

The biomass of plants contains considerable amounts of esterified acetate. For example, poplar
wood contains 5% of its weight as acetate (Johnson et al., 2017), while corn stover contains 4.5%
(w/w; Chundawat et al., 2010). Upon processing of the plant biomass the acetate is often released
(Selig et al., 2009) not only acidifying the resulting material, but also presenting a potent inhibitor
for further downstream microbial fermentation (Helle et al., 2003) such as for the production for
biofuels.

The predominant portion of the bound acetate found in plant biomass is present in the cell
wall material in the form of O-linked acetate on many wall polysaccharides (references below), and
to a minor extent on the polyphenol lignin (Ralph, 1996; Del Río et al., 2007). While cellulose,
callose, mixed-linkage glucans, and structural glycoproteins are not O-acetylated, the dominant
matrix polysaccharides including the various pectic polysaccharides and hemicelluloses such as
xylan, xyloglucan, and mannans can be O-acetylated (Gille and Pauly, 2012). The position and
degree of acetylation depends on the wall polymer and can differ not only between plant species,
but also cell types, and/or the developmental stage of the plant (Del Río et al., 2007; Obel et al.,
2009; Pauly and Keegstra, 2010; Gille and Pauly, 2012; Lourenço et al., 2016). Both the polymer
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glycan-backbone and/or the side-chain sugar moieties can be
O-acetylated (Kiefer et al., 1989; Ishii, 1991, 1997; Pauly, 1999;
Teleman et al., 2000; Lundqvist et al., 2002; Kabel et al.,
2003; O’Neill et al., 2004; Gibeaut et al., 2005; Hoffman et al.,
2005; Jia et al., 2005; Hsieh and Harris, 2009; Sengkhamparn
et al., 2009). For example, the hemicellulose xyloglucan (XyG)
predominantly found in dicot species contains O-acetyl moieties
on the galactosyl side-chain residues, while in Solanaceous plants
and grasses, the glucan-backbone of xyloglucan is O-acetylated.
In addition, several wall polymers contain sugar-residues that can
be mono-/or di-O-acetylated (reviewed in Gille and Pauly, 2012).

POLYSACCHARIDE O-ACETYLATION
MECHANISM

Several lines of evidence suggest that O-acetylation of wall
polysaccharides takes place as part of the polysaccharide
biosynthesis in the Golgi lumen. First, acetylated xyloglucan
can be isolated from microsomal preparations suggesting that
O-acetylation takes place before the wall polysaccharides are
secreted into the apoplast (Obel et al., 2009). Second, pectic
polysaccharides can be O-acetylated in vitro in isolated plant
microsomes (Pauly and Scheller, 2000). Third, all proteins
involved in this modification (see below) are predicted to be
located in the Golgi membrane with the putative catalytic
domains facing the Golgi lumen (Gille et al., 2011b; Lee et al.,
2011; Manabe et al., 2011; Yuan et al., 2013; Schultink et al., 2015;
Gao et al., 2017). However, it should be noted that the degree
and pattern of polysaccharide O-acetylation is also determined by
apoplastic plant O-acetylesterases, presumably post-deposition in
the wall (Gou et al., 2012; Orfila et al., 2012; de Souza et al., 2014;
Zhang et al., 2017).

The identification of plant mutants affected in the
O-acetylation of wall polysaccharides has been instrumental
in our understanding of the molecular mechanism of
polysaccharide O-acetylation. Based on these findings, so
far three different protein families are involved in polysaccharide
O-acetylation (Figure 1). One of these protein families is the
TRICHOME-BIREFRINGENCE-LIKE (TBL) protein family
comprising 46 members in the model species Arabidopsis
thaliana. Members of the TBL family have been shown to
participate in the O-acetylation of specific wall polymers.
Loss-of-function of the Arabidopsis ALTERED XYLOGLUCAN
4 (AXY4/TBL27) gene results in a complete lack of O-acetyl
substituents on the hemicellulose XyG without affecting the
acetylation status of the other wall polymers (Gille et al., 2011b).
Its paralogous gene – AXY4-like (AXY4L/TBL22) – appears
to have the same function but specifically in seeds, indicating
that AXY4 and AXY4L are XyG-specific acetyltransferases,
although the biochemical activity of both proteins remains to be
experimentally demonstrated.

