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Galls are the product of enclosed internal herbivory where the gall maker induces a
plant structure within which the herbivores complete their development. For successful
sustained herbivory, gall makers must (1) suppress the induction of plant defenses
in response to herbivory that is usually mediated through the jasmonic acid pathway
and involves volatile organic compound (VOC) production, or (2) have mechanisms to
cope with herbivory-induced VOCs, or (3) manipulate production of VOCs to their own
advantage. Similarly, plants may have mechanisms (1) to avoid VOC suppression or
(2) to attract galler enemies such as parasitoids. While research on VOCs involved in
plant–herbivore–parasitoid/predator interactions is extensive, this has largely focussed
on the impact of piercing, sucking, and chewing external herbivores or their eggs on
VOC emissions. Despite the importance of gallers, owing to their damage to many
economically valuable plants, the role of volatiles in gall-associated herbivory has
been neglected; exceptions include studies on beneficial gallers and their enemies
such as those that occur in brood-site pollination mutualisms. This is possibly the
consequence of the difficulties inherent with studying internally occurring herbivory. This
review examines the evidence for VOCs in galler attraction to host plants, potential VOC
suppression by gallers, increased emission from galls and neighboring tissues, attraction
of galler enemies, and the role of galler symbionts in VOC production. It suggests a
research focus and ways in which studies on galler-associated VOCs can progress from
a philatelic approach involving VOC listing toward a more predictive and evolutionary
perspective.

Keywords: galler, herbivory, parasitoid, multitrophic interactions, plant–galler interactions, plant–insect
interactions, volatile organic compounds, VOCs

INTRODUCTION

Galls are a classic example of niche construction (Gilbert, 2009) and partly of the extended
phenotype of the galling organism (Stone and Cook, 1998). Galls are constructed by gallers
in concert with plant tissue that is coerced into gall formation (Favery et al., 2016; Borges,
2017). These hypertrophied tissues provide protection and nutrition for one or more galler
generations (Wool and Burstein, 1991). Diverse organisms including viruses, bacteria, fungi, and
invertebrates induce galls on plants (Mani, 1964; Raman, 2011; Fernandes and Santos, 2014).
Of invertebrates, galling insects are possibly the most diverse and most studied and include gall
midges (Diptera: Cecidomyiidae), gall wasps (Hymenoptera: Cynipidae), and aphids (Hemiptera:
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Aphididae); nematodes and mites are also important. Most
galls are an infestation; to be sustained, gallers must suppress
or cope with plant defenses such as herbivore-induced plant
volatiles (HIPVs) or manipulate them to their own advantage
(Figure 1). This review is restricted to invertebrate-induced galls,
and focuses on the less-examined role of volatiles in galler–plant–
galler enemy interactions (Figure 1). Beneficial galls occur in
some brood-site pollination mutualisms when gallers themselves
are pollinators, e.g., fig wasps (Borges, 2016; Figure 2). Here the
interests of the host-plant and the gallers are aligned, and plants
actively signal to their galler pollinators.

PLANT VOLATILE ORGANIC
COMPOUNDS (VOCs) THAT ATTRACT
GALLERS

Plant tissues rich in meristems are likely most suitable for gall
initiation (Carneiro et al., 2017; Silvia and Connor, 2017) and
should attract gallers.

Floral Volatiles
In the fig pollination mutualism, where gallers are pollinators
and gall individual flowers at the expense of seeds, a diverse
volatile organic compound (VOC) blend attracts agaonid wasp
pollinators (Hossaert-McKey et al., 2010; Borges, 2016). These are
likely produced by glandular cells in the outer wall of fig syconia
(enclosed globular inflorescences) or in bracts surrounding the
syconium opening at the pollen-receptive stage (Souza et al.,
2015). These blends comprise mostly terpenoids, with some
benzenoids and aliphatic compounds (Borges, 2016). In one
study, 4-methylanisole was proposed as the major pollinator
attractant (Chen et al., 2009). Another study determined that
enantiomeric mixtures of some dominant monoterpenes were
more attractive to pollinators than others (Chen and Song,
2008). Besides pollinating gallers, most fig syconia also harbor
non-pollinating, parasitic galler wasp species (Herre et al.,
2008); these arrive for oviposition either very early or much
later in the development of the syconium (Segar et al., 2013)
attracted by stage-specific VOCs; some species are attracted to the
same blends that attract pollinating gallers (Borges et al., 2013;
Figure 2C), and therefore exploit signals meant for mutualistic
gallers.

Sometimes floral VOCs serves as cues for leaf gallers. Floral
volatiles in Salix are long-distance attractants for leaf-galling
sawflies Pontania proxima (Kehl et al., 2010). Although the target
galling sites are leaves, flowering twigs produce 90 times more
VOC quantities than non-flowering twigs suggesting that using
floral volatiles as a proxy for leaves may be an efficient host-
finding strategy; more flowering than non-flowering plants were
galled. In electroantennogram detection (EAD) studies on VOCs
from male flowering twigs, compounds absent from vegetative
VOC blends, e.g., 1,4-dimethoxybenzene, were strongly detected
by sawfly antennae, confirming that such floral compounds
may constitute key attractants for leaf gallers. Interestingly, the
antennae also responded to green leaf volatiles (GLVs).

Stem and Leaf Volatiles
Considering the voluminous research on cecidomyiid and
cynipid galls, very little work exists on host volatiles as attractants.
Volatiles of flowering stems of the herbaceous perennial Silphium
(Asteraceae) attracted the cynipid gall wasp Antistrophus rufus
(Tooker et al., 2005). A monoterpene blend consisting of a
racemic mixture of α-pinene and β-pinene (+ for both), (+)-
limonene, and (−) camphene served as principal attractants
for ovipositing females (Tooker et al., 2005). The compound
ratios in the blend must be crucial since these monoterpenes
are present in sympatric Silphium species to which the cynipids
are not attracted. Male cynipid wasps use parts of this same
blend to locate females within galled stems indicating that host
volatiles are employed as mate location cues (Tooker et al.,
2002; Tooker and Hanks, 2004) as in several other non-galling
phytophagous insects (Xu and Turlings, 2018). The cynipid
chestnut gall wasp Dryocosmus kuriphilus was attracted to a
GLV blend from Castanea stems 60–120 min after damage,
and failed to be attracted to intact stems (Germinara et al.,
2011). All these compounds were detected by wasp antennae. C6
volatiles from young apple leaves were major attractants, eliciting
EAD responses in the apple cecidomyiid midge Dasineura mali
(Anfora et al., 2005). Female orange wheat blossom cecidomyiid
midges Sitodiplosis mosellana were attracted by key compounds,
e.g., (Z)-3-hexenyl acetate, acetophenone, and 3-carene, present
in minor proportions in the overall volatile profile of wheat
panicles (Birkett et al., 2004). The African rice gall cecidomyiid
midge Orseolia oryzivora preferred volatiles from uninfested
plants while those from infested plants served as repellents;
the major difference between these volatile profiles was a
considerable increase in the HIPV (E)-β-caryophyllene (Ogah
et al., 2017).

Root Volatiles
For root-knot nematodes, CO2 seems to be the most important
attractant released by actively respiring roots (Rasmann et al.,
2012); there is scant information on other root volatiles that
serve as galler/plant parasitic nematode attractants in the absence
of plant damage (Rasmann et al., 2012; Johnson and Rasmann,
2015). Low concentrations of lauric or dodecanoic acid attract
root-knot nematodes while this VOC is repellent at high levels
(Dong et al., 2014).