Another well studied example is the Arabidopsis tbl29/eskimo1
mutant that was shown to reduce xylan O-acetylation by
46% in the stem (Xiong et al., 2013). The corresponding
TBL29/ESKIMO1 protein was found to catalyze the transfer of
O-acetyl groups to β-(1→4) xylooligosaccharides in vitro thus

confirming its role as a xylan O-acetyltransferase (Urbanowicz
et al., 2014). Recently, the xylan O-acetyltransferase activities
of other TBL proteins and their regiospecificity of xylose 2-O-
and/or 3-O-acetylation has been demonstrated in Arabidopsis,
rice, and poplar (Zhong et al., 2017, 2018a,b). In summary, in
Arabidopsis, 9 TBLs lead to xylan 2-O-, 3-O-monoacetylation
or 2,3-di-O-acetylation (Zhong et al., 2017). In rice, 66 TBL
genes have been identified (Gao et al., 2017). Among these,
14 TBL proteins show xylan 2-O- and 3-O-acetyltransferase
activity (OsXOAT1-14). OsXOAT1-7 are able to complement
the defects in xylan O-acetylation of the Arabidopsis esk1/tbl29
mutant (Zhong et al., 2018a). In poplar 64 TBLs were identified,
12 of those proteins were shown to O-acetylate xylan when
heterologously expressed (Zhong et al., 2018b). Other members
of the TBL family are thought to be involved in pectin
O-acetylation such as AtPMR5/AtTBL44, AtTBR, and AtTBL3
(Vogel et al., 2004; Bischoff et al., 2010a) or mannanO-acetylation
in the case of AtTBL25/AtTBL26 (Gille et al., 2011a). However, in
all of these cases enzymatic activity and specificity remains to be
demonstrated.

TRICHOME-BIREFRINGENCE-LIKE proteins contain three
characteristic protein signatures (Figure 1) (Bischoff et al.,
2010b). A N-terminus transmembrane domain and two plant-
specific domains, DUF231 and TBL. The DUF231 is a domain
of unknown function containing a conserved DxxH motif while
the TBL motif is characterized by the presence of an esterase
GDS motif. The Ser residue from the GDS motif and the Asp
and His residues of the DxxH motif are essential for the function
of TBL29/ESK1 as mutations of these residues result in a loss of
enzyme activity (Zhong et al., 2017).

A second family of proteins involved in polysaccharide
O-acetylation is represented by ALTERED XYLOGLUCAN
9 (AXY9; Figure 1). Arabidopsis mutants affected in AXY9
expression show a strong reduction in total wall O-acetylation in
stems and leaf tissues (Schultink et al., 2015). Interestingly, unlike
the large, diversified TBL gene family, AXY9 seems to be present
in the genome of land plants only as a single copy. Contrary to
the polysaccharide substrate specificity of TBL proteins, AXY9
seems to be non-specific in polysaccharide O-acetylation as
the corresponding axy9 mutant plants display reductions in
O-acetylation of multiple hemicelluloses such as xyloglucan or
xylan but not pectin. Due to these unique features, AXY9 has been
suggested to be involved in the generation of an intermediate
acetyl donor substrate used later by TBL proteins (Schultink et al.,
2015). The AXY9 protein contains a N-terminus transmembrane
domain and a C-terminus facing the Golgi lumen containing
GDS and DxxH motifs (Figure 1) suggesting that it could also
be an O-acetyltransferase although if this protein harbors any
enzyme activity has yet to be determined.

REDUCED WALL O-ACETYLATION (RWA) is the third
group of proteins involved in plant polysaccharide O-acetylation
(Manabe et al., 2011) (Figure 1). The Arabidopsis genome
contains four RWA proteins required for O-acetylation of both
pectic and non-pectic polysaccharides including xyloglucan,
xylan, and mannan. Quadruple rwa mutant plants exhibit a
63% reduction in total wall O-acetylation (Manabe et al., 2013).
Similarly, down-regulation of the four RWA genes found in
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FIGURE 1 | Model of the wall polysaccharides O-acetylation mechanism in various organisms. Gray line – Membrane with indication of cellular location of both sides
of the membrane. Yellow circles – Proteins consisting of multitransmembrane domains possibly involved in the translocation of an acetyl-moiety. Blue ovals –
Membrane anchored proteins with a single-transmembrane domain. Green circles – Soluble proteins associated with O-acetylation. Red squares – Presence of GDS
and DxxH sequences thought to be required for enzymatic activity. The location of these sequences (side of the membrane) is indicated by their location on the
protein(s). Asterisk indicates a variation of the consensus DxxH motif (Baker et al., 2014).

hybrid aspen (Populus tremula x tremuloides) results in reduced
wood xylan and xyloglucan O-acetylation, suggesting that RWA
function is conserved among plant species (Pawar et al., 2017).
RWA proteins are characterized by the presence of 10 predicted
transmembrane domains (Manabe et al., 2011). In contrast,
AXY9 and TBL proteins contain a single transmembrane
domain anchoring the protein to the Golgi membrane while
the C-terminus of these proteins is oriented toward the Golgi
lumen containing the putative catalytic motifs. Despite the
lack of amino acid similarity, all these enzymes are predicted
to have a short N-terminal cytoplasmic region that has been
proposed to act as a signal for retention in the Golgi in the case
of other proteins such as glycosyltransferases (Banfield, 2011),
although no experimental evidence has been obtained so far for

AXY9 or TBL proteins. Also, microsomal preparations isolated
from potato cells incubated with radio-labeled acetyl-CoA are
able to incorporate and transfer radioactive acetate to proteins
and cell wall polysaccharides suggesting that acetyl-CoA is a
donor-substrate for the O-acetylation of wall polysaccharides
(Pauly and Scheller, 2000). As acetyl-CoA cannot diffuse through
membranes and the Golgi is not able to produce it (Oliver
et al., 2009), it has been proposed that RWA is responsible
for the translocation of acetyl-groups across the membrane
in order to supply the substrate to the other two families of
O-acetyltransferases (AXY9 and the various TBLs). Although no
experimental evidence has been reported yet, the existence of
intermediary acetyl donor(s) is a likely option (Lee et al., 2011;
Manabe et al., 2011, 2013; Schultink et al., 2015). In any case, the
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cytosolic pool of acetyl-CoA is likely the source used by plants
for the O-acetylation of polysaccharides as it is for alkaloids,
anthocyanins, isoprenoids, or phenolics (Fatland et al., 2005;
Oliver et al., 2009).

SIMILARITIES WITH OTHER
POLYSACCHARIDE O-ACETYLATING
ORGANISMS

All Gram-positive and most Gram-negative bacteria O-acetylate
extracellular polysaccharides such as their cell wall peptidoglycan
(PG) polymer. This heteropolymer is the main component of the
bacterial wall, and consists of alternating N-acetylglucosaminyl-
(β-1,4)-N-acetylmuramoyl residues cross-linked with stem
peptides. PG O-acetylation can occur in 20–70% of the MurNAc
residues, depending on the species and growth conditions and
provides protection against lytic enzymes such as lysozyme
(Moynihan and Clarke, 2011). In the last few years, a great
effort has been made to identify and characterize the proteins
involved in the O-acetylation of PG and other secondary cell wall
polysaccharides due to the importance of this modification for
the virulence of human pathogens such as Neisseria gonorrhoeae,
Bacillus anthracis, or Streptococcus pneumoniae (Moynihan and
Clarke, 2010; Moynihan et al., 2014; Sychantha et al., 2017, 2018).
One can find surprising similarities of those systems with the
polysaccharide O-acetylation mechanisms in plants indicating
common ancestry.

In Gram-positive bacteria, OatA proteins consist of a
N-terminal RWA-like multitransmembrane domain fused to
a globular extracytoplasmic C-terminal domain containing a
SGNH/GDSL esterase motif with similarity to plant TBL
proteins (Figure 1). Hence, Gram-positive bacteria seem to
be simultaneously translocating the acetyl groups from a
cytoplasmic source and O-acetylating the N-acetylmuramoyl
residues in the extracellular PG polysaccharide using a single
bimodular protein. Several OatA homologs have been identified
and characterized but only recently the crystal structure of
the C-terminal domain of OatA has been resolved and point
mutations in the DxxH and GDS motifs demonstrated that these
amino acids are essential for catalyzing O-acetylation of PG in
Streptococcus pneumoniae and Staphylococcus aureus (Sychantha
et al., 2017). A similar protein combination consisting of a
globular O-acetyltransferase domain combined with multiple
transmembrane domains is also observed in fungi and mammals.
The fungal CnCas1p protein is responsible for the O-acetylation
of capsular glucuronoxylomannans in Cryptococcus neoformans
(Janbon et al., 2001) (Figure 1). Although its activity has not
been determined experimentally, the human HsCasD1 protein,
showing high similarity and structure to CnCas1p, has been
demonstrated to be essential and sufficient for O-acetylation of
sialic acids, a family of nine-carbon monosaccharides typically
found capping the glycan chains attached to cell surface
glycoproteins and glycolipids in mammals including humans
(Arming et al., 2011; Baumann et al., 2015). Similarly to bacterial
OatA, activity assays showed that a N-terminus globular domain
of HsCasD1 containing the SGNH/GDSL motif catalyzes the

9-O-acetylation of sialic acids in vitro (Baumann et al., 2015).
These results suggest an ancient functional fusion between
the multitransmembrane and globular domains in a single
protein as a common mechanism to O-acetylate extracellular
polysaccharides in Gram-positive bacteria, fungi, and mammals
(Janbon et al., 2001; Anantharaman and Aravind, 2010; Baumann
et al., 2015).