IMPACT OF GALL MAKERS ON PLANT
VOLATILES

Suppression of Volatile Production
A successful galling strategy may require that gall makers
suppress the induction of plant defenses (Kant et al., 2015), since
a galler must have prolonged residence within the plant. Since
many plant-induced defenses involve activation of the jasmonic
acid (JA) pathway, which also often results in volatile release, it is
therefore not surprising that VOC production is often suppressed
during galling. A meta-analysis of secondary metabolites that
are up-regulated on gall induction found that, unlike other
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FIGURE 1 | Interactions between gallers and plants by means of volatiles. Arrows point toward the affected interactant from the volatile source. Volatiles may attract
gallers to plants; the galler may suppress plant volatile production, or plants may increase volatile production to attract galler enemies or to up-regulate defenses.
Symbionts within galls or gallers may affect volatile production.

metabolites, volatiles were usually unaffected (Hall et al., 2017).
For example, goldenrod plants Solidago altissima showed no
increase in VOC emission after attack by galling flies Eurosta
solidagnis or galling moths Gnorimoschema gallaesolidaginis
(Tooker et al., 2008), as also in Japanese elms attacked by
galling aphids (Takei et al., 2015). Furthermore, infestation
by E. solidagnis suppressed HIPVs in response to subsequent
herbivory by generalist caterpillars (Tooker et al., 2008).
Consistent with JA suppression, galls accumulated salicylic acid
(SA) instead (Tooker et al., 2008). Tooker and De Moraes (2008)
speculate that gallers are adapted to suppress JA, since JA inhibits
plant growth hormones such as auxin and also cytokinins, both of
which must be locally up-regulated in gall formation (Tooker and
Helms, 2014). Whether gallers can suppress ethylene production
which could impact VOC production (Broekgaarden et al., 2015)
is unknown. Some insect gallers may synthesize phytohormones,
e.g., auxin (Bailey et al., 2015); this may impact JA synthesis
as suggested by cross-talk between auxin and JA observed in
many plant-associated bacteria and fungi (Berens et al., 2017).
Gallers may succeed in suppressing plant defenses by deploying

effector molecules (Zhao et al., 2015) among which are ATP-
hydrolysing enzymes, calcium-binding proteins, and ubiquitin
ligases (Giron et al., 2016; Guiguet et al., 2016; Nabity, 2016).

Five non-mutually exclusive mechanisms have been suggested
for the absence of increased VOC emission after galling (Tooker
et al., 2008). Besides the SA up-regulation mentioned above, they
include (a) avoidance of galler detection, (b) targetting relatively
non-reactive tissues, e.g., stems, (c) depletion by galler larvae
of plant resources needed for VOC production, and (d) active
suppression of host-plant defense (e.g., Nyman and Julkunen-
Tiitto, 2000).

Increase in Volatiles After Galling
While gallers often suppress VOCs, increased VOC production in
and around galled tissues may occur. In flower galls produced by
the dipteran Myopites stylatus on the woody fleabane Dittrichia
viscosa (Asteraceae), emission of the phenylpropene compound
estragole, an isomer of anethole, increased six times compared
to ungalled flowers (Santos et al., 2016). A moderate increase in
anethole was also evident. The terpene eucalyptol (1,8-cineole)
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FIGURE 2 | Interactions of plants with beneficial and parasitic gallers. Examples are from the cluster fig Ficus racemosa (A) seeds and pollinator galls in a syconium.
Note remnants of stigma and single developing pollinator in each galled uniovulate flower. (B) Large galls of an early-arriving parasitic galler Sycophaga stratheni in a
syconium; these gallers target tissues of the syconium lumen. (C) Aggregations of parasitic gallers Sycophaga fusca on a syconium; these gallers are attracted by
the syconium volatile blend emitted at pollen-receptive stage. (D) The weaver ant Oecophylla smaragdina preying upon pollinator gallers Ceratosolen fusciceps
entering a syconium through the ostiole; ants are attracted by syconial volatiles at pollen-receptive phase. (E) Oviposition by parasitoid Apocrypta sp. 2 into galls
hidden within the syconium; oviposition decision are made using chemosensory features of the ovipositor. Photo credits: (A,D) Mahua Ghara and Yuvaraj
Ranganathan; (B,C) Pratibha Yadav; image in C is adapted from Yadav et al. (2018) and is reproduced with permission from Springer Nature; (E) Nikhil More.