In Gram-negative bacteria multitransmembrane proteins
have also been involved in O-acetylation of extracellular
polysaccharides, such as NolL that O-acetylates lipo-chitin
oligosaccharides in Rhizobium species, or GumG and GumF
involved in the acetylation of the mannose residues of xanthan
gum produced by Xanthomonas oryzae (Pacios Bras et al., 2000;
Kim et al., 2009). However, the O-acetylation machinery of
Gram-negative bacteria consists of multiple proteins as has been
observed in plants (Figure 1). A multitransmembrane protein
might translocate the acetyl moieties from a cytoplasmic source
into the periplasm, where one or more plasma membrane-
anchored proteins containing a SGNH/GDSL motif facing the
periplasm might transfer the acetyl-moiety to the polysaccharide
(Figure 1). This two-component mechanism involves the
coordinated expression of multiple components arranged in
operons. A model was originally proposed based on the
O-acetylation of alginate, a linear exopolysaccharide consisting
of 1-4-linked L-mannuronyl and D-glucuronyl residues present
in Pseudomonas aeruginosa (Figure 1) (Clarke et al., 2000). In
this bacterial species, the multi transmembrane domain protein
AlgI has been suggested to play a similar role as OatA or RWA,
exporting the acetyl groups from the cytoplasm. The available
acetate would then be used by AlgJ and AlgF proteins, both
containing a SGNH/GDSL motif. Although AlgJ and AlgF are
both required for alginate O-acetylation, their precise functions
have not been experimentally demonstrated and it has been
proposed that they would not transfer acetyl groups directly
to alginate. Instead, they would form a complex that could
be acting as an intermediary step providing acetyl groups to
AlgX, a protein shown to be able to O-acetylate the mannuronyl
alginate residues in vitro (Baker et al., 2014). According to
this model, the intermediate proteins AlgJ and AlgF might be
analogous to AXY9 in plants, whereas AlgX would be catalyzing
the final step in the O-acetylation of alginate, playing a similar
role as the TBL protein family in plants. A similar mechanism
has been postulated for other Gram-negative bacteria, including
N. gonorrhoeae or Campylobacter jejuni (Figure 1) (Weadge
et al., 2005; Moynihan and Clarke, 2010; Ha et al., 2016). In
these Gram-negative bacteria, several homologs of AlgI (i.e.,
PatA proteins) are supposed to translocate the acetyl groups
through the plasma membrane, whereas PatB proteins catalyze
the transfer to the C6 hydroxyl groups of the PG muramoyl
residues.

Despite the presence of proteins containing multiple
transmembrane domains in both one- and multiple-component
polysaccharide O-acetylating systems, proteins such as OatA,
RWA2 or AlgI share very limited sequence homology with PatA.
For example, SaOatA and NgPatA share only 15.1% sequence
identity and 23.6% similarity. A similar situation occurs when
comparing the O-acetyltransferase domain of plant TBL or
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Gram-positive bacterial OatA proteins with the Gram-negative
AlgX or PatB proteins. For example, there is only 15.4% identity
and 18.3% similarity between the globular domain of SaOatA
and HgPatB (Sychantha et al., 2017). This low degree of sequence
similarity suggests different evolutive origins.

Interestingly, some Bacillus species seem to have two
independent machineries to O-acetylate extracellular
polysaccharides (Figure 1). On the one hand, a bimodal
OatA homolog has been characterized exhibiting a mechanism
as described above, involving the simultaneous translocation
of acetyl groups and PG O-acetylation (Laaberki et al., 2011),
whereas another system consisting of PatA1 and PatA2
multitransmembrane proteins and the PatB1 periplasmic
O-acetyltransferase is responsible of the O-acetylation of
secondary cell wall polysaccharides (Sychantha et al., 2017).
Additionally, a second periplasmic protein with demonstrated
acetylesterase activity -PatB2- has also been involved in
O-acetylation of additional cell wall components although
the exact donor/acceptor substrate remains to be discovered
(Sychantha et al., 2017). Hence, these organisms seem to
have developed two different, independent systems for the
translocation of acetyl-groups to then specifically O-acetylate the
various wall polysaccharides utilizing members of two or more
O-acetyl transferase families.

EVOLUTION OF PLANT
POLYSACCHARIDE O-ACETYLATION
MACHINERY

Gram-positive bacteria, fungi, and mammals developed a one
component machinery to O-acetylate extracellular polymers.
These systems use a single protein combining a multiple
transmembrane domain translocating acetyl groups from
the cytoplasm fused to a globular domain, containing a
SGNH/GDSL-like catalytic motif. In plants, the protein domains
and thus functionalities evolved into separate proteins (RWA,
AXY9, and TBL protein families, respectively). As plants
contain multiple wall polymers an expansion and increased
diversification of the TBL protein family might have become
necessary. Interestingly, although plant RWA proteins belong
to the same sugar acyltransferase superfamily containing 10
transmembrane domains as bacterial OatAs, CnCas1p, and
HsCasD1, they lack the globular O-acetyltransferase domain,
indicating that plants need the additional involvement of other
components such as members of the TBL family and/or AXY9 in
order to O-acetylate their wall polysaccharides. Accordingly, the
globular domain of OatA or CnCas1p proteins contains the GDS
and DxxH motifs similar to plant TBLs and AXY9 hinting their
analogous functions. A similar separate, multiple component
mechanism was also developed by Gram-negative bacteria in
order to O-acetylate extracellular polysaccharides, albeit likely
arising through convergent evolution. The development of a
multiple component system in these bacteria could reflect again
a more complex wall with a variety of extracellular O-acetylated
polysaccharides. In these bacteria, an increased diversification

of the O-acetyltransferases is also observed (e.g., PatB1/PatB2 in
B. anthracis of AlgF, AlgJ and AlgX in P. aeruginosa).