was emitted in large quantities only from galls, and was absent
from floral scents. However, the gall emission of compounds such
as α-pinene, β-pinene, limonene, and linalool was significantly
lowered. Terpenes such as α-pinene, limonene, and linalool may
have a toxic but hormetic effect on dipterans (Papanastasiou
et al., 2017), while estragole and anethole are generally toxic to
dipterans (Chang et al., 2009). Eucalyptol emitted by another
Asteraceae plant was a repellent and oviposition-deterrent to
mosquitoes (Klocke et al., 1987). Many interesting questions arise
from these observations on the fleabane–fly interaction. First,
the concentrations of the VOCs within the gall are unknown;
therefore, whether high concentrations of estragole and anethole
are also present within gall tissues is not known. If the gall
also contains high amounts of these phenylpropanoids, that
are usually toxic to many insects, one may speculate that the
galler larvae/pupae are resistant to these toxins. If so, are they
being produced by the galler by hijacking plant biochemical
machinery to their advantage, so that non-resistant galler enemies
such as parasitoids are also deterred? Additionally, is it possible
that concentrations of α-pinene, limonene, and linalool are
lowered within the gall to non-toxic but hormetic levels under
the action of the galler? Is eucalyptol being produced in very

high quantities to deter galler enemies such as parasitoids or
for its antifungal/antibacterial activities? The parasitoids of this
tephritid fly species include eurytomid, eupelmid, pteromalid and
torymid wasps, and appear to be attracted by gall and/or host
cues (Santos et al., 2016). It is also possible that gallers are unable
to manipulate VOC release and that VOC emission is under
multifactorial control resulting in unexpected VOC emission
patterns.

In another example, the aphid Baizongia pistaciae induces
galls on the terminal buds of the pistachio Pistacia palaestina
(Anacardiaceae). Gall tissue extracts contained much higher
levels of terpenes, especially α-pinene and limonene, than
surrounding ungalled leaves, while leaves accumulated more
sesquiterpenes (Rand et al., 2014). The high terpene levels
resulted from increased biosynthetic activity within the galls
rather than accumulation from surrounding tissue (Rand et al.,
2017). High terpene levels within the gall could result from a
need for antibacterial/antifungal activity, or to deter parasitoids.
Stored and emitted terpenes were also in higher concentrations
in galls formed by the aphid Slavum wertheimae on the lateral
buds of Pistacia atlantica (Rostás et al., 2013). Concentrations
of three terpenes, i.e., α-pinene, limonene, and sabinene, were
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much higher compared to others. The principal galler enemies
in this study were mammalian herbivores, i.e., goats, that were
reluctant to consume galls or food pellets to which these three
terpenes were added in biologically relevant concentrations.
While the authors speculate that terpenes were largely responsible
for the feeding deterrence, they admit that the high gall tannin
concentrations may also have deterrent effects.

In the oak Quercus robur, cynipid galls do not have altered
VOC emissions but affect emissions of neighboring portions
of gall-bearing leaves (Jiang et al., 2018). The change in leaf
emission depends on whether the galler attacks major veins
or intercostal areas. Major vein galls resulted in more GLV
production and less terpenes from neighboring tissues, while galls
in undifferentiated parenchyma of intercostal areas resulted in
much more terpene and benzenoid production. Notably both
types of galls caused increased α-pinene and limonene emission,
while the intercostal tissue galls also induced the emission of
other monoterpenes such as linalool, camphene, β-myrcene,
and the sesquiterpene β-bergamotene that were not produced
by ungalled leaves. Galls also produced far less isoprene than
ungalled leaves. Therefore, in this example also, monoterpene
production was most affected. Similarly, an increase in α-pinene
and limonene emission occurred in galls induced by psyllids on
Schinus polygamus (Anacardiaceae) (Damasceno et al., 2010); C6
volatiles increased in neighboring leaf portions bearing the galls.

In S. altissima attacked by the rosette gall-midge Rhopalomyia
solidaginis, emissions of terpenes such as copaene and
β-pinene increased post-galling (Uesugi et al., 2016); these
attracted herbivorous beetles whose presence facilitated galler
performance, suggesting that VOC emission patterns must be
viewed in an integrated manner.

PLANT OR GALL VOLATILES THAT
ATTRACT GALLER ENEMIES

Herbivore-induced plant volatiles used by parasitoids in host
location have been largely investigated for externally feeding
chewing, piercing, and sucking herbivores (Aartsma et al., 2017),
where herbivore feeding mode appears an accurate predictor
of the HIPV blend (Danner et al., 2017). Surprisingly, there is
almost no work on VOCs attracting parasitoids to galls. While
Borges et al. (2013) examined changes in the volatilome during
fig syconial development, including stages when a multiplicity
of gallers and parasitoids of these gallers are also attracted,
here too, the study did not specifically test a set of volatiles on
parasitoids. Using an adaptation of weighted gene coexpression
network analysis (WGCNA), co-emitted modules of VOCs were
detected. Early-arriving gallers triggered the release of GLVs such
as (Z)-3-hexenyl acetate and (Z)-3-hexenol. Later-arriving gallers
triggered the release of compounds such as (E)-β-ocimene, (Z)-
β-ocimene, and methyl salicylate in response to galler feeding;
these are well known HIPVs and parasitoid attractants in other
plant–herbivore systems (Turlings and Erb, 2018). In Y-tube
olfactometer experiments, parasitoid wasps were attracted by
VOCs of fig syconia containing their galler hosts (Proffit et al.,
2007). Such attracted parasitoids make decisions about which

galls to parasitise by sampling syconial odors with their probing
ovipositor. For the first time, Yadav and Borges (2017) showed
that the ovipositor of fig wasp gallers and parasitoids is a volatile
sensor, and that it responds both behaviourally as well as with
neuronal firing to cues such as CO2 and syconial stage-specific
volatiles. For parasitoids that need to seek out hidden hosts
within galls (Figure 2E), the use of cues such as CO2 that signal
locations of actively respiring galler larvae/pupae are potentially
extremely important in successful parasitism. Parasitoids in the
fig system may be considered apparent mutualists if they target
non-beneficial gallers or control the population of pollinating
gallers within fig syconia (Krishnan et al., 2015); therefore, the
role of VOCs in maintaining such tritrophic interactions in order
to stabilize the core mutualism is likely profound.

Volatiles emitted by fig syconia in pollen-receptive phase to
attract galling pollinators are also attractive to predatory ants that
eavesdrop on this pollinator signal (Ranganathan and Borges,
2009; Figure 2D). These ants are also attracted to syconial
volatiles at a later stage when F1 galler wasps and parasitoids
exit the syconia; ant attraction toward stage-specific volatiles in
Y-tube olfactometer tests is a learnt association based on prior
exposure to syconial volatiles (Ranganathan and Borges, 2009).
Since ants are important predators of galler and parasitoid fig
wasps (Ranganathan et al., 2010; Bain et al., 2014), and are also
important in other galling systems (Fernandes et al., 1999), their
response to gall-associated volatiles deserves more attention.