All three families of proteins involved in O-acetylation of plant
wall polysaccharides can be found in vascular plants but also
in pteridophytes and bryophytes, including hornworts, mosses,
and liverworts (Figure 2). A sequence comparison of nine
representative embryophytic species showed that AXY9, TBL29,
and RWA2 proteins seems to be highly conserved in dicots
(Arabidopsis thaliana and Populus trichocarpa), monocots (Oryza
sativa) and gymnosperms (Pinus radiata) sharing identities
higher than 50% and similarities around 75% with theArabidopsis
representatives. Primitive plants such as Equisetum hyemale,
liverworts (Marchantia polymorpha), hornworts (Phaeoceros
carolinianus) and mosses (Physcomitrella patens) also contain
highly conserved sequences sharing identity and similarity values
around 40% and 60%, respectively.

Land plants evolved from Charophyte green algae after their
separation from Chlorophyte green algae (Lewis and McCourt,
2004; Becker and Marin, 2009). Although during the transition
from an aquatic to terrestrial environment cell walls in both
algae and plants have evolved independently (Niklas, 2004),
it is still likely that some of the wall components have a
common ancestry (Popper and Tuohy, 2010). Accordingly, the
biosynthetic machinery of some of the polysaccharides present
in a typical plant wall (e.g., xylan) can be traced back to the
Charophyte green algae (Jensen et al., 2018). When probing algal
genomes with the Arabidopsis RWA2 sequence, homologs can
be found in dozens of green algae species including members
of both the Chlorophyta (e.g., Volvox aureus or Nephroselmis
pyriformis) and Charophyta (e.g., Klebsormidium subtile or
Coleochaete scutata) divisions. However, algae seem not to encode
proteins with sequence similarity to AXY9 or TBL29. Since algal
RWA orthologs do not contain a GxxH and/or GSD domain
required for polysaccharide O-acetylation algae might harbor
additional, hitherto unidentified proteins that would be necessary
for O-acetylation to occur. These results indicate that RWA
proteins emerged earlier than AXY9 and the TBLs and suggest
that green algae may also use a polysaccharide O-acetylation
system based on RWA. The walls of several Chlorophyta and
Charophyta species have been reported to contain plant-type
wall polysaccharides such as xylan, mannans or XyG (Painter,
1983; Lahaye et al., 1994; Lahaye and Robic, 2007; Popper et al.,
2011). Unfortunately, information about the O-acetylation status
of these organisms is missing probably due to the alkali-based
methods used during wall isolation.

BIOLOGICAL SIGNIFICANCE OF
POLYSACCHARIDE O-ACETYLATION

O-acetylation of polysaccharides, including the various
hemicelluloses and the pectic polysaccharides homogalacturonan
and rhamnogalacturonan I, influences the polymer’s
physiochemical properties. Addition of O-acetyl-moieties
contribute to the gelling properties and viscosity of the
isolated polymers an important issue for food applications
(Rombouts and Thibault, 1986; Huang et al., 2002). O-acetyl
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FIGURE 2 | Phylogenetic tree of AXY9, TBL, and RWA proteins. Likelihood tree of AXY9 (A), TBL29 (B), and RWA2 (C) protein homologs constructed from
sequence alignment of selected species. Green: embryophytes (Arabidopsis thaliana and Populus trichocarpa, dicots; Oryza sativa, monocot; and Pinus radiata,
gymnosperm). Orange: Bryophyta (Marchantia polymorpha, liverwort; Phaeoceros carolinianus, hornwort; and Physcomitrella patens, moss) and Pteridophyta
(Equisetum hyemale, horsetail). Red: Algae (Chlamydomonas reinhardtii, green algae). Arabidopsis thaliana AXY9, TBL29, and RWA2 protein sequences (UniProtKB
references Q9M9N9-1, Q9LY46-1, and Q0WW17-4, respectively) were used in Basic Alignment Search tool protein (BLASTp) against the 1,000 Plants Initiative
databases (Matasci et al., 2014; https://db.cngb.org/blast/blastp/) with default parameters and the best hits for every specie were selected for phylogenetic analysis
using the Phylogeny.fr web tool with default settings (Dereeper et al., 2008). This tool uses MUSCLE to align the sequences and the Gblocks program to eliminate
poorly aligned positions and divergent regions. Phylogenetic trees were then constructed using PhyML using default parameters (Approximate Likelihood-Ratio Test)
and the Evolview tool (http://www.evolgenius.info) was used to edit the graphical representation.
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substituents increase polysaccharide hydrophobicity and lead
to conformational changes that influences interactions with
other polymers, either supporting binding or due to steric
hinderance abolish interaction (Busse-Wicher et al., 2014). As
a result, de-O-acetylation through, e.g., alkali-treatments leads
often to a decrease in solubility in aqueous environments and
precipitation of polymers (Gibeaut et al., 2005; Busse-Wicher
et al., 2016). Moreover, enzymatic attack of the polymer by
glycosyl hydrolases is restricted due to steric hindrance in
the vicinity of the target glycosidic bond (reviewed by Biely
et al., 2016). As an application example in the wood industry,
biomass chemical treatments include chaotropic alkali and acetic
anhydride treatments in order to de-acetylate and re-acetylate
the lignocellulosic polysaccharides, respectively, to modify
the wood properties. De-acetylation improves properties for
pulping, saccharification and fermentation due to the properties
mentioned above. On the other hand, chemical acetylation of
wood increases mechanical strength, durability and resistance to
fungi, bacteria, and termites, as acetylation of xylan and mannan
increases the stiffness and allows interactions with hydrophobic
substances such as lignin (reviewed in Pawar et al., 2013).
However, in non-lignified tissues, de-acetylation of primary wall
polysaccharides (e.g., pectic polysaccharides) has been associated
with increased cell wall stiffness probably due to a close spatial
association between pectin and cellulose microfibrils (Gou et al.,
2012; Orfila et al., 2012).

In planta the biological significance of a particular
polysaccharide O-acetylation pattern is diverse and in
many cases not clear. For example, a complete lack of XyG
sidechain O-acetylation has no apparent impact on plant growth
and development as the wild-type (WT)-like phenotypes of
Arabidopsis axy4 and axy4L knockout mutants demonstrate.
Reinforcing this notion, a natural Ty-0 Arabidopsis accession
displays an almost complete lack of XyG O-acetylation without
detrimental plant morphological and developmental side-effects
when grown in its native environment in the Highlands of
Scotland (Gille et al., 2011b). However, O-acetylation seems to
affect the aluminum binding capacity of XyG as demonstrated
by an increased aluminum content in the hemicellulose fraction
in axy4 mutant roots compared to the WT when growing in the
presence of this metal (Zhu et al., 2014). Yet, one cannot rule out
the possibility that XyG O-acetylation may play a role in other
environmental adaptation processes including specific stresses
and/or growing conditions yet to be identified. In contrast to
dicots such as Arabidopsis or poplar, in the grasses and plant
members of the Solanaceae (such as tomato, tobacco, etc.) the
glucan-backbone of XyG is partially O-acetylated (Gibeaut et al.,
2005; Jia et al., 2005). This is caused by XyG O-acetyltransferases
such as the Brachypodium BdXyBAT1 that O-acetylate the
non-xylosylated glucosyl backbone residues (Jia et al., 2005;
Liu et al., 2016). When BdXyBAT1 is expressed in Arabidopsis,
the backbone of XyG becomes O-acetylated reducing the
degree of xylosylation of XyG indicating that O-acetylation
impacts negatively the addition of other substitutions (Liu
et al., 2016). A reduction of the size of glycosyl side-chains of
XyG lacking, e.g., the fucosyl and galactosyl residues leads to
retarded plant growth (Pauly et al., 2013; Schultink et al., 2013).

It is thought that this dwarfism is caused by a distorted matrix
polysaccharide secretion system caused by the poor solubility
of the less substituted XyG (Jensen et al., 2012; Kong et al.,
2015). However, the addition of backbone O-acetyl substituents
to this lowly substituted XyG in the Arabidopsis mutant results
in a reversion of the retarded growth (Liu et al., 2016). These
results indicate that O-acetylation of the XyG glucan-backbone
is functionally equivalent to glycosyl-sidechains and might
represent an energetically favorable strategy by replacing C5 and
C6 carbon sugars with C2 acetates (Gibeaut et al., 2005; Jia et al.,
2005; Gille and Pauly, 2012; Liu et al., 2016).

Mutants affected in xylan O-acetylation display multiple
pleiotropic phenotypes including dwarfism, altered plant
architecture and constitutive stress-related responses associated
with a vascular collapse. Xylan is a major component of the
walls present in the water conducting xylem. Hypoacetylation of
xylan seems to affect the physical strength of the xylem walls, as
they are not able to resist the negative water pressure generated
during water transport. As a consequence, mutants affected in
members of the AXY9, RWA or particular TBLs that impact
xylan O-acetylation all display alterations in plant growth and
development. In Arabidopsis, the axy9-2 mutant shows an 80%
reduction in xylan O-acetylation and a strong growth arrest
(Schultink et al., 2015), whereas the quadruple rwa mutant shows
a 42% reduction in xylan O-acetylation with a reduction in
secondary wall thickening and collapsed xylem morphology (Lee
et al., 2011). Regarding the TBL family, only tbl29/esk1 single
mutant alleles, with a 40% reduction in xylan O-acetylation,
show a clear irregular xylem phenotype. Several other tbl single
mutants with only minor reductions in xylan O-acetylation
show only additive effects in the corresponding double, triple
or multiple mutant combinations in vascular development and
plant growth in several plant species (Yuan et al., 2016a,b,c; Gao
et al., 2017).