Inquilines of gallers are also attracted by volatiles. Goldenrod
Solidago stems are infested by galls induced by E. solidaginis
tephritid flies. These flies can infest S. altissima and Solidago
gigantea plants, and in turn their galls are attacked by gall-
boring inquiline beetles Mordellistena convicta. These beetles
were attracted to volatiles associated with galls of their natal
host plants, and avoided those of alternate host plants occupied
by their galler hosts suggesting that inquiline speciation and
subsequent radiation is driven by olfaction (Rhodes et al., 2012).
The inquiline wasps Diaziella yangi and Lipothymus sp. that
parasitise the pollinating galler Eupristina sp. of Ficus curtipes
are attracted by 6-methyl-5-hepten-2-one (Gu and Yang, 2013)
which is an important volatile in the pollen-receptive scent of
the fig syconium (Gu et al., 2012); they showed no attraction
to 6-methyl-5-hepten-2-ol which is another important scent
constituent.

ROLE OF SYMBIONTS IN
GALLER–PLANT INTERACTIONS

Plant scents may be influenced by symbionts. For example,
bacteria have been recently implicated in VOC production
in floral tissues (Helletsgruber et al., 2017). Bacteria in
oral secretions of caterpillars can also suppress JA responses
(Wang et al., 2016). Fungal root symbionts can influence above-
ground production of HIPVs that attract parasitoids (Rasmann
et al., 2017; Simon et al., 2017). Whether microbes are involved in
VOC production that is beneficial to the galler or to the plant is as
yet unknown (Figure 1). However, symbiosis has benefitted many

Frontiers in Plant Science | www.frontiersin.org 5 August 2018 | Volume 9 | Article 1139

https://www.frontiersin.org/journals/plant-science/
https://www.frontiersin.org/
https://www.frontiersin.org/journals/plant-science#articles


fpls-09-01139 August 4, 2018 Time: 18:1 # 6

Borges Gall Volatiles and Multitrophic Interactions

gall-inducing insect lineages such as ambrosia gall midges whose
diversification has been aided by fungal symbionts (Joy, 2013).
The role of endophytic fungi present in many insect-induced galls
is also unknown (Lawson et al., 2014).

CONCLUSION

Moving From Philately to Understanding
the Volatilome
While information is still scarce, gall induction may affect the
volatilome of plants. Making sense of this effect may be tackled
at several levels. (1) Classes of VOCs may have particular
relevance at different stages of galler–plant interactions. For
example, that many gallers are attracted to non-specific GLVs
suggests that GLVs are used as habitat cues rather than host-
specific cues (Webster and Cardé, 2017) and enable navigation
toward suitable vegetation patches from long distances. (2)
Mirroring research on externally feeding herbivores, where
HIPVs have been investigated from the egg-laying stage (Hilker
and Fatouros, 2015), comparable information is needed in galler–
plant–parasitoid/inquiline interactions including stages such as
tissue damage by ovipositor probing, egg laying, damage by larval
mandibles, and finally gall induction. (3) Metabolic plasticity can
occur in host-plant–galler interactions vis-a-vis different gallers
and plant genotypes (Uesugi et al., 2013, 2016), resulting in
varied responses that must, therefore, be interpreted within the
context of the specific interactants. (4) We need to understand
correlation networks of VOCs produced by plants under a variety
of circumstances. Junker et al. (2017) and Junker (2017) have
examined enzymatic and volatile hubs; such efforts may lead to
predictions and an understanding of why certain VOCs tend
to co-occur, e.g., α-pinene, limonene, and linalool in many of
the above-cited examples. (5) Chemists and behavioral ecologists

must appreciate the importance of VOCs produced in small
quantities; small peaks are often ignored at analytical and testing
stages, but these may often contain the real signaling messages
(Clavijo McCormick et al., 2014). (6) Since VOC emission is
likely an active process controlled by transporters across plant cell
membranes (Adebesin et al., 2017), and is not merely controlled
by physical processes such as volatility (Borges et al., 2013), the
field of plant signaling using volatiles must move toward making
predictions about the costs and benefits of VOC production,
types of VOCs expected, and their consequences. Only then
will the study of volatiles progress from philately to viewing
gall-associated volatiles within an ecological and evolutionary
framework.
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