In addition to the xylem collapse and growth arrest,
xylan hypoacetylation has also been associated with other
developmental and stress-related phenotypes. tbl29/esk1 mutant
alleles also show stress-related pleiotropic phenotypes such
as increased tolerance to drought, salt or freezing, likely an
indirect consequence of the collapsed xylem (Xin and Browse,
1998; Xin et al., 2007; Bouchabke-Coussa et al., 2008; Lefebvre
et al., 2011; Ramirez et al., 2018). Intriguingly, several lines
of evidence seem to indicate that low xylan acetylation may
not be directly responsible for these observed phenotypes. For
example, expression of fungal acetyl-esterases in Arabidopsis and
Brachypodium causes post-synthetic de-acetylation of xylan but
it does not impact plant development or xylem morphology
(Pogorelko et al., 2013b). Most recently, the identification of
two tbl29 suppressors, where the xylem collapse and growth
arrest are recovered but the wall/xylan acetate remains reduced,
strongly supports these observations. KAKTUS (KAK) loss of
function increases stem diameter and activates the development
of larger tracheary elements. As a consequence, kak mutations
are able to recover almost completely from tbl29/esk1-associated
dwarfism without affecting wall acetate content. Although KAK
has been described previously as an endoreduplication repressor
affecting trichome morphology, the mechanism how it regulates
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vascular development is not known (Downes et al., 2003; El Refy
et al., 2003; Bensussan et al., 2015). Altered biosynthesis and/or
perception of some plant hormones (e.g., abscisic acid; ABA)
have been suggested to play a role in the pleiotropic phenotype
of tbl29/esk1. tbl29/esk1 alleles show increased ABA levels
and enhanced expression of several ABA-dependent genes, but
genetic evidence discarded that this hormonal pathway is directly
responsible for the phenotypes of tbl29/esk1 plants. Double
mutants blocking ABA biosynthesis or perception in a tbl29/esk1
background are not able to recover the developmental defects
shown by the tbl29/esk1 single mutant. Moreover, increased
ABA perception and tbl29/esk1 down-regulation seems to have
additive effects on drought tolerance, suggesting that they affect
independent pathways (Lefebvre et al., 2011). These findings
indicate that altered ABA levels are more a consequence of the
pleiotropic phenotype of the tbl29/esk1 mutant rather than the
cause. In contrast, it has been shown that blocking strigolactone
(SL) synthesis in tbl29/esk1 plants (i.e., tbl29 max4 double
mutants) is able to completely suppress both developmental
defects and increased freezing tolerance without affecting the
reduced acetate content (Ramirez et al., 2018). In addition,
exogenous applications of a synthetic SL to tbl29 max4 plants
result in dwarfism and collapsed xylem, further confirming
that these phenotypes are SL-dependent. This suggests that an
altered SL pathway could be directly involved in leading to
the pleiotropic phenotypes associated to the tbl29/esk1 mutants.
As SLs are hormones involved in the regulation of multiple
plant processes including stem elongation, secondary growth,
leaf expansion and adaptation to abiotic stress (reviewed in
Waters et al., 2017), this opens the possibility that xylan
hypoacetylation could be perceived by an unknown mechanism
triggering the activation a SL-dependent response regulating
xylem development (Ramirez et al., 2018).

In addition to acetate, xylan can also be substituted
with (methyl-)glucuronic acid (methyl-GlcA) residues by
xylan glucuronosyltransferases termed GUX. Together, these
decorations have been found to be important for xylan-cellulose
binding (Mortimer et al., 2010; Rennie et al., 2012; Bromley
et al., 2013; Busse-Wicher et al., 2014). Actually, vascular plants
seem to generate a specific xylan decoration pattern as acetate
and GlcA are found spaced on even-numbered residues in
the xylan backbone (Busse-Wicher et al., 2016). Recently, it
has been shown that in Arabidopsis, TBL29/ESK1-dependent
xylan O-acetylation is required for the generation of the even-
patterned GlcA substitutions (Grantham et al., 2017). In a
tbl29/esk1 mutant, where xylan acetylation is reduced, GUX1 is
unable to maintain the GlcA decoration pattern suggesting that a
correct O-acetylation pattern is required for the addition of GlcA
residues. As a consequence of this uneven substitution, xylan
might not be able to acquire the typical twofold screw ribbon
conformation impeding its docking onto the hydrophilic face
of a cellulose microfibril to form semicrystalline xylanocellulose
fibrils (Grantham et al., 2017). Intriguingly, expression of GUX1
in vascular tissue under the control of a tissue specific promoter
is able to rescue the tbl29/esk1 mutant growth defects indicating
that xylan functionality is restored (Xiong et al., 2015). GUX1
is able to glucuronosylate additional available positions on the

xylan backbone due to the absence of O-acetyl-groups in tbl29.
Glucuronosylation of xylan can thus be considered functionally
equivalent to O-acetylation in vivo. This agrees with the notion
that the addition of O-acetyl substituents (C2 units) to wall
polysaccharides instead of sugars (C5-C6) could have evolved
as a more energetically favorable strategy as described above
for XyG. Other TBL proteins than TBL29/ESK1 participate in
the regiospecific O-acetylation of xylan (Zhong et al., 2017),
suggesting the existence of a precisely regulated mechanism to
create a tissue-specific O-acetylation pattern in xylan in order
to adequately interact with cellulose and likely other cell wall
components.

O-acetylation of pectic polysaccharides has also been
associated with plant signaling processes. rwa2 mutant alleles
show increased resistance to the necrotrophic fungal pathogen
Botrytis cinerea accompanied by leaf surface defects including
trichome collapse, enhanced leave permeability and altered
cuticle formation (Manabe et al., 2011; Nafisi et al., 2015).
As these defects have not been observed in other mutants
affected in hemicellulosic polysaccharide O-acetylation, it
has been speculated that these phenotypes may be caused by
pectin hypoacetylation although direct evidence is still lacking
(Nafisi et al., 2015). Other reports have associated reduced
pectin O-acetylation with increased disease resistance. For
example, plants overexpressing a fungal rhamnogalacturonan
acetylesterase constitutively activate defense responses and
show increased resistance to pathogens (Pogorelko et al.,
2013b). Since a similar response has been observed after
application of oligogalacturonide fragments (OGs) and more
efficiently by partially acetylated OGs, it has been proposed that
pectin O-acetylation might be involved in a cell wall integrity
maintenance system (Randoux et al., 2010; Pogorelko et al.,
2013a).

Recently, pectin O-acetylation has been also proposed to
regulate other important developmental processes such as
photomorphogenesis (Sinclair et al., 2017). Both the tbr mutant,
affected in a putative pectin acetyltransferase, and the rwa2
mutant, show a photomorphogenic response when grown in
the dark. This phenotype can be restored by adding small
homogalacturonan fragments and thus pectin O-acetylation
might regulate a dark signal involved in a complex network of
light-dependent seedling development (Sinclair et al., 2017).

OPEN QUESTIONS

There are still open questions regarding the mechanism of
polysaccharide O-acetylation not only in plants but also in
bacteria, fungi, and mammals. First, the identity of the acetyl-
donor and the detailed mechanism of translocation through the
Golgi membrane are not known in any of these organisms.
Although it is likely that the cytosolic acetyl-CoA pool is tapped
for this purpose, acetyl-CoA itself is likely not transferred.
Studying this process is challenging as the likely responsible
protein contains multiple transmembrane domains. Second, the
exact mechanism of the transfer of an acetyl group from a donor
to the hydroxyl group of an acceptor sugar remains unknown,
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although mechanistic insights became recently available from
bacterial OatA proteins (Sychantha and Clarke, 2018). Recent
reports in bacteria have suggested a direct acylation of the
OatA protein following a ping-pong bi-bi mechanism of
action where the acetyl group is covalently attached to the
catalytic Ser residue of the enzyme before being transferred
to the substrate. A similar acetyl-enzyme intermediate has
also been proposed in the Gram-negative PatA/PatB mode of
action, where PatB O-acetyltransferases could form a complex
with the acetyl-bound PatA membrane proteins precluding
free water from accessing the active site, preventing the
hydrolysis of the translocated acetyl group ensuring an efficient
acetate transfer (Moynihan and Clarke, 2010). The existence of
likely intermediary steps as suggested in other Gram-negative
bacteria systems (e.g., AlgI/AlgF/AlgJ/AlgX) could implicate
the formation of a multiprotein complex for the O-acetylation
of extracellular polysaccharides. A RWA/AXY9/TBL complex
formation could also be conserved in plant systems, although
mechanistic details are still missing. Comparison of the various
polysaccharide O-acetylation systems raises the question of the
evolution of the various O-acetylation mechanism – in essence
why multiple proteins are required for this process in some
species while in other species apparently a single protein suffices.
Third, the transferases responsible for the O-acetylation of
some wall polymers (e.g., mannans, pectins, or lignin) remain

to be discovered, albeit it is likely that members of the TBL
family are involved. The identification and characterization
of such proteins is not only needed to understand the wall
O-acetylation mechanism of particular wall polysaccharides, but
also to gain insights into the function of the O-acetyl substituent
on this polymer. Fourth, the recent advent of identifying the
genes responsible for polysaccharide O-acetylation and their
genetic manipulation in vivo lead to the discovery of intriguing
function of this substituent. However, at this stage the phenotypic
results are rather descriptive and additional research in the
future is required to ascertain causal relationships as well as
mechanistic insights into polymer interactions, cellular sensing
and responses.
